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Abstract: During the operation of engineering structures made of natural stone, for industrial and
civil purposes, an important parameter in monitoring their technical condition is the assessment of
their reliability and safety under the influence of various external influences. In this case, high-quality
monitoring of the stress–strain state of natural stone structures, its physical, mechanical and filtration
properties, as well as internal structural features is necessary to study the possibility of replacing
individual elements of objects that have lost their original characteristics. To assess the state of
geomaterials, this article proposes using a complex of introscopic methods, including infrared
radiometry and laser-ultrasound structuroscopy. An important aspect is the calculation based on the
Green–Christoffel equation of the velocity of a quasi-longitudinal wave in limestone consisting of
densely packed, chaotically oriented calcite grains with a small quartz content. For the first time,
using laser-ultrasonic structuroscopy and standard methods for determining open porosity, both total
and closed porosity were determined. This allowed us to find the values of specific heat capacities
of dry and water-saturated samples. The obtained values are used to find the ratio of changes in
the temperature of dry and water-saturated samples at the same stress values. The results obtained
demonstrate the need to take into account changes in the intensity of thermal radiation of limestone
with different moisture content under conditions of uniaxial compression, when identifying changes
in the stress state of elements of stone structures in real conditions.

Keywords: infrared radiometry; laser-ultrasonic structuroscopy; limestone; stress–strain state;
water saturation

1. Introduction

Throughout human history, natural stone has been widely used as a material for monumental
architecture and sculpture [1–4] as well as for industrial and civil construction [5,6]. Examples are the
Moscow Kremlin, Athena’s Temple and Apollo’s Temple in Syracuse, and Spirito Santo Church in
Melilli, all made of limestone, and modern buildings and subway stations with walls made of marble,
granite, sandstone, etc. Since historic and architecturally significant buildings require restoration
and rehabilitation, it is particularly important to select appropriate natural stone samples from the
deposits that are currently being developed. Not only should the decorative properties of stone be
taken into account, but also the physical and mechanical parameters and structural features. Note that

Remote Sens. 2020, 12, 4036; doi:10.3390/rs12244036 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-1551-4867
https://orcid.org/0000-0001-6958-5164
http://dx.doi.org/10.3390/rs12244036
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/12/24/4036?type=check_update&version=4


Remote Sens. 2020, 12, 4036 2 of 14

limestone is most often used for the above purposes, extracted from quarries and mines all over the
world. For example, there are 71 limestone quarries in France alone.

Engineering structures made of natural stone are exposed to weathering agents and dynamic loads
caused by both natural and human factors (earthquakes, vibrations, etc.) [7–10]. Clearly, these factors
negatively affect the stability of the structures, stimulating destructive mechanical processes in their
material. Therefore, it is necessary to constantly monitor the porosity, water absorption, changes in
elasticity moduli and other parameters of natural stone, especially with respect to historic and
architecturally significant buildings.

Today, there are a wide variety of methods for studying the internal structure and stress–strain
behavior of natural stone and structures made of it. These methods comprise destructive methods
involving load testing under different loading conditions [11,12] and semi-destructive mechanical tests
with simultaneous measurement of acoustic emission [13,14]. Non-destructive in situ and laboratory
methods for inspecting natural materials are addressed in [15–32], including thermal control [16–20],
multispectral optical remote sensing [21], ground penetrating radar [22,23], ultrasonic inspection [25,26],
gamma-ray logging [27], terahertz spectroscopy [28], X-ray tomography [29,30], neutron radiography [31],
and others [32].

At present, the most common methods are thermography [16–20] and different versions of
ultrasonic inspection [25,26].

IR thermography, or IR radiometry, involves non-contact measurement of changes in the intensity
of infrared radiation emitted by the surface of geomaterial. Two methods of IR thermography [20]
are used to study the properties of rocks: active and passive ones. Active thermal control involves
heating the sample by a heat source located on its front side. The thermal fields inside geomaterial
are redistributed due to hidden defects. Recorded temperature anomalies are used to evaluate the
structure and the porosity in igneous, metamorphic and sedimentary [33,34]. In [35], it is shown that
this method allows the permeability of rocks to be evaluated as well. In [36], active pulsed infrared
thermography is used to identify and qualitatively evaluate the salt content in the natural stone of
historic buildings.

