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Abstract: Mapping landslides using automated methods is a challenging task, which is still largely
done using human efforts. Today, the availability of high-resolution EO data products is increasing
exponentially, and one of the targets is to exploit this data source for the rapid generation of landslide
inventory. Conventional methods like pixel-based and object-based machine learning strategies have
been studied extensively in the last decade. In addition, recent advances in CNN (convolutional
neural network), a type of deep-learning method, has been widely successful in extracting information
from images and have outperformed other conventional learning methods. In the last few years,
there have been only a few attempts to adapt CNN for landslide mapping. In this study, we introduce
a modified U-Net model for semantic segmentation of landslides at a regional scale from EO data
using ResNet34 blocks for feature extraction. We also compare this with conventional pixel-based
and object-based methods. The experiment was done in Douglas County, a study area selected in
the south of Portland in Oregon, USA, and landslide inventory extracted from SLIDO (Statewide
Landslide Information Database of Oregon) was considered as the ground truth. Landslide mapping
is an imbalanced learning problem with very limited availability of training data. Our network was
trained on a combination of focal Tversky loss and cross-entropy loss functions using augmented
image tiles sampled from a selected training area. The deep-learning method was observed to have a
better performance than the conventional methods with an MCC (Matthews correlation coefficient)
score of 0.495 and a POD (probability of detection) rate of 0.72.

Keywords: landslide; landslide mapping; remote sensing; machine learning; deep learning;
Convolutional Neural Networks (CNN); resnet; U-Net; pixel-based; object-based; semantic segmentation;
dice coefficient

1. Introduction

Landslides are defined as the gravity-driven movement of a mass of rock, debris, or earth down a
slope [1]. A sudden slope failure event can be a significant source of economic losses and fatalities when
it affects areas of human influence [2]. The World Bank has identified a total land area of 3.7 million
square kilometers under risk of landslides, out of which 820 thousand square kilometers are high-risk
zones [3]. This affects around 300 million people, which accounts for 5% of the world’s population.
Just the non-seismic landslides between 2005 to 2016 are responsible for an underestimated total of
55,997 deaths across the globe [4]. Moreover, the slow-moving unstable slopes hold enough potential
to damage or weaken engineering infrastructures like roads, buildings, and dams [5,6]. Occasionally,
these instabilities can develop into a rapid-moving catastrophic landslide affecting portions or even
entire slopes, often triggered by external factors such as heavy rainfall, earthquakes, volcanic eruptions,
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and human activities [7]. As the impact of landslides on human lives was proved during last decades,
currently its study is an important area in natural hazard research. A lot of work has already been done
in studying the mechanics of mass-wasting processes [8] aimed at understanding its relationship with
the conditioning factors [9] at identifying hazardous areas and determining the risks involved [10,11].

When a landslide occurs, it changes the topography of the affected area in the form of
characteristics surface morphological features, which can be used as a proxy to detect landslide
affected slopes [9,12,13]. Maps showing the spatial distribution of past landslides activity and existing
slope instabilities are the primary requirement for an effective hazard assessment, risk management,
and disaster response. From early days, observing geomorphological features in the field has been
the standard procedure to map landslides [14]. Mapping surface features on the field however is a
time-consuming process and the scale or location of the phenomena can make it difficult to observe the
complete phenomenon at once [13]. After a large catastrophic failure, aerial surveys are often organized
for acquiring photographs for stereoscopic aerial photo-interpretation, which complement the field
mapping efforts. This provides a synoptic view of large landslides, but conveys no information about
the previous state of the ground surface. Today, there is a large constellation of satellites in orbit
which systematically acquires and archives Earth Observation (EO) images at high spatial resolution.
Visual and semi-automated interpretation of optical satellite images with adequate field validation is
currently the most widely used method for making landslide inventories [13,15–17]. It is now possible
to fetch satellite images from the past for comparative analysis or to study the evolution of an unstable
slope. High-resolution Digital Elevation Models (DEM’s) are particularly useful for identifying the
morphological features associated with landslides [9,13,18–20]. However, most of these observable
characteristics markers are post-failure deformation surface features and they do not provide any
information about the current state of activity. Depending on the extension of the area of interest and
available data, interpretations from the remotely sensed data have important limitations, and require
extensive human involvement and include a large degree of subjectivity [21]. This is a major reason
that systematic landslide inventory has been compiled for less than 1% of the total slopes present in
the land surface [13]. Even if regional landslide catalogs are once mapped, they are often not updated.

