
remote sensing

Article

FGATR-Net: Automatic Network Architecture Design
for Fine-Grained Aircraft Type Recognition in
Remote Sensing Images

Wei Liang 1,2,3,4,*,†, Jihao Li 1,2,3,4,†, Wenhui Diao 1,2, Xian Sun 1,2,3,4, Kun Fu 1,2,3,4

and Yirong Wu 1,2,3,4

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China;
lijihao17@mails.ucas.ac.cn (J.L.); whdiao@mail.ie.ac.cn (W.D.); sunxian@mail.ie.ac.cn (X.S.);
fukun@mail.ie.ac.cn (K.F.); wyr@mail.ie.ac.cn (Y.W.)

2 Key Laboratory of Network Information System Technology (NIST), Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing 100190, China

3 University of Chinese Academy of Sciences, Beijing 100190, China
4 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of

Sciences, Beijing 100190, China
* Correspondence: wliang@mail.ie.ac.cn
† These authors contributed equally to this work.

Received: 25 November 2020; Accepted: 17 December 2020; Published: 21 December 2020 ����������
�������

Abstract: Fine-grained aircraft type recognition in remote sensing images, aiming to distinguish
different types of the same parent category aircraft, is quite a significant task. In recent decades,
with the development of deep learning, the solution scheme for this problem has shifted from
handcrafted feature design to model architecture design. Although a great progress has been achieved,
this paradigm generally needs strong expert knowledge and rich expert experience. It is still an
extremely laborious work and the automation level is relatively low. In this paper, inspired by Neural
Architecture Search (NAS), we explore a novel differentiable automatic architecture design framework
for fine-grained aircraft type recognition in remote sensing images. In our framework, the search
process is divided into several phases. Network architecture deepens at each phase while the number
of candidate functions gradually decreases. To achieve it, we adopt different pruning strategies.
Then, the network architecture is determined through a potentiality judgment after an architecture
heating process. This approach can not only search deeper network, but also reduce the computational
complexity, especially for relatively large size of remote sensing images. When all differentiable
search phases are finished, the searched model called Fine-Grained Aircraft Type Recognition Net
(FGATR-Net) is obtained. Compared with previous NAS, ours are more suitable for relatively large
and complex remote sensing images. Experiments on Multitype Aircraft Remote Sensing Images
(MTARSI) and Aircraft17 validate that FGATR-Net possesses a strong capability of feature extraction
and feature representation. Besides, it is also compact enough, i.e., parameter quantity is relatively
small. This powerfully indicates the feasibility and effectiveness of the proposed automatic network
architecture design method.

Keywords: remote sensing images; fine-grained aircraft type recognition; deep learning; Neural
Architecture Search (NAS); differentiable search

1. Introduction

With the great progress of remote sensing imaging, there are significant improvements for remote
sensing images both in quantity and quality, which effectively propels the development of remote

Remote Sens. 2020, 12, 4187; doi:10.3390/rs12244187 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/2072-4292/12/24/4187?type=check_update&version=1
http://dx.doi.org/10.3390/rs12244187
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2020, 12, 4187 2 of 17

sensing interpretation. Aircraft type recognition, aiming to distinguish different types of aircraft, is a
very important task in remote sensing field. It has profound significance not only for civil [1] but also
in military [2], such as the airport scheduling, reconnaissance analysis, etc.. Consequently, it receives
extensive attention of large number of researchers.

Different from general image classification, aircraft type recognition is a Fine-Grained Visual
Classification (FGVC) task. Categories to be recognized are all subject to the same parent category. Hence,
the interclass variance is relatively small, for all subcategories are quite similar in terms of appearance,
behavior and so on. Besides, the intraclass is relatively large, being affected by the complexity of remote
sensing image background, the diversity of temporal, the scene illumination changes, solar radiation angle,
etc.. Therefore, aircraft type recognition in remote sensing images is still a very challenging problem.

In recent decades, a variety of effective methods have been proposed to solve fine-grained aircraft
type recognition task in remote sensing images. Hsieh et al. [3] first extract bitmap, wavelet transform,
Zernike moment and distance transform features and then leverage a novel weight learning algorithm
to integrate these features. This method improves the recognition rate while it also achieves a higher
robustness. Xu et al. [4] leverage Edge Potential Function (EPF) to obtain a best matching contour.
Meantime, Artificial Bee Colony (ABC) algorithm that can avoid falling into local optimum is proposed
to optimize EPF. Both theoretical and experimental analysis demonstrate the effectiveness of this method.
Liu et al. [5] introduce a coarse-to-fine algorithm to recognize different aircraft types. Coarse stage
roughly estimates the pose of aircraft in remote sensing images and the role of fine stage is to segment
and recognize the type. Based on the cooperation of these two stages, there are improvements in series
of experiments. Although plenty of good results have been achieved, these handcrafted feature design
methods still face the problem of weak expression capability, poor generalization capability, etc..

With AlexNet [6], VGGNet [7], GoogLeNet [8] and a series of neural networks [9–11] proposed,
deep learning methods have also been introduced into fine-grained aircraft type recognition task
in remote sensing images. To tackle the problem of small interclass variance and large intraclass
dissimilarity, Diao et al. [12] apply Deep Belief Net (DBN) [13] which consists of many Restricted
Boltzmann Machines (RBMs) to realize recognition. This method reaches a higher level in speed
and accuracy performance. Fu et al. [14] propose Multiple Class Activation Mapping (MultiCAM),
including target net and object net, to fully utilize discriminative features. Besides, in view of relatively
fewer remote sensing aircraft images, which has a negative impact on the training of deep learning
methods, a novel framework is presented in [15]. This approach can cleverly transform aircraft type
recognition into landmark detection. It helps to alleviate the dependence on labeled data. Experimental
results show that the error rate can be reduced four fifths by using this method. And Zhang et al. [16]
deal with this problem on the basis of conditional generative adversarial network [17] which can
learn representative features without aircraft type labels. Generally, under the effect of deep learning,
the paradigm has shifted from feature design to architecture design. However, there are also some
shortcomings for deep learning methods. This design pattern usually needs strong expert knowledge
and rich expert experience, especially for remote sensing field. Even so, a series of trial and error is
also unavoidable and it is even an extremely laborious task. The automation and intellective level are
still relatively low.