Passive thermal control mostly involves analyzing heat flows produced as a result of deformation
of rocks [37–42]. In that case, the interpretation of thermal IR radiation measurements is based on the
well-known thermodynamic effects: changes in the temperature of solid bodies during their adiabatic
deformation (‘thermoelastic’ and ‘thermoplastic’ effects) and temperature dependence of the intensity
of infrared radiation emitted by the surface of solids.

Thus, it is shown in [37–42] that IR radiometry is an efficient method to identify stages of
deformation of geomaterials of different types and water saturation effects [43]. It is found that the
intensity of radiation emitted by quartz syenite, fine-grained diorite, and quartz monzonite changes
with increasing load: from 8.3 to 10.1 µm, 10.3 to 12.2 µm, and 13.0 to 15.1 µm, respectively [32]. It is
also shown that at a relatively low loading rate, the temperature remains constant due to heat exchange
with the environment.

In [38], it is experimentally found that as mechanical load increases, the intensity of IR radiation
is redistributed between the spectral components in the wavelength region from 7 to 11 µm.
Thus, authors [40,42] performed a quantitative analysis of the relationship between stress applied to
quartz sandstone and IR radiation; they showed that the highest intensity of radiation per unit stress
was observed in the wavelength range from 8.0 to 11.5 µm. In [41,42,44], it is found that the mineral
composition of geomaterial significantly influences the frequency range, within which the most intense
radiation is observed under loading conditions. It is shown in [41,42] that porphyrite granite with
high feldspar content has a load-sensitive wavelength range from 8.4 to 10.6 µm and granite with high
plagioclase content has a load-sensitive wavelength range from 8.2 to 11.7 µm [44]. The load-sensitive
frequency band is related to the range of IR emission spectra of individual minerals.

Note that the above-described findings emerged from remote IR sensing, when the distance to
the test sample was several tens of centimeters (for example, in [42] this distance was 80 cm). In that
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case, it was necessary to perform complex calibration of the equipment before every measurement so
that atmospheric effects could be taken into account. Due to the narrow frequency ranges used in the
above-mentioned studies, it was impossible to fully take into account the vibrational and rotational
levels of all minerals, gases, and liquids in pores. Nevertheless, this method is quite effective for
locating possible defects and assessing the water content and stress-strain behavior of materials.

However, it would be more efficient to use this method together with ultrasonic diagnostics
so as to comprehensively assess the condition and internal structure of geomaterials. Conventional
ultrasonic flaw detectors and tomographs operate, as a rule, at a certain resonance frequency [24–26],
which makes it difficult to determine the geometry and location of different-scale defects. The use
of piezoelectric transducers exciting and receiving broadband ultrasonic signals results in a sharp
decrease in radiated power and a significant decrease in sensitivity, which means that the dynamic
range becomes narrower. In this respect, laser ultrasonic structuroscopy and tomography [45–47] seem
promising for characterizing the internal structure, porosity, and local elastic properties of natural
stone. As is shown in [45,46], the main advantage of these methods is as follows: generated powerful
ultrasonic pulses have strictly controlled shape and both transmitted signals and signals reflected from
heterogeneities are recorded by broadband piezoelectric detectors.

In this study, ultrasonic structuroscopy and IR-radiometry were used to examine the structure
and properties of limestone and changes in these properties with changing uniaxial stress and
water saturation.

2. Materials and Methods

2.1. Samples and Their Preparation

We examined samples of limestone, one of the most commonly used materials for construction.
Limestone is a highly heterogeneous rock, so we chose samples with similar physical and mechanical
parameters and structural features in order to ensure high-quality and reasonable results. For this
purpose, a number of preliminary tests were carried out, including both standard ones for determining
the physical and mechanical properties of rocks, and such introscopic methods as scanning electron
microscopy and laser ultrasonic diagnostics.