The archive of current EO data is increasing exponentially in volume, and the trend is expected to
continue in the future due to the planned satellite launches [22,23]. The EO data availability is thus
foreseen to rate increase in the order tens of Petabytes per year or more [22], and with such an amount
of data it is getting more and more difficult, if not impossible, to analyze all the scenes with manual or
semi-automated methods. Hence, the majority of images acquired ends up in archives until it is pulled
up for specific investigations. There has been a rapid growth in the application of machine learning
across every discipline supported with a complementing increase of digital data and improvement of
computing infrastructure. The geoscience community has rapidly adopted machine learning for many
applications. There is an ongoing effort towards developing an automated algorithm for mapping
of landslides as well. The majority of the work done so far prefers supervised learning approaches,
with an assumption that landslides are more likely to occur under conditions similar to those that
have caused the past events [12,24,25]. Landslide information of a region, compiled in the past trough
manual operation of specialists, can be used to learn patterns from EO data which will further help in
automatic identification of landslides in areas which are not yet mapped. In the future, it is foreseen a
scenario where it will be possible for a trained algorithm to identify new landslides or even to predict
possible locations of slope failure with minimal effort and time.

Geomorphic features resulting from past displacements (for example, scarps, trenches, bulging
toes, double ridges) are useful for the identification of landslides. On the other hand, conditioning
factors (for example, terrain structure, geology, slope geometry, mean weather conditions, vegetation
density, and human-made influences) are the main contributors to the location of landslide formation.
Studies that use machine learning algorithms to map landslides from EO data typically have a
pre-processing step to derive a broad set of these morphological, hydrological, textural, and spectral
features maps. However, many studies have failed to establish a clear distinction between the
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displacement related features and the conditioning factors. In this work, we collectively refer to
displacement related features maps and the conditioning factors maps as “features” or “derived
features". These features are used to map “landslides” which we consider to be the areas presenting
morphological expressions that can be associated to past and/or recent deformation. Several
authors have compiled a brief overview of these features, which are commonly used in the
identification of landslides [21,26–28] (Table 1). The training process eliminates the requirement of a
well-defined physical or numerical model and relies on ad-hoc learning of the relationship between
the existing landslide inventory and the derived features. Decision trees (DT) [21,26], artificial neural
networks (ANN) [29,30], logistic regressions (LR) [31–33], support vector machines (SVM) [29,30,34],
discriminant analysis [31,35] are few of the traditional machine learning algorithms which have been
popular for mapping landslide and also for mapping landslide susceptibility. Currently, the choice of
machine learning methods varies for every study, and there is no consensus for a particular algorithm
(Table 2).

Table 1. Some of the commonly used features used in landslides mapping. This list should not be
considered complete.

High Resolution DEM Satellite Images Geology
Other Sources

Morphological
Features

Hydrological
Features Land Cover Features Geological Features

Slope Drainage
Network

Land Use/Land
Cover Lithology Rainfall

Intensity

Elevation Proximity to
Rivers

GLCM Texture
Features Distance to Faults

Aspect Wetness Index NDVI Geo-structural

Curvature Flow Direction Distance from Road
Network

Table 2. Review of selected studies in automated mapping of landslides or landslide susceptibility.

Study ML Methods Main Objective Algorithms Used

Mondini et al. [31] Pixel-Based Mapping of Rainfall
Induced Landslides

Change detection; LR; LDA;
QDA

Martha et al. [36] OBIA Landslide Detection Multi-Level Thresholding;
k-Means Clustering

Stumpf and Kerle [21] OBIA Landslide Mapping
RF with an iterative
scheme to compensate class
imbalance

Moosavi et al. [30] Pixel-Based
and OBIA

Landslide Inventory
Generation

Taguchi method to optimize
ANN and SVM

Micheletti et al. [26] Pixel-Based
Feature Selection;
Landslide Susceptibility
Mapping

SVM; RF; AdaBoost

Goetz et al. [35] Pixel-Based Landslide Susceptibility
Modeling

Weight of Evidence Model;
Generalized additive model;
SVM; Penalized LDA with
bundling; RF

Alvioli et al. [33] OBIA

Automatic Delineation
of Geomorphological
Slope Units; Landslide
Susceptibility Modeling

LR

Calvello et al. [37] OBIA Activity Mapping Statistical multivariate
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Table 2. Cont.

Study ML Methods Main Objective Algorithms Used

Keyport et al. [38] Pixel-Based
and OBIA

Comparative Analysis
of Pixel-Based and OBIA
Classification

K-means clustering;
Elimination of false positive
using object properties

Tanyas et al. [32] OBIA
Rapid Prediction of
Earthquake-Induced
Landslides

LAND-slide Susceptibility
Evaluation software which
uses LR

Chen et al. [39] Deep-learning
Identification of
landslides using change
detection

CNN for change detection;
post-processing with STCA

Ghorbanzadeh et al. [29] Deep-learning Comparison of
deep-learning methods CNN, SVM, ANN, RF

Sameen and Pradhan [40] Deep-learning Landslide detection CNN; spectral and
topographic feature fusion

ML: Machine Learning; OBIA: Object-Based Image Analysis; ANN: Artificial Neural Network; SVM: Support
Vector Machine; LR: Logistic Regression; LDA: Linear Discriminant Analysis; QDA: Quadratic Discriminant
Analysis; RF: Random Forest; ResNet: Residual Networks; CNN: Convolutional Neural Networks.