Recently, a novel framework named Neural Architecture Search (NAS) [18–23] is proposed to
automatically design a neural network architecture. In NAS framework, complex architecture engineering
can be greatly reduced. Hence, it has immediately attracted wide publicity and gradually becomes a
research focus. An illustration of manual and automatic architecture design can be seen in Figure 1.
In general, NAS can be divided into three classes according to the search strategy: Reinforcement Learning
(RL) [18,19], Evolutionary Algorithm (EA) [20,21] and Gradient-Based method [22,23]. RL strategy takes
a Long Short Term Memory (LSTM) [24] controller as an agent which can sample a network architecture
in predefined search space by a certain probability. After that, the network is trained and the performance
of it services as reward to optimize the controller by leveraging Policy Gradient. As for EA approach,
a neural network architecture is regarded as a genotype. The optimization process is similar to natural

Remote Sens. 2020, 12, 4187 3 of 17

selection in Biology field. Genotypes with poor performance are eliminated immediately while that
performing well are retained. And then crossover and mutation are conducted among them. Different
from RL and EA which both adopt discrete optimization procedure, Gradient-Based method utilizes a
novel relaxation programme to transform search space to be continuous. By means of this technique,
architecture search process can become differentiable and gradient descent algorithm is able to be applied
in it. Moreover, the computational consumption is relatively low compared with the former two search
strategies. For these reasons, Gradient-Based method is becoming widely popular.

Architecture

evaluation

…

Validation

 data

Training

 data

Automatic

paradigm

Manual

paradigm

Shift

Figure 1. An illustration of manual and automatic architecture design paradigm. The upper part is
the manual paradigm where a network architecture is modified through handcraft approach. It needs
plentiful experience and knowledge. While the bottom part is the automatic paradigm where the
network can be adjusted by the machine itself. This approach can shift the network design paradigm
and save valuable human resources.

As for the application of NAS in remote sensing, some pioneers have already made some
explorations. Chen et al. [25] leverage Gradient-Based method to deal with HyperSpectral Image
(HSI) classification task. Zhang et al. [26] propose an efficient search method to achieve an automatic
network design procedure in semantic segmentation for high-resolution remote sensing images, which
transfers NAS to a more advanced visual task. In this paper, we first attempt a novel differentiable
automatic network architecture construction framework to achieve another shift in terms of design
pattern for fine-grained aircraft type recognition in remote sensing images. The difference between
previous NAS framework in natural scene images and ours can be referenced in Figure 2. To be
specific, we utilize a differentiable approach where architecture parameters and weight parameters are
optimized by turns in the search process. Due to the relatively large size of remote sensing images
(32× 32 in CIFAR-10 [27] while 156× 156 in Aircraft17 [14] and 256× 256 in MTARSI [28]), we search
the network architecture in a growing way to avoid CUDA out of memory trouble caused by direct search
method. Meanwhile, we also utilize pruning to cut off some weak connections at each search phase.
Then, potentiality judgment can decide the network architecture after an architecture heating process.
When all the search phases are finished, Fine-Grained Aircraft Type Recognition Net (FGATR-Net) is
obtained. Ultimately, we train the FGATR-Net on target dataset from scratch. This design procedure
is automatic and it not heavily relies on expert knowledge and artificial experience. In addition,
series of experiments show that FGATR-Net outperforms all baseline models on fine-grained aircraft
type recognition task not only in accuracy but also in lightweight, especially in the comparison with
well-behaved EfficientNet [29] which is obtained by search approach. This strongly indicates that the
proposed framework is a feasible and effective method. In summary, the main contributions of this
paper are listed as follows:

Remote Sens. 2020, 12, 4187 4 of 17

1. A differentiable automatic network architecture design paradigm for fine-grained recognition in
remote sensing images is explored for the first attempt to the best of our knowledge.

2. Considering the relatively large size of remote sensing images, network architecture deepens
gradually in the search process. In the meanwhile, some unimportant edges are removed through
different pruning strategies with the increase of network layers, making the network more compact.

3. In order to discriminate which architecture has more potential, we adopt potentiality judgment to
determine the network architecture after an architecture heating process.

4. Experimental results on two challenging fine-grained aircraft type recognition datasets show that
FGATR-Net is able to achieve the highest accuracy with just much fewer parameters. This strongly
confirms the feasibility and effectiveness of the proposed method.

fixed depth architecture

architecture

evaluation

small size,

low resolution,

lots of samples

………

update

architecture

(a) Previous search framework.

…

………

potentiality

judgment

growing depth architecture

pruning

architecture

heating

potentiality

judgment

pruning

architecture

heating

large size,

high resolution,

few samples

(b) Our framework.

Figure 2. The difference between previous search framework for natural scene images and our
framework for fine-grained aircraft type recognition in remote sensing images.

The rest of this article is organized as follows. Section 2 describes the proposed automatic
architecture design framework in detail. In Section 3, datasets, evaluation metrics and implementation
details are stated. And the experimental results to demonstrate the feasibility and effectiveness of our
method are provided in Section 4. Subsequently, we have a discussion about the proposed method in
Section 5. Ultimately, conclusions are drawn in Section 6 and the plan for further work is also given in
this section.