First, we used a «Struers Labotom-15» cutting machine (Figure 1a) to saw one block of limestone
into over a hundred rectangular parallelepipeds 25 × 25 × 50 mm in size and then an automatic
grinding polishing machine «Struers Tegramin-25» (Figure 1b) to make polished thin sections.
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Figure 1. «Struers Labotom-15» cut-off machine (a) and «Struers Tegramin-25» automatic grinding
polishing machine (b).

Mineral and elemental analyzes were performed on this series of polished thin sections 25 × 25 mm
in size using a «Phenom ProX» scanning electron microscope (Figure 2) operating in an optical imaging
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mode for petrographic analysis and electronic imaging mode for chemical analysis based on energy
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Figure 2. Scanning electron microscope «Phenom ProX».

It was found that most limestone samples contained 40.0–42.3% of calcium, 12.1–13.9% of carbon,
and 45.1–47.5% of oxygen. Some insignificant mineral components and impurities, such as silicon
(0.2–0.3%), magnesium (0.1–0.2%), and iron (0.1%), were also detected, distributed evenly on the
surface of the samples.

The polished thin sections featured granular surfaces. Along grain boundaries, there were
pore systems occupying 5–7% of the total surface area, their characteristic dimensions ranging from
20 to 40 µm. The mineral composition was represented by calcite (97.5–98.3%), quartz (1.5–2.3%),
and dolomite (less than 0.5%). The total amount of other minerals was small (less than 0.1%).

Based on electron microscopy data, 25 samples out of the initial series were selected, having similar
surface structural features. Similar surface structural features are common morphometric properties
such as value of porosity and dimensions of pores.

2.2. Measurement of Local Elastic Wave Velocities in Samples by Laser Ultrasonic Structuroscopy

At the second stage, it was necessary to select samples with similar moduli of elasticity,
without structural defects and with approximately the same porosity. This was done using laser
ultrasonic structuroscopy [19]: 30 samples were examined with an UDL-2M automatic flaw detector.
Figure 3 shows a schematic diagram of the detector.
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Figure 3. Schematic diagram of measurement of elastic wave velocities in limestone sample using UDL-2M
laser ultrasonic flaw detector: optical cable (1), laser (2), computer (3), detector (4), laser radiation (5),
optical-acoustic generator (6), pulses (7), rock sample (8).
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The operating principle of the flaw detector UDL-2M is as follows: a special laser-based optoacoustic
generator generates high-power broadband ultrasonic longitudinal pulses with a strictly controlled
shape. The pressure amplitude distribution across the cross section of the acoustic beam is a Gaussian
distribution; therefore, there is no noise interference in the form of side lobes in the radiation
pattern. Consequently, the signal-to-noise ratio is higher, and the dynamic range is wider. Scattered,
reflected, and transmitted signals are recorded with a broadband piezoelectric detector (a bandwidth
of 100 kHz–20 MHz) combined with the generator. The aperture of the piezoelectric detectors is 4 mm.
An ultrasonic signal ‘cuts out’ an elementary cylinder from the sample, with a diameter of 4 mm and
length equal to the thickness of the sample. Longitudinal wave velocities Vi in every i-th cylinder
(i = 1,2–100) are calculated and mapped, and the thickness of the sample and the double travel time of
the acoustic pulse through the sample are taken into account.

Figure 4 shows two velocity maps derived from our experiments. Figure 4b shows a velocity
distribution map for a sufficiently homogeneous limestone sample, velocities ranging from 4350 to
4650 m/s; the other sample—inhomogeneous (Figure 4a)—had defects and exhibited velocities varying
from point to point between 4050 and 4600 m/s. Longitudinal wave velocities were determined in this
mode with an error of 1%, therefore, those samples that had velocities changing from point to point by
more than 5% were discarded [48].
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Figure 4. Longitudinal wave velocity distribution maps: inhomogeneous sample (A) and homogeneous
sample (B).