Recent advances in Convolutional Neural Networks (CNN), a popular deep-learning architecture,
has revolutionized the way to extract information from images. In 2012, Krizhevsky et al. [41] extended
the concept of LeNet5 [42] and created the breakthrough AlexNet which won the ImageNet Large
Scale Visual Recognition Competition 2012 (ILSVRC). Since then, there has been rapid improvement in
learning ability of the CNN architecture to derive complex information from images, which was not
previously possible using traditional methods [43–46]. Deep learning has been aggressively adopted
by the remote sensing scientists to extract information from the EO data [23,47]. Bickel et al. [48]
have shown significant progress in this direction and were able to detect lunar rockfalls from
Lunar Reconnaissance Orbiter Narrow Angle Camera images. Anantrasirichai et al. [49] were
able to use CNN for automatic detection of volcanic ground deformation from Sentinel-1 images.
In another study, Chen et al. [39] have used CNN to identify areas which have changed in a stack of
bi-temporal images, and subsequently used spatio-temporary context analysis to identify landslides.
Ghorbanzadeh et al. [29] compared different machine learning methods along with CNN for landslide
detection in the higher Himalayas. They observed the results of CNN to be comparable with
conventional machine learning methods. Sameen and Pradhan [40] have trained a residual networks
(ResNet) on spectral and topographic features to map landslide inventory while comparing different
feature merging strategies. However, using semantic segmentation based deep-learning architecture
(like U-Net) is expected to outperform a sliding-window CNN for detection of landslides [45].

Today the risk associated with the landslide geohazard is attracting worldwide attention,
and management strategies are promoted extensively by large collaborative projects like SafeLand [50],
SAFER (Services and Applications For Emergency Response) [7] and BETTER (Big-data Earth
observation Technology and Tools Enhancing Research and development) [51]. There is still a
requirement for automated rapid mapping of landslides at a regional scale, by learning from the
past landslide inventories of the region and its surrounding. In this study, we introduce a new
CNN architecture for semantic segmentation of landslides affected regions using information from
the high-resolution DEM and optical satellite images. We further compare the performance of this
deep-learning approach with conventional machine learning approaches. Section 2 gives an overview
of commonly used strategies for mapping landslides using machine learning algorithms, and in
Section 3, we introduce the machine learning models used in this study. General information about
the selected Douglas County study area and the data sets used for mapping is described in Section 4.
A summary of the results obtained from all the applied machine learning approaches are presented in
Section 5, which is followed by a short discussion and conclusion in Sections 6 and 7, respectively.
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2. Mapping Landslides on EO with Machine Learning

Training is the most critical step of any machine learning algorithm. Also, training on correctly
labeled and large dataset is an important requirement for accurate classification of unseen regions.
The training process for landslide mapping starts with splitting the area of training inventory in two
separate regions, where one is used to train a machine-learning algorithm, while the other is left to
evaluate the performance of the trained model. It is common for the magnitude (area or volume) of
landslides to have extremely large variations; hence, the derived features are generated at multiple
scales for the success of the classification method [36]. Values sampled from these features using
pixel-based (Section 2.1), and object-based (Section 2.2) methods are used as input feature vectors (FVs)
for training classical machine learning algorithms. However, in deep-learning methods (Section 2.3),
the derived features maps are directly used as an image for training a CNN. A trained model which
performs well on the validation area can be further used to map new regions which have not been
mapped, provided that the geomorphological and environmental characteristics of the areas are
comparable [52].

2.1. Pixel-Based Methods

In the pixel-based methods, the analysis is done by sampling values of derived features over a
“fixed-grid” set of points. All the features are treated as a raster, co-registered and re-sampled to a
common resolution, which makes it computationally convenient to do a per-pixel analysis. However,
pixel-based methods ignore the geometric and contextual information present in the image [21,53,54].
Finding the extent of an existing landslide is difficult using this approach, as a landslide is better
represented by a heterogeneous polygon (i.e., a collection of pixels). Detection of landslides activity
using image correlation [55,56] and change detection [39,57] are also included in pixel-based methods,
but they require a time-series of multi-temporal images.

2.2. Object-Based Methods

In the object-based methods, also known as Object-Based Image Analysis (OBIA) in remote sensing
literature, the area of interest is segmented into a group of meaningful homogeneous non-overlapping
regions called “super-pixels” or “objects” [58]. This approach assumes that a pixel is very likely to
belong to the same class as its neighboring pixels [30]. These objects can be analyzed using spatial,
textural, contextual, geometric and spectral characteristics, which are better predictors for identifying
landslides [27,38]. A broad set of metrics are calculated for each object and used as an input to
the classification algorithms. Most of the reviewed literature using object-based methods use the
multiresolution segmentation to extract objects from high-resolution optical images [7,21,58]. But as
landslides are hill slope processes, a topography-driven segmentation of the study area can also be
meaningful for object-based methods [32,59].