Remote Sens. 2020, 12, 4187 5 of 17

2. Methodology

The overview of our search framework can be seen in Figure 3. The role of stem is to expand
the number of channels and downsample the input remote sensing images. With the depth of the
architecture growing gradually (Here, m < n), some unimportant edges (indicated by dotted lines) will
be pruned. Potentiality judgment can give a preliminary evaluation of two kinds of pruning strategies
(i.e., greedy strategy and ε-greedy strategy). In the last search phase, we just adopt greedy strategy for
there are only very few options. After getting the ultimate architecture, we can train it on the target
dataset from scratch.

…

architecture heating

…

potentiality

judgment

potentiality

judgment

so
ft

m
ax

Block1

Block2

Blockm

Stem

…

Linear

Block3

Search Phase

Block1

Block2

Blockm

Stem

…

Linear

Block3

Search Phase

Block1

Block2

Blockn

Stem

…

Linear

Block3

Search Phase

Block1

Block2

Blockn

Stem

…

Linear

Block3

Search Phase

Input1
Input2

Nodei

Nodej

concatenation

…

Input1
Input2

Nodei

Nodej

concatenation

…

greedy

strategy

ϵ-greedy

strategy
or

Input1
Input2

Nodei

Nodej

concatenation

…

greedy

strategy

ϵ-greedy

strategy
or

Input1
Input2

Nodei

Nodej

concatenation

…

Input1
Input2

Nodei

Nodej

concatenation

…

greedy

strategy

ϵ-greedy

strategy
or

Input1
Input2

Nodei

Nodej

concatenation

…

greedy

strategy

ϵ-greedy

strategy
or

…

architecture heating

…so
ft

m
ax

potentiality

judgment

potentiality

judgment
…

Next

Search Phase

Figure 3. The overview of the proposed method. For convenience, we just show part of candidate
functions in the predefined search space and pruning phases. Scissors symbols in the figure above
denote the pruning process. Stem denotes a simple 3× 3 convolution module which shifts the number
of image channels and reduces the size of image. Architectures with different colors represent different
depths. Best viewed in color.

2.1. Differentiable Automatic Network Architecture Design

Popular Convolutional Neural Network (CNN) architecture generally contains many blocks
which consist of some common components, such as convolution, pooling and so on. The component
can be seen as a mathematical function f , where a feature map from one high dimensional space can
be mapped into another. In NAS framework, we collect some candidate functions and organize them
into a search space F. The purpose is to find out the optimal combination and connection relationship
of these functions in a block. Then, these blocks are stacked layer by layer to construct the whole
network. Different from RL-based [18,19] or EA-based [20,21] method, differentiable approach is more
efficient and is easier to implement.

2.1.1. Block Representation as a DAG

We utilize a Directed Acyclic Graph (DAG) which is composed of M ordered nodes to represent a
block. Each node in a block represents a feature map in high dimensional space. An edge of a DAG can
be considered as a component in the search space. We first assume that each block has two different
input nodes P1, P2 and a single output node PM. Hence, there are M− 3 middle nodes in total, that is
{Pi|3 ≤ i ≤ M− 1, i ∈ N}. These two input nodes are taken from the output of two predecessor blocks.
For middle node, it can be computed as:

Pj = ∑i<j ∑ f∈F[f is selected] f (Pi) (1)

Remote Sens. 2020, 12, 4187 6 of 17

where i, j separately represent the node index in DAG. [·] is Iverson bracket. If the expression inside
the bracket is true, the bracket value is 1 and vice versa. The output node is the concatenation of all
non-input nodes, which can be represented by:

PM = concat[P3, P4, · · · , PM−1] (2)

where concat is the abbreviation of concatenation.

2.1.2. Architecture Parameters Relaxation

Components selection procedure is discrete, i.e., selected or discarded. Consequently, it is unable
to be optimized by Back Propagation algorithm [30]. In order to make this process continuous, we apply
softmax to all candidate functions between two nodes in DAG to relax the choice. This step can be
described as:

α̃
(i,j)
f =

exp(α(i,j)f)

∑ f ′∈F exp(α(i,j)f ′)
(3)

õ(i,j) = ∑ f∈F α̃
(i,j)
f f (Pi) (4)

where α is architecture parameter which determines the importance of one component. õ(i,j) is the
weighted sum of all components from node i to node j. Through this approach, the architecture
parameter can be transformed into [0, 1], making the optimization process feasible. When the
architecture search is complete, the maximum architecture parameter between node i and node j
can be obtained by:

α̃
(i,j)
f ∗ = argmax

f∈F
(α̃

(i,j)
f) (5)

After that, to prevent excessive connections, the in-degree of node j is constrained to two.
This means that only two most likely connections are preserved and the others are discarded.

The purpose of our method is to search for two types of blocks, namely, normal block and reduction
block. For normal block, the stride of all components is 1 so that the size of feature map is maintained
while the stride in reduction block is 2, enabling the searched model to downsample feature maps.
Hence, the architecture parameters can be divided into 2 groups: α̃normal and α̃reduction. It is noteworthy
that all normal blocks and all reduction blocks share the same α̃normal and α̃reduction respectively.

2.1.3. Optimization Policy

The optimization problem seems to be simpler after relaxation. However, it should not be ignored
that architecture parameters α̃ and weight parameters ω are coupled together. The loss function are
determined by both α̃ and ω. Aiming to decouple these two kinds of parameters, we leverage a bilevel
optimization policy [31,32] to optimize them separately. Here, we use Ltrain to denote training loss and
Lval is the validation loss. The optimization process can be expressed as:

min
α̃

Lval(ω
∗, α̃) (6)

s.t. ω∗ = argmin
ω

(Ltrain(ω, α̃)) (7)

where ω∗ represents the optimal weight parameter which is able to minimize the training loss. Through
the alternate optimization, the best architecture parameter α̃∗ and weight parameter ω∗ can be obtained.
Then the entire neural network can be constructed by decoding the best architecture parameter α̃∗.
Next, the network can be trained from scratch as common measures [9,10].