2.3. Deep-Learning Methods

CNN’s have been growing more and more popular in the field of computer vision and image
interpretation. These algorithms try to replicate how a human perceives information from an image
by learning from a large collection of labeled examples. A trained CNN can extract high-level
information from images without the need for explicitly defining specific rules necessary for the
task. The availability of large graphics processors with higher memory and faster cores has made it
possible to train networks that can learn a significantly larger number of features that are critical in
identifying complex patterns in images. The features maps learned in the intermediate layers can
also identify past displacement related geomorphic features, which were very difficult to identify
using classical satellite image processing methods. Deep-learning is an emerging method in the field
of mapping landslides, and to the best of our knowledge, only a few studies have implemented
CNN based landslide mapping [29,39,40,60]. Unlike pixel-based and object-based methods, a CNN



Remote Sens. 2020, 12, 346 6 of 24

can directly learn from images, which removes the need for sampling information in the form of
numeric FVs.

3. Methodology

Features generated at multiple scales, along with the landslide inventory, are used to train a
supervised machine learning model using the three category of methods described in Section 2.
The entire process is implemented here in Python programming language with an effort to maintain
minimum human input during processing and interpretation. Functions of GDAL [61] and SAGA
GIS [62] were used for GIS processing and the machine learning implementation was done using
Scikit-learn [63], TensorFlow [64] and Keras [65] libraries.

3.1. Pixel-Based

The implementation of pixel-based methods is straightforward. A systematic grid was applied to
sample FVs from the conditioning features, which are used as an input for the next steps (Figure 1a).
A majority of classification algorithms assume a balanced class distribution [66], and the optimization
gets unfavorably biased if the distribution of the training data favors one class over the other. However,
landslide inventories are generally biased towards the stable areas. Hence, random under-sampling
of the majority class is done to balance the training set. Under-sampling also reduces the number
of FVs, which in turn makes the computation faster. Before the final training process, the FVs were
standardized by removing the mean and scaling them to unit variance [63].

Three ensemble algorithms, i.e., RF, LR with bagging, and ANN with bagging, were used
individually for comparing their performance in the classification of landslide FVs. One hundred DTs
were used as base estimators for RF classifier with Gini impurity index as the splitting criteria [67].
Twenty base estimators were used for bagging LR with a regularization strength of 10. Multi-layer
perceptron (MLP) with five hidden layers (32, 24, 16, 8, and 16 neurons) and relu activation units was
trained with Adam optimizer. The ANN used in this study had 5 of these MLPs as a base estimator for
bagging. For clarity, any mention of “LR with bagging” and “ANN with bagging” will be referred to
as just “LR” and “ANN” respectively.

(a) Pixel-based method.
Figure 1. Cont.
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(b) Object-based method.

Figure 1. Simplified training architecture for mapping landslides using machine learning.

3.2. Object-Based

In this method, the first step involves the segmentation of the study area into objects which can
be potential candidates for a landslide. A lot of previous works using OBIA for landslide mapping
have used high-resolution optical images to segment out the objects. This has worked very well for
identifying recent catastrophic events, as there is a distinct visible land cover change associated,
for example, loss of vegetation, presence of fresh soil, and deposition of debris. Methods like
multiresolution image segmentation and simple linear iterative clustering have been widely used for
the segmentation of objects [21,58,68,69].

However, when looking for old landslides and/or slow moving landslides, the changes in the
land cover are often not very prominent and it gets difficult to distinguish landslide affected slopes
from the background in optical images. As the objective of this study is to identify hillslopes which
are affected by landslides, it makes sense to segment out the slope facet or “slope units (SUs)” and
use it as the object. The use of SUs has been discussed in past works for landslide mapping and
susceptibility modeling [12,27,33,59]. Alvioli et al. [33] introduced a method r.slopeunits v1.0 for
automated delineation of SUs by iterative subdividing the study area into smaller half basins. In this
study, we use this approach to segment out the SUs which are used as objects in the classification
process (Figure 1b). SUs which have an 25% overlap with the landslides in the training area were
marked as landslides objects. Sampling FVs using object-based methods allow the use of geometric
measures, region based statistics and texture metrics to be used in the classification process. The choice
and hyper-parameters of the machine learning algorithms remains the same as the pixel-based methods
which has already been described in Section 3.1.

3.3. Deep-Learning

Human operators do not rely much on the relationships of the landslide conditioning features.
Instead, they typically identify a landslide by visually looking for characteristics surface features in
optical images and hillshades of high-resolution DEM [13]. As a CNN is expected to mimic human
interpretation of images, a stack of hillshade and optical images will be the primary input to the CNN
algorithm. If enough training examples are given, a CNN is expected to learn all the intermediate
features required for the classification. As we have limited training examples, we also add a few
landslide conditioning features to the input image stack to improve the training of the model.
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Instead of a standard sliding-window CNN architecture where the down-sampling of the
convolutional layer ends in a dense fully-connected layer to give one class label, we propose to
use U-net architecture for semantic segmentation of landslide affected regions. U-Net was introduced
in 2015 by Ronneberger et al. [45] for segmentation in biomedical images, and has been modified to
be used for mapping from satellite images [70,71]. U-Net features the conventional down-sampling
path followed by a bottleneck layer and an upsampling path to output a segmentation mask. The skip
connections between the down-sampling path and upsampling path recover the spatial information
lost during the max pooling operation [72].

ResNet is a very successful CNN architecture for feature extraction in object recognition [44].
We implement a modified U-Net with ResNet34 blocks in the down-sampling path while extracting
skip connection at the end of every block for the up-sampling path (Figure 2). The input to the CNN
was prepared by generating 512 × 512 tiles of the input image stack and the corresponding landslide
image. The current network has more than 33 million trainable parameters, which is difficult to
optimize with a small training dataset. Hence, data augmentation techniques have been used to
increase the number of training images from the already existing dataset. This was done by generating
the input tiles from the training region, an overlap of 50% was used. Also, each of these images were
randomly rotated between ±30◦ and translated by 0% to 10% of the image width during the training
process. To handle the class imbalance, images with more than 25% of landslide affected pixels were
sampled twice, the second time with a different random augmentation.

Figure 2. U-net architecture with ResNet34 blocks in the down-sampling path.
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Dice similarity coefficient (DSC) is a measure of overlap, which has also been widely used for
formulating the loss function in semantic segmentation problems [73–76]. Let G be the ground truth
labels and P be the output labels from the network, then DSC is given by:

DSC =
2
∣∣G ∩ P

∣∣∣∣G∣∣+ ∣∣P∣∣ (1)

It can be observed that the DSC score is similar to F1 score, and gives an equal importance to the
false positive (FP) and false negative (FN) detections. However, in applications like landslide mapping,
FN detections should be minimized. A modified Tversky index (TI), which is a generalization to the
DSC, has a coefficient α to achieve a better trade-off between precision and recall [75] (Equation (2)).
The value of TI can range between 0 and 1, and the CNN is trained by minimizing the loss function
defined by Equation (3).

TI =

∣∣G ∩ P
∣∣∣∣PG

∣∣+ α
∣∣P \ G

∣∣+ (1− α)
∣∣G \ P

∣∣ (2)

LOSSTI = 1− TI (3)

If α = 0.5, the TI score simplifies back to DSC score. The value of α can be treated as an
hyper-parameter of the network and adjusted to increase or decrease the penalty on false negative
detections. During the training process, we can decrease the TI score of well-segmented (and easy to
learn) regions to focus the learning on the hard regions with lower TI score [76,77]. This is done by
adding a focusing parameter γ, to scale down the FTI score where TI score is high (Equation (4)).

FTI = TI(1\γ) (4)

LOSSFTI = 1− FTI (5)

Finally, the modified U-Net with ResNet34 backbone for landslide mapping was trained by
minimizing a weighted sum of binary cross-entropy (BCE) loss and LOSSFTI . The loss function
(LOSSTOTAL) is given by:

LOSSTOTAL = 0.2× BCE + 0.8× LOSSFTI (6)

A small section of training region was kept aside to be used for validation and to track the
progress of the training. LOSSTOTAL for the validation set was monitored after every epoch, and the
training was stopped when the value of the loss function stopped decreasing for 10 continuous epochs.
The weights of every training epoch was saved and the epoch with the best performance in the
validation region was finally used for classification.

During the prediction process, we got 512 × 512 tiles as an output from the network with
confidence values (between 0 to 1) of finding a landslide. A cut-off threshold of 0.5 is applied to get a
binary prediction tile. An overlap-tile strategy was applied for a generating a seamless segmentation
map for very large area [45]. From the predicted 512 × 512 segmentation tile, only the center 256 × 256
section was used while stitching the final prediction map to avoid artifacts which are often present at
the boundaries.

4. Study Area

To evaluate the performance of the different ML methods, we selected a study area spread
across 1270 km2 between Coos Bay and Eugene in the north western part of Douglas County, Oregon,
USA (Figure 3c). It is a mountainous region with elevation ranging from 1 m to 787 m above the
sea level. Umpqua and Smith rivers flow westwards into the North Pacific Ocean, which is 22.5 km
west of the study area. The geology of the region is mostly sedimentary in origin, and the prominent
rock types are turbidite, sandstone and mudstone. Fine-grained and mixed-grained sediments are



Remote Sens. 2020, 12, 346 10 of 24

dominant near the active river channels. The selected study area located in a seismically active region
and receives heavy rainfall, which are ideal conditions for triggering landslides [78].