Remote Sens. 2020, 12, 4187 7 of 17

2.2. Model Pruning Strategy

Although gradient decent algorithm is able to be applied with the aid of relaxation and bilevel
optimization, the computational complexity is quite high for the weight parameters of all components
need to be optimized simultaneously. The computational burden is not obvious in a dataset with
relatively small size images such as CIFAR-10 [27] whose size is just 32× 32 pixels. Nevertheless,
for large size images especially for remote sensing images whose height and width commonly contain
hundreds of pixels, the computation can be even unbearable. Therefore, we adopt a dynamic method to
construct the whole network. As the network deepens, some components with poor performance will
be excluded during the search phase. The specific growth process and pruning strategy are described
below in detail.

2.2.1. Network Layers Growth

In general, network in the search process is relatively shallow compared with the ultimate
architecture, due to the limitation of computation capability. However, according to some current
studies [9,33,34], the depth of a network has a significant impact on its performance. The excellent
architecture in search stage may perform poorly in evaluation stage.

Therefore, in order to improve the situation, we set the depth of network in the search stage to
be equal to the ultimate architecture. However, considering the computational overhead, we adopt
a gradual growth approach, rather than a direct one. Every time the network becomes deeper,
some unimportant candidate functions in search space will be discarded through pruning. The pruning
strategy will be stated in Section 2.2.2. This pattern not only offers the possibility of searching deeper
architectures, but also relieves the computational burden brought by optimizing their architecture
parameters and weight parameters.

2.2.2. Greedy Strategy and ε-Greedy Strategy

As regard to the pruning strategy, greedy pruning is a more basic method, which can be
expressed by:

PP(α̃(i,j)f) =

1, i f α̃

(i,j)
f = argmin

f∈F
(α̃

(i,j)
f)

0, i f α̃
(i,j)
f 6= argmin

f∈F
(α̃

(i,j)
f)

(8)

where PP(α̃(i,j)f) is the pruning probability of component f between node i and node j. The pruned
architecture can obtain the maximum reward under all known conditions by exploiting existing
knowledge. Intuitively, this pruning strategy is also very reliable.

Nevertheless, greedy pruning strategy ignores the role of exploration to a certain degree. Typically,
exploration and exploitation are two contradictory aspects when making decisions. The reward which
the algorithm obtains will not grow, only exploiting existing knowledge. On the other hand, if just
explore blindly, the risk will increase. This is exploration or exploitation dilemma [35]. Yet, ε-greedy
strategy can alleviate this contradiction to a certain degree by setting a smaller ε. In this strategy,
any candidate function may be pruned with the probability ε, otherwise remove the weakest edge.
It can be written by:

PP(α̃(i,j)f) =

ε

|F| + 1− ε, i f α̃
(i,j)
f = argmin

f∈F
(α̃

(i,j)
f)

ε

|F| , i f α̃
(i,j)
f 6= argmin

f∈F
(α̃

(i,j)
f)

(9)

where |F| denotes the number of candidate functions in the predefined search space. It is also worth
mentioning that the value of ε is not unchanged. It will gradually decrease as the pruning process

Remote Sens. 2020, 12, 4187 8 of 17

proceeds. Theoretically, this jitter pruning approach can cover all candidate functions as far as possible,
thus the exploration is more adequate on the basis of taking account of exploitation. Besides, it is easy
to implement this strategy and no extra complex computation is brought.

2.2.3. Potentiality Judgment

In practice, when decision is not frequent, it is difficult to distinguish the behavior of the two
strategies for both of them are local optimal methods. Meanwhile, we also can not examine its
performance from a global perspective for the limitation of computation resources. Hence, in order to
consider the stability of greedy strategy and the exploration of ε-greedy, we also add a simple validation
before making the final decision. The original architecture is pruned by these two pruning strategies
respectively after one search phase. We call them Ag and Aε separately. Next, they are preliminarily
trained for some epochs and evaluated on the validation set, called architecture heating. We take the best
performance of the pruned architecture (i.e., recognition accuracy) as the evaluation metric of different
pruning strategies. The final decision is based on the behavior of these two pruning strategies.

All in all, our search framework for FGATR-Net can be briefly summarized in Algorithm 1.
After obtaining the final architecture A, we will train it from scratch as a common neural network.
And then, it could converge on the target dataset through a sufficient training procedure.

Algorithm 1 Search framework for FGATR-Net.

Input: Initialized architecture parameters α and weight parameters ω; Initialized architecture A0

and search space F0; Total search phases SP, search epochs Esearch, training epochs Etrain

(Etrain < Esearch) and architecture heating epochs Eheating; Training set DT ; Initialized ε and its

decay coefficient t; Learning rate for weight parameters ξA and for architecture parameters ξB.
Output: Searched FGATR-Net.

1: Divide DT into DA (updating weight parameters) and DB (updating architecture parameters).
2: Initialization: A = A0, F = F0.
3: while sp ∈ [1, SP] do
4: for epoch ∈ [1, Esearch] do
5: Optimize weight parameters of A: ω← ω− ξA∇ωLDA(ω, α)
6: if epoch > Etrain then
7: Optimize architecture parameters of A: α← α− ξB∇αLDB(ω, α)
8: end if
9: end for

10: Ag, Fg ← greedy pruning strategy for A and F.
11: Aε, Fε ← ε-greedy pruning strategy for A and F with ε.
12: for i ∈ [1, Eheating] do // architecture heating process
13: Per f ormanceg ← optimize and evaluate Ag.
14: Per f ormanceε ← optimize and evaluate Aε.
15: end for
16: if Per f ormanceg ≤ Per f ormanceε then
17: A = Aε and F = Fε.
18: else
19: A = Ag and F = Fg.
20: end if
21: ε = t ∗ ε.
22: end while
23: Obtain the searched FGATR-Net A.