Oregon Department of Geology and Mineral Industries (DOGAMI) maintains a periodically
updated Statewide Landslide Information Database for Oregon (SLIDO) [79]. The landslide information
in SLIDO has been compiled from multiple published landslide maps due to which the scale of
mapping is not consistent across the entire state-wide catalog. A part of our study area was mapped
using Lidar images by DOGAMI and Bureau of Land Management (BLM) in 2017 [80] following
protocols developed by Burns and Madin [81]. The mapping boundary in Figure 3a shows the
extent of the landslide inventory map generated in this study. This inventory has been added
to the third release of SLIDO, which we will use for training and testing our machine learning
models. We removed rockfalls and debris flows from the inventory as they are morphological very
different from the landslides affecting the hill-slopes. All the remaining landslide polygons were
rasterized to a resolution of 2 m, and all further analysis was done on this rasterized inventory
(Figure 3a). There were 1099 unique landslide features with areas ranging from 252 m2 to 4.63 km2.
The landslide magnitude-frequency plot of SLIDO landslide inventory has a rollover at 0.01 km2

(Figure 3b). Figure 4b,c are examples of the surface expression of landslides from the SLIDO inventory
on a hillshade layer.

Figure 3. (a) The landslide inventory map of the study area extracted from SLIDO database. Mapping
boundary shows the spatial extent of inventory mapping done by [80] in 2017. Landslide present
outside this boundary are records of past landslides which are present in SLIDO database. This map
is in UTM Zone 10N with WGS 84 datum (EPSG:32610). (b) The magnitude-frequency plot of the
landslides in the study area, where p(AL) is the probability density function, AL is the area of the
landslide, NLT is the total number of landslides in the inventory, and δNL is the number of landslides
with areas between AL and AL + δAL. (c) Location overview of the Douglas County study area (marked
in red) in Western Oregon, USA. This map is in Pseudo-Mercator with WGS 84 datum (EPSG:3857).
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Figure 4. (a) Partition of the landslide inventory into training and testing region (b,c) Example of
landslide from SLIDO database shown in red overlay on top of Lidar DEM derived hillshade. The maps
are in UTM Zone 10N with WGS 84 datum (EPSG:32610).

For the training process, landslide inventory has been split into two separate regions (Figure 4a).
The landslide inventory from the southern region will be used to train the machine learning models.
The held-out northern region, which did not participate in the training process, will be used to validate
the performance of the trained model. The trained model can be further applied to expand the
surrounding regions which have not been mapped in the 2017 study.

Dataset

For this study, the mapping has been done using a high resolution Lidar DEM and Sentinel-2
cloud-free optical image. Lidar DEM used in this has been made by merging publicly available
DOGAMI Lidar Data Quadrangles LDQ-43123-G5 through -G8, LDQ-43123-F5 through -F8,
and LDQ-43123-E5 through -E8. Our study area is heavily forested and the bare earth Lidar DEM
is particularly useful in observing surface features below the tree cover, which would have been
not possible with conventional DEMs [78]. Level-1C Sentinel-2 optical image was downloaded from
Copernicus Open Access Hub, and the visible and near-infrared bands at a resolution of 10 m were
used in this work. This cloud free image was acquired on 20 October 2018 while the satellite was on a
descending track (sensing orbit number 13), and the image footprint covers the entire study area.

The DEM available at a resolution of approximately 1 meter was resampled to 2 m for this study, so
that all the surface features from landslides were well preserved while significantly decreasing the data
volume and removing artifacts that were present at the original resolution. As a pre-processing step,
the input EO data was transformed into a set of characteristics features at multiple resolutions (Table 3).
The derived features along with the landslide catalog are converted to raster images, which will be
used as an input to the machine learning framework.
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Table 3. List of derived features (at multiple resolution ranging from 2 m to 16 m) used for mapping
landslide in this study.

Source Data Derived Features Pixel-Based Object-Based Deep-Learning

Hillshade
√

Slope
√ √ √

Aspect (split into Northness
and Eastness)

√ √

Roughness
√ √ √

Digital Terrain Model Curvature
√

(from LiDAR) Valley Depth
√ √

Distance from River
Channels

√ √

Wetness Index (as Binary
Mask with a threshold)

√ √

Optical Image
(Sentinel-2)

NDVI
√ √ √

Band Brightness
√ √ √

GLCM Texture
√

5. Results

5.1. Model Assessment Parameters

The trained models for all the three methods are evaluated by individually applying them to the
testing region, which was never encountered during the training process. We consider the landslide
boundaries from SLIDO inventory to be the ground truth and compare it with the landslide maps
generated by the trained models. If a model is able to correctly identify at least 25% of any landslide
object in the testing area, we consider it to be detected. To compare the performance of the tested
algorithms, a summary of the prediction maps are calculated in the form of a confusion matrix, which
includes the true positive, true negative, false positive (FP) and, false negative (FN) values. Based on
these values, the accuracy of a model is calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

F1 score is the harmonic mean of precision and recall; and like DSC, F1 score also gives equal
importance to false positive and false negative detection (Equation (8)). Accuracy and F1 Score works
well for performance assessment when working with a balanced dataset, but tends to be misleading in
case of class imbalance [82]. On the other hand, Matthews correlation coefficient (MCC) works better
to compare on binary classification of imbalanced dataset (Equation (9)). MCC values range between
−1 to 1, where a value of 1 represents a perfect classifier, whereas a value of 0 describes a classifier
making random guesses.

F1 Score =
2× recall × precision

recall + precision
=

2× TP
2× TP + FP + FN

(8)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

The probability of detection (POD) and probability of false detection (POFD) are another
important set of parameters to be considered while evaluating the performance of the machine
learning models [83]:

POD(recall) =
TP

TP + FN
(10)
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POFD( f allout) =
FP

FP + TN
(11)

In the machine learning, POD is also referred to as sensitivity, recall, or true positive rate while
POFD is referred to as fall-out or false positive rate. The priority in landslide mapping is to minimize
the number of FNs and secondary to limit FPs, which means maximizing POD and minimizing
POFD [83]. Higher values of the difference between POD and POFD will indicate a better preforming
model. This criteria was also used to select the best weight from all possible weights generated for
every epoch in the training process (in Section 3.3).

5.2. Performance Evaluation in the Testing Area

Tables 4 and 5 summarizes the performance assessment of all tested algorithms. For the
pixel-based algorithms, RF and ANN were comparable in detecting the landslides, while LR had
the worst performance. All the algorithms showed high false positives, with LR detecting 22.1% of
the testing area while RF detected just 12.3% of the testing area. Compared to this, the true positive
detection for RF was 8.8% of the testing area and false negative detection was just 4.4% of the total
testing area (Figure 5). Post-processing the detection with simple morphological operations could
increase the overall classification accuracy. However, we have not considered any post-processing
operations in our comparison, but rather focus on the output from the machine learning algorithms.
The accuracy values of RF and ANN is above 80%; however, these numbers are misleading as they
have been dominated by the true negative detections.

Table 4. Accuracy assessment of Machine Learning Algorithms.

Method ML Algorithm Accuracy F1 Score MCC

Pixel-Based
RF 83.16% 0.513 0.433 *
ANN 82.96% 0.502 0.42
LR 73.00% 0.383 0.276

Object-Based
ANN 86.19% 0.546 0.472 *
LR 80.26% 0.507 0.44
RF 81.69% 0.508 0.434

Deep-Learning U-Net + ResNet34 85.02% 0.562 0.495 *

* Best performing machine learning algorithms which are used for further
comparison of landslide mapping methods

Table 5. The probability of detection (POD) and probability of false detection (POFD) scores for the
different machine learning methods.

Method POD POFD (POD-POFD)

Pixel-Based (RF) 0.66 0.14 0.52
Object-Based (ANN) 0.48 0.06 0.42
Deep-Learning 0.72 0.13 0.59
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Figure 5. Result of pixel-based method using Random Forest (applied to testing area). The map is in
UTM Zone 10N with WGS 84 datum (EPSG:32610).

For object-based analysis, the study area was segmented into 10,577 slope units using r.slopeunits
v1.0 [33]. The minimum area was 0.1 km2 and the circular variance was 0.1 as the parameter for
segmenting the SUs. Figure 6a shows examples of the segmented SUs as an overlay on a hillshade
layer. In the testing region, ANN had the best MCC score when compared to LR, RF and all the
pixel-based methods. The false positive detection for ANN was 4.9% of the total testing area, while
the false negative detection was 8.9% of the total testing area. This method showed the least POFD,
but had a significantly low POD.

(a)

Figure 6. Cont.
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(b)

Figure 6. (a) Example of SU objects for two section of the study area. The landslide affected SUs have
more than 25% of their area overlapping landslides from SLIDO inventory. (b) Result of object-based
method using boosted Artificial Neural Networks (applied to testing area). All the maps are in UTM
Zone 10N with WGS 84 datum (EPSG:32610).

The modified U-Net with ResNet34 backbone was trained on a stack of hillshade images generated
from the DEM at a solar elevation of 45◦and an azimuth of 45◦, 180◦, and 135◦along with other features
mentioned in Table 3. During the training process with a constant learning rate of 10−5, the lowest
LOSSTOTAL value achieved for the validation region was 0.475 at the 9th epoch.

The trained model was applied to the testing region, and the result is shown in Figure 7. This CNN
has a better performance when compared to all the previously tested algorithms in terms of MCC
value (Tables 4 and 5). The false positive detection and false negative detection for the CNN was 11.3%
and 3.7% of the total testing area respectively. The algorithm missed many small landslides, especially
to the east of 123.7◦W longitude in Figure 7. Still, the difference of POD and POFD is 0.59 and is higher
than the traditional machine learning methods.
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Figure 7. Result of deep-learning method using U-net with ResNet34 backbone (applied to testing
area). The map is in UTM Zone 10N with WGS 84 datum (EPSG:32610).

6. Discussions

This study supports the observation of Ghorbanzadeh et al. [29] and shows that all the three
methods are able to map the landslides in the testing area, with the deep-learning methods performing
slightly better than the other two conventional methods. The study area is covered by dense vegetation,
and it was difficult to observe landslides from just the optical images. The use of Lidar derived high
resolution DEM helped in getting the information of the bare-earth topography, which was critical in
mapping the landslides of the region.