Remote Sens. 2020, 12, 4187 9 of 17

3. Experiment Settings

3.1. Dataset

We conduct experiments on two challenging fine-grained aircraft type recognition datasets.
The details of these two datasets are depicted as follow.

3.1.1. MTARSI

Multitype Aircraft Remote Sensing Images (MTARSI) [28] is a large-scale fine-grained aircraft
type classification dataset. It is carefully annotated under the guidance of 7 experts in remote sensing
interpretation. Thus, this dataset possesses a higher authority. In MTARSI, there are 9385 remote
sensing images with different width and height extracted from Google Earth. The spatial resolution
of these images changes from 1 m to 0.3 m. Totally, this dataset contains 20 types of aircraft and the
quantity of images in each type of aircraft ranges from 230 to 846. Moreover, MTARSI has abundant
multi temporal information. Images in MTARSI are selected at different times. It enriches the intraclass
variation, bringing more difficulties to aircraft type recognition task. Besides, for each aircraft type,
the models are quite different even though their appearances are similar. This makes one recognition
algorithm difficult to distinguish different types, for the increasing of interclass similarity. Some aircraft
examples of MTARSI are listed in Figure 4. As for the split of training set and test set, our approach is
consistent with [28], that is four-fifths of the whole samples are selected for training and the rest are
used for evaluation.

Figure 4. Some samples of MTARSI dataset.

3.1.2. Aircraft17

Aircraft17 [14] is a challenging fine-grained aircraft recognition dataset. This dataset consists
of 1945 optical remote sensing images, which are collected from Google Earth. In total, there are 17
different types of aircraft located in different airports around the world. The size of all these remote
sensing images are 156× 156 and the spatial resolution is about 0.5 m. This dataset also contains multi
temporal information. 982 remote sensing images utilized for training are selected from odd years
while 963 images for testing are from even years. In addition, the distribution of all types of samples is
quite unbalanced. The quantity of training samples in each type ranges from 30 to 60 and the quantity
varies from 21 to 60 for test samples. Figure 5 shows some examples of aircraft type in this dataset.
It is worth noting that we do not adopt a great deal of extra data augmentation to enlarge this dataset
like [14] which expands the original dataset 56 times. We think that this approach is not conducive to
verify the generalization performance of the searched model. Therefore, we just leverage the original
dataset to evaluate our method in the experiments of this paper.

Figure 5. Some samples of Aircraft17 dataset.

Remote Sens. 2020, 12, 4187 10 of 17

3.2. Evaluation Metrics

In order to judge the performance of various models quantitatively, we utilize Overall Accuracy
(OA) which is a basic and widely used indicator. The calculation process of OA is as follows:

OA =
Ncorr

N
(10)

where Ncorr is the number of samples which are correctly classified and N is the total number of
samples. Generally, one model with a higher OA has a better recognition performance. With regard to
the lightweight behavior, we adopt network parameter quantity to evaluate them. For convolution
layer, this metric can be expressed as:

Param(conv) = kh ∗ kw ∗ Cin ∗ Cout + Cout (11)

where kh and kw denote the height and width of convolution kernel respectively. Cin and Cout are used
to represent the number of input channels and output channels separately. Notably, if there is no bias,
the last item in Equation (11) can be ignored. In addition, for fully connected (fc) layer or linear layer,
it can be written by:

Param(f c) = Tin ∗ Tout + Tout (12)

where Tin and Tout respectively indicate the number of input neurons and output neurons. Similarly,
the last expression can be removed if the bias is not considered.

3.3. Implementation Details

For the architecture search, we first evenly divide the initialization training set into DA and DB
(i.e., the number of images in DA is equal to DB). And 8 candidate functions are collected as the
search space: 3× 3 max pooling, 3× 3 average pooling, skip connection, 3× 3 depthwise separable
convolution, 5× 5 depthwise separable convolution, 3× 3 dilated separable convolution, 5× 5 dilated
separable convolution and zero. Totally, we set 3 phases, each of which contains 5, 8 and 10 blocks
respectively. Meanwhile, the number of pruned functions in each phase is 3, 2 and 2. The value of
ε is initialized to be 0.1 with a decay coefficient of 0.9. After pruning, the architecture is heated for
5 epochs.

We adopt Stochastic Gradient Descent (SGD) optimizer [36] with a momentum of 0.9 to optimize
the weight parameters. The initial learning rate is 0.025 and it is decayed with a cosine schedule.
Moreover, to prevent over-fitting, we set weight decay to be 10−3. As for the optimization of
architecture parameters, we leverage Adam optimizer [37]. The learning rate for them is 6× 10−4 and
weight decay is set to be 10−3. In each phase, we only fine-tuned weight parameters for 10 epochs so
that the model is able to get adequate learning process. After that, architecture parameters and weight
parameters are joint trained for 15 epochs. When the optimal architecture is obtained, we train it from
scratch on the target dataset.

4. Experimental Results

4.1. Results on MTARSI

Figure 6 shows the structure of normal block and reduction block searched on MTARSI dataset.
Similarly, the scale is more abundant for normal block while the reduction block has a preference
for convolutions with large receptive field. Meanwhile, perhaps for the purpose of reducing the
computation, we also observe that depthwise separable convolutions are frequently selected in most
edges of these two kinds of blocks.

In order to confirm the performance of FGATR-Net on MTARSI dataset, we also compare it with
some popular neural networks. All results are listed in Table 1. The confidence interval under the

Remote Sens. 2020, 12, 4187 11 of 17

confidence degree of 95% is ±0.14. FGATR-Net outperforms other manual models with much fewer
parameters. Here, all baseline models load pretrained weights on ImageNet [38] while FGATR-Net
is just trained from scratch. As for the comparison of EfficientNet [29], an excellent baseline model
obtained by search approach not only in recognition performance but also in lightweight, FGATR-Net
also performs well. There are about four percentage points increase in OA, yet the parameters are
reduced by almost a half. As a result, we can draw an important conclusion that the proposed
automatic design pattern provides a more flexible connection selection for the neural network. In this
approach, there is no need to follow more regular topology rules which involve many artificial factors.
Therefore, the topology diversity of neural network is increased, which is conducive to explore the
optimal architecture.

Input1

Node0

5x5 sep

Node2

5x5 sep Node3

3x3 dil

Input2

5x5 dil

Node1

3x3 sep

3x3 sep

5x5 sep3x3 sep

concat

(a) Normal Block

Input1

Node0

5x5 sep

Input2

5x5 dil

Node1

5x5 sep

Node2

5x5 dil

Node3

5x5 sep5x5 dil

concat

3x3 sep 5x5 sep

(b) Reduction Block

Figure 6. Architectures searched on MTARSI dataset. Legend—Node: input nodes; Node: middle
nodes; Node: output nodes. Best viewed in color.

Table 1. Recognition results and parameter quantity on MTARSI.

Network Method OA (%) Param (MB)

AlexNet [28] Manual 85.61 57.09
VGGNet [28] Manual 87.56 134.34

GoogLeNet [28] Manual 86.53 5.62
ResNet [28] Manual 89.61 23.55

DenseNet [28] Manual 89.15 6.97

EfficientNet [28] Automatic 89.79 4.03
FGATR-Net Automatic 93.76 2.33

Figure 7 shows some Class Activation Map (CAM) [39] examples on MTARSI dataset. CAM is a
visualization method which can reflect the more concerned part of a neural network and then can affect
its final decision. The red region indicates a high degree of concern while the model pays a relatively
low attention to the blue region. We can observe that compared with EfficientNet, FGATR-Net can
manage to capture the key region whether the scale of aircraft in images is large or small. For instance,
Figure 7a,c respectively present a large aircraft while a small aircraft is shown in Figure 7e. EfficientNet
only focuses on small scale aircrafts. On the contrary, FGATR-Net is able to cover all of them. We infer
that this phenomenon is caused by the huge difference between remote sensing images and natural
scene images. EfficientNet is more suitable for processing natural scene images, but not for remote
sensing images. Moreover, FGATR-Net also has strong robustness to the brightness of remote sensing
images, such as Figure 7c,e. Even more importantly, FGATR-Net searched on MTARSI can still better
express the outline of aircraft. The boundary information and details are more obvious. This is a
powerful support for the feature extraction and feature expression of the proposed FGATR-Net.

Remote Sens. 2020, 12, 4187 12 of 17

4.2. Results on Aircraft17

Architectures for Aircraft17 dataset searched by the proposed method are shown in Figure 8.
The search procedure took about two hours on three RTX 2080Ti with batch size 12. From the results of
normal block, we can find that there are many types of convolutions. It is helpful to extract multi-scale
information for neural network through various convolutions. While for reduction block, 5× 5 dilated
convolution are preferred. This indicates that the network has a strong demand for a relatively large
receptive field.

(a) (b) (c) (d) (e)

Figure 7. Several CAMs on MTARSI dataset. From subfigure (a) to subfigure (e), raw remote sensing
images are arranged in the first row while the corresponding CAMs of EfficientNet and FGATR-Net
are placed in the second row and third row respectively.

(a) Normal Block

Input1

Node0

5x5 dil

Input2

3x3 sep

Node1

5x5 dil

Node3

5x5 dil

5x5 sep

Node2

5x5 dil

5x5 dil

concat

5x5 dil

(b) Reduction Block

Figure 8. Architectures searched on Aircraft17 dataset. Legend—Node: input nodes; Node: middle
nodes; Node: output nodes. Best viewed in color.

Remote Sens. 2020, 12, 4187 13 of 17

With regard to quantitative experiments, we list the results in Table 2. The confidence interval
under the confidence degree of 95% is±0.42. As can be seen in it, FGATR-Net is superior to all baseline
models and achieves the highest OA. Similarly, baseline networks all include pretrained model and
FGATR-Net is just trained on Aircraft17 dataset from scratch. This suggests that FGATR-Net has
a good performance on feature extraction. Moreover, it also performs well in terms of lightweight.
The number of parameters FGATR-Net contains is only 1.86 MB, reducing about 25% parameters
compared with ShuffleNetV2 [11] which is a very famous lightweight neural network. This strongly
indicates that the architecture is relatively more compact. Here, it is remarkable that the architecture
design is just an automatic procedure and this procedure does not need much expert knowledge and
expert experience. Yet, some promising results can still be obtained from this automatic framework.

Table 2. Recognition results and parameter quantity on Aircraft17. NC means not-convergent.

Network Method OA (%) Param (MB)

AlexNet [6] Manual 70.30 57.07
VGGNet [7] Manual NC 134.33

GoogLeNet [8] Manual 71.13 5.62
ResNet [9] Manual 77.88 23.54

DenseNet [10] Manual 80.48 6.97
ShuffleNetV2 [11] Manual 73.94 2.50

FGATR-Net Automatic 81.72 1.86

In addition to the quantitative results above, the visualization results, i.e., CAMs, on Aircraft17
dataset are also presented in Figure 9. We compare the best performing baseline model, DenseNet,
and the proposed FGATR-Net. We find that the salient regions obtained by DenseNet, namely deep
red part in CAMs, either has an obvious offset of the aircraft or covers the aircraft area excessively.
However, the corresponding CAMs of FGATR-Net almost manges to cover the aircraft area in remote
sensing images. It suggests that the proposed FGATR-Net is able to effectively extract the vital
information in main region, which verifies the effectiveness of our method.