As already defined in Section 5.1, a landslide is considered to be detected only if 25% of its area
has been correctly identified. All the three tested methods were able to detect landslides larger than
0.21 km2 in the testing region, which is evident by the dominant gray color inside the boundaries
of larger landslides in Figure 8. However, correctly detecting the smaller landslides was a problem
for all the three methods but the pixel-based method preformed better in detecting them. This can
be seen as dominant red color inside the boundaries of smaller landslides in Figure 8. But this does
not qualify the pixel-based method to be considered to be a better algorithm as it has a very high
POFD (also refer Figure 5 and Table 5). In Figure 9, these false positives of pixel-based method can
be observed as scattered red spots all across the testing area. All the methods have difficulties in
discriminating individual landslides when they are adjacent and they tend to predict them together
as one big landslide area. Because of this the prediction results do not have the correct shape of a
standard landslide profile.

The boundaries of the predicted landslides and landslides in SLIDO database often do not entirely
match (See Figure 10a). This is not necessarily a bad result, as human interpretations often have
some degree of mismatch while mapping, especially while interpreting the boundaries. The false
positives and false negatives areas formed as a consequence of this mismatch contribute in degrading
the performance evaluation scores to some extent. On visual inspection, the boundaries of landslides
predicted by deep-learning had a close resemblance to a human interpretation of landslides from
EO data.
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Figure 8. True positive predictions of all the three machine learning methods (i.e., pixel-based with
RF, object-based with ANN and U-Net with ResNet34 backbone) on testing area. As described by
the legend in the bottom-right, the primary colors represents the true positive prediction by only one
method, while the secondary colors represents the true positive prediction by the combination of two
methods. Gray coloured areas are true positive prediction by all the three methods. The map is in UTM
Zone 10N with WGS 84 datum (EPSG:32610).

Figure 9. False positive predictions of all the three machine learning methods (i.e., pixel-based with
RF, object-based with ANN and U-Net with ResNet34 backbone) on testing area. As described by the
legend in the bottom-right, the primary colors represents the false positive prediction by only one
method, while the secondary colors represents the false positive prediction by the combination of two
methods. Gray coloured areas are false positive prediction by all the three methods. The map is in
UTM Zone 10N with WGS 84 datum (EPSG:32610).
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(a)

(b)

(c)

Figure 10. Closer look on false positives of deep-learning method. The hillshade of TP and FP detected
slopes are on the left with the corresponding confusion matrix values as colored overlays on the
right. (a) Mismatch in the boundaries of predicted landslide and SLIDO inventory. (b) Possible
missing information. (c) Wrong detection. All the maps are in UTM Zone 10N with WGS 84 datum
(EPSG:32610).
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The false positive detections should be taken carefully into account, as they could help us point
towards missing information in the landslide inventory used for training. Figure 10b shows once
such example of a false positive detection by the deep-learning method in the testing area. Visual
analysis show surface features which are comparable to a landslide affected slope, but this information
currently missing in the original SLIDO database. These examples show how machine learning
methods can be important to update and/or complete existing inventories. However, we also have
multiple false positive detections along the Smith River in the north of the testing area, where the
surface topography is similar to the example shown in Figure 10c. A possible reason can be the absence
of similar surface features in the training region. This example also highlights a very important point,
that the training area should have enough variations to cover examples from all possible topographical
features which can be present in the mapping area. Similar issues can be reduced by providing more
training examples, and/or re-training the network after validation of the results by expert operators.

In the field of hazard management, like landslide mapping, a false alarm has a higher tolerance
when compared to a missed alarm [83]. All the tested methods had false negative predictions, which is
a cause of concern. This can be controlled by applying a strict threshold to the POFD rates while
selecting the best model.

According to the method described in this study (Section 3.3), the prediction of the deep-learning
method is tiled and only half of the predicted tile is considered while stitching back the final map.
For this reason, the deep-learning methods will not work for prediction near the edge of the EO data.
This is strikingly visible in prediction at the bottom regions of testing area (see Figures 7 and 8).

7. Conclusions

The popularity of deep-learning to map landslides from EO images is increasing rapidly [29,40].
Here we approached landslide mapping using CNN as a semantic segmentation task, which was
lacking in previous works. This work introduces a U-Net with a ResNet34 feature extraction backbone
and compares it with traditional machine learning methods for landslide mapping. We applied our
method successfully at a regional scale and show that it outperforms pixel-based and object-based
machine learning methods. Similar applications of deep learning based on EO imagery will be very
useful in rapid mapping of large areas, which would have been so far a very difficult task to achieve
manually. However, we get no indication of the current state of activity on the affected slopes. It would
be beneficial to identify the status of activity of landslide affected slopes, which is an important
indicator to define landslide hazard potential. Also, post-processing the results with contextual
information will help to decrease false positive predictions. Studies for semantic segmentation in
other fields have used successfully used conditional random fields to post-process their segmentation
results [84], and should also be in future explored for landslide mapping context.
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