(a) (b) (c) (d) (e)

Figure 9. Several CAMs on Aircraft17 dataset. From subfigure (a) to subfigure (e), raw remote sensing
images are arranged in the first row while the corresponding CAMs of DenseNet and FGATR-Net are
placed in the second row and third row respectively.

Remote Sens. 2020, 12, 4187 14 of 17

5. Discussion

The experimental results show that the proposed FGATR-Net is a very competitive model. It is
able to extract the key features in remote sensing images and express them well. From the perspective
of both OA metric and parameter quantity, it achieves State Of The Art (SOTA) performance on two
quite challenging datasets: MTARSI and Aircraft17 respectively. Besides, it is worth noting that our
network architecture design is an automatic approach. It does not heavily rely on expert knowledge
and artificial experience. Our method provides a new pattern for fine-grained visual classification in
remote sensing images.

Table 3 lists the selected pruning strategies at different phases on Aircraft17 and MTARSI
respectively. We can observe that greedy strategy and ε-greedy strategy are selected successively
during search on Aircraft17 dataset. We think that network architecture is relatively shallow at
the beginning of the search process. The combination of all candidate functions is limited. Thus,
exploitation is favored. However, as the network architecture deepens and search space still contains
more elements, the combination becomes complicated. Exploration probably could be a better choice.
On the contrary, for MTARSI, ε-greedy strategy is selected only. This is most likely caused by relatively
large-scale dataset (9385 remote sensing images in this dataset). Information obtained during search is
not sufficient enough, making exploration more effective.

Table 3. Selected pruning strategies at different search phases on two datasets.

Search Phase
Aircraft17 MTARSI

Phase I Phase II Phase I Phase II

greedy strategy X
ε-greedy strategy X X X

From the confusion matrix results in Figure 10, we observe that most types of aircrafts can be
correctly distinguished on Aircraft17 dataset. The recognition metrics of them are satisfied in principle,
especially for type 6 whose accuracy even reaches 100%. Nevertheless, the proposed method can still
get some further improvements. We notice that the recognition performance of type 16 is a huge drag
on OA metric for the best baseline model (i.e., DenseNet) and the proposed FGATR-Net. In DenseNet
model, type 16 is most likely to be identified into type 15 while FGATR-Net possibly recognizes this
type as type 10 and type 11.

(a) Aircraft17 (DenseNet) (b) Aircraft17 (FGATR-Net)

Figure 10. Confusion matrices of DenseNet and FGATR-Net on Aircraft17 dataset.

Remote Sens. 2020, 12, 4187 15 of 17

As shown in Figure 11, there is a big difference in aircraft type between type 16 and type 15,
yet the background is quite similar for both two types. The background of these images is green
and airport runways are light grey. This demonstrates that background is an important influence
factor to DenseNet. On the other side, FGATR-Net overcomes this interference. The proportion of
being misclassified as type 15 is not very large. However, FGATR-Net has a poor performance for
similar aircraft types. There are both 4 engines for type 16 and type 10 while type 16 and type 11 are
swept-back wings and their fuselages are relatively long.

(a) Type 16 (b) Type 15 (c) Type 10 (d) Type 11

Figure 11. Some examples which are easily to be confused in Aircraft17 dataset.

In practical application, especially in the military field, a neural network must be robust enough.
It can be able to resist external interferences as mentioned above to prevent being deluded. Yet, for the
proposed FGATR-Net, there is still room for improvement in this respect. Also, for edge computing
devices, it is likely that the hardwares do not perform well as that under experimental conditions.
How to keep a good behavior on real-world devices is an important consideration as well for automatic
architecture design. Consequently, we will pay more attention to these problems in the future research.

6. Conclusions

In this article, a novel automatic architecture design framework for remote sensing fine-grained
aircraft type recognition is firstly explored. In this approach, the search process is divided into several
phases. Network architecture deepens at each phase while the number of candidate functions decreases
gradually. To achieve it, we adopt different pruning strategies. Then, the network architecture is
determined through a potentiality judgment after an architecture heating process. This approach can not
only search deeper network, but also reduce the computational complexity, especially for relatively large
size of remote sensing images. When the search process is complete, FGATR-Net is obtained and after that
we train it on target dataset from scratch. Experimental results on two challenging datasets: MTARSI and
Aircraft17 show that FGATR-Net can achieve the highest accuracy, i.e., 93.76% and 81.72% respectively,
with just much fewer parameters (2.33 MB and 1.86 MB respectively), compared with popular baseline
models, which verifies that FGATR-Net possesses a strong capability of feature extraction and feature
representation. Furthermore, it powerfully indicates the feasibility and effectiveness of the proposed
automatic architecture design method. As to future work, we will continue to concentrate on automatic
and lightweight network design for remote sensing fine-grained aircraft type recognition, and attempt to
improve search efficiency while reduce the computational complexity.

Remote Sens. 2020, 12, 4187 16 of 17

Author Contributions: W.L. and J.L. designed and conducted the experiments; W.L. and J.L. reimplemented
some popular baseline models. W.L. and J.L. wrote the paper jointly; W.D. and X.S. revised the paper and
presented some suggestions; K.F. and Y.W. supervised this research and reviewed this paper. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under Grants 61725105
and 41701508.

Acknowledgments: The authors would like to appreciate all colleagues in the laboratory, who generously shared
their computation resources and gave valuable advice to help us to conduct this research. The authors would
also like to sincerely express their gratitude for all anonymous reviewers for their quite helpful suggestions
and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, J.; Zhang, B.; Wang, C. Backscattering feature analysis and recognition of civilian aircraft in TerraSAR-X
images. IEEE Geosci. Remote Sens. Lett. 2014, 12, 796–800. [CrossRef]

2. Zhong, Y.; Ma, A.; soon Ong, Y.; Zhu, Z.; Zhang, L. Computational intelligence in optical remote sensing
image processing. Appl. Soft Comput. 2018, 64, 75–93. [CrossRef]

3. Hsieh, J.W.; Chen, J.M.; Chuang, C.H.; Fan, K.C. Aircraft type recognition in satellite images. IEE Proc. Vis.
Image Signal Process. 2005, 152, 307–315. [CrossRef]

4. Xu, C.; Duan, H. Artificial bee colony (ABC) optimized edge potential function (EPF) approach to target
recognition for low-altitude aircraft. Pattern Recognit. Lett. 2010, 31, 1759–1772. [CrossRef]

5. Liu, G.; Sun, X.; Fu, K.; Wang, H. Aircraft recognition in high-resolution satellite images using coarse-to-fine
shape prior. IEEE Geosci. Remote Sens. Lett. 2012, 10, 573–577. [CrossRef]

6. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural
networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3–6 December 2012; pp. 1097–1105.

7. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

8. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

10. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 June 2017; pp. 4700–4708.

11. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 116–131.

12. Diao, W.; Sun, X.; Dou, F.; Yan, M.; Wang, H.; Fu, K. Object recognition in remote sensing images using
sparse deep belief networks. Remote Sens. Lett. 2015, 6, 745–754. [CrossRef]

13. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science
2006, 313, 504–507. [CrossRef]

14. Fu, K.; Dai, W.; Zhang, Y.; Wang, Z.; Yan, M.; Sun, X. Multicam: Multiple class activation mapping for
aircraft recognition in remote sensing images. Remote Sens. 2019, 11, 544. [CrossRef]

15. Zhao, A.; Fu, K.; Wang, S.; Zuo, J.; Zhang, Y.; Hu, Y.; Wang, H. Aircraft recognition based on landmark
detection in remote sensing images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1413–1417. [CrossRef]

16. Zhang, Y.; Sun, H.; Zuo, J.; Wang, H.; Xu, G.; Sun, X. Aircraft type recognition in remote sensing images based on
feature learning with conditional generative adversarial networks. Remote Sens. 2018, 10, 1123. [CrossRef]

17. Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-resolution image synthesis and
semantic manipulation with conditional gans. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8798–8807.

18. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578.

http://dx.doi.org/10.1109/LGRS.2014.2362845
http://dx.doi.org/10.1016/j.asoc.2017.11.045
http://dx.doi.org/10.1049/ip-vis:20049020
http://dx.doi.org/10.1016/j.patrec.2009.11.018
http://dx.doi.org/10.1109/LGRS.2012.2214022
http://dx.doi.org/10.1080/2150704X.2015.1072288
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.3390/rs11050544
http://dx.doi.org/10.1109/LGRS.2017.2715858
http://dx.doi.org/10.3390/rs10071123

Remote Sens. 2020, 12, 4187 17 of 17

19. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–23 June 2018; pp. 8697–8710.

20. Liu, H.; Simonyan, K.; Vinyals, O.; Fernando, C.; Kavukcuoglu, K. Hierarchical representations for efficient
architecture search. arXiv 2017, arXiv:1711.00436.

21. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search.
In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February
2019; Volume 33, pp. 4780–4789.

22. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055.
23. Chen, X.; Xie, L.; Wu, J.; Tian, Q. Progressive differentiable architecture search: Bridging the depth gap

between search and evaluation. In Proceedings of the IEEE International Conference on Computer Vision,
Seoul, Korea, 27 October–2 November 2019; pp. 1294–1303.

24. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

25. Chen, Y.; Zhu, K.; Zhu, L.; He, X.; Ghamisi, P.; Benediktsson, J.A. Automatic design of convolutional
neural network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7048–7066.
[CrossRef]

26. Zhang, M.; Jing, W.; Lin, J.; Fang, N.; Wei, W.; Woźniak, M.; Damaševičius, R. NAS-HRIS: Automatic design
and architecture search of neural network for semantic segmentation in remote sensing images. Sensors
2020, 20, 5292. [CrossRef]

27. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; University
of Toronto: Toronto, ON, Canada, 2009.

28. Wu, Z.Z.; Wan, S.H.; Wang, X.F.; Tan, M.; Zou, L.; Li, X.L.; Chen, Y. A benchmark data set for aircraft type
recognition from remote sensing images. Appl. Soft Comput. 2020, 89, 106132. [CrossRef]

29. Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv
2019, arXiv:1905.11946.

30. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature
1986, 323, 533–536. [CrossRef]

31. Anandalingam, G.; Friesz, T.L. Hierarchical optimization: An introduction. Ann. Oper. Res. 1992, 34, 1–11.
[CrossRef]

32. Colson, B.; Marcotte, P.; Savard, G. An overview of bilevel optimization. Ann. Oper. Res. 2007, 153, 235–256.
[CrossRef]

33. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167.

34. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Training very deep networks. In Proceedings of the Advances in
Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2377–2385.

35. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
36. Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151.

[CrossRef]
37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
38. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.

In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 248–255.

39. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative
localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 27–30 June 2016; pp. 2921–2929.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/TGRS.2019.2910603
http://dx.doi.org/10.3390/s20185292
http://dx.doi.org/10.1016/j.asoc.2020.106132
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1007/BF02098169
http://dx.doi.org/10.1007/s10479-007-0176-2
http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Differentiable Automatic Network Architecture Design
	Block Representation as a DAG
	Architecture Parameters Relaxation
	Optimization Policy

	Model Pruning Strategy
	Network Layers Growth
	Greedy Strategy and -Greedy Strategy
	Potentiality Judgment

	Experiment Settings
	Dataset
	MTARSI
	Aircraft17

	Evaluation Metrics
	Implementation Details

	Experimental Results
	Results on MTARSI
	Results on Aircraft17

	Discussion
	Conclusions
	References