Note that the reflection of longitudinal pulses from the opposite side of the sample produced shear
wave whose time delay relative to the reference signal was used to determine its velocity Vti at every
point. Figure 5 shows shear wave velocities. Shear waves were studied to ascertain that there were no
cracks in the samples: they are more sensitive to the presence of defects than longitudinal waves [48].
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2.3. Calculation of the Total Porosity in Limestone Samples

Based on the experimentally determined longitudinal wave velocities, we can calculate the average
volumetric porosity P of every sample using the following expression [20]

Pgeneral =

1−
(

Vl
V0

)2
3
2

(1)

where V0 is the longitudinal wave velocity in material with no pores (Pi = 0).
Porosity calculated by (1) is the total porosity (closed and open porosities). It was necessary to

calculate V0, for which the following algorithm was developed. It is well known that the principal
minerals of limestone (calcite and quartz) belong to the trigonal symmetry class [47]. In trigonal crystals,
purely longitudinal waves propagate only along three crystallographic axes |100|, |010|, and |001|

their velocities, V1, V2, and V3, are determined by the diagonal elements of the stiffness matrix C11

and C33 [49]
ρV2

1 = C33 (2)

ρV2
2 = ρV2

3 = C11, (3)

where ρ is the density of the crystal.
Quasi-longitudinal waves whose phase velocities are determined from the Green–Christoffel

equation [49] propagate in all other directions; their velocities may differ significantly from those
of pure modes. Since calcite and quartz are chaotically oriented in limestone, velocity V0 should
necessarily be calculated by averaging over all directions, which is a rather laborious procedure.
Therefore, V0 was estimated using the known coefficients of the stiffness matrix

{
Ci j

}
, i, j = 1, . . . , 6 for

calcite and quartz (see Table 1) to determine velocities V1, V2, and V3, along the |100|, |010|, and |001|

crystallographic axes and, additionally, velocities V12, V23, and V13 in the |110|, |011|, and |101| directions
for each mineral [50]. The calculation of velocity V23 is given in Appendix A. Then, the velocities in all
six directions were averaged, the contribution of calcite and quartz taken into account.
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Table 1. Coefficients of the stiffness matrix for calcite and quartz.

Mineral C11,GPa C12,GPa C44,GPa C33,GPa C13,GPa C66, GPa ρ, kg/m3

Calcite 137 45.2 34.2 79.2 44.8 45.9 2980

Quartz 86.8 7.1 58.3 105.9 −11.9 39.9 2650

It was found that the average velocity in limestone without pores was 4900 m/s; the average
porosity in 30 selected samples was determined, taking expression into account (1). Figure 6 shows
a histogram of the porosity distribution across the samples.
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Figure 6. Porosity in limestone samples.

It is clear from Figure 6 that most limestone samples have porosity P ranging from 13 to 14%.
That is why 10 samples with P = 13–14% were selected for mechanical tests. Mechanical tests were
performed on five dry samples (Figure 7a) and five water-saturated samples (Figure 7b).
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2.4. Determination of Open Porosity

To study the effect of water saturation on the elastic and thermal properties of the samples, it was
necessary to estimate open porosity. Open porosity was determined by the Archimedes method
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in accordance with ASTM C830-00 (2016) and BS EN 1936: 2006. First, the mass of dry samples
was determined after drying in a vacuum oven at 105 ◦C for 24 h to completely remove residual
moisture. After that, they were saturated with deionized water at atmospheric pressure (~0.1 MPa)
for 48 h. Before weighting the water-saturated sample in air, excess water was removed from the
surface with a damp cloth. The weight was measured using an electronic balance with an accuracy of
0.1 mg. The open pore volume Vopen was determined from the difference in weight between the dry
and water-saturated samples, mdry and mwet, respectively. Hereinafter, the index ‘dry’ refers to dry
samples, and index ‘wet’ refers to water-saturated ones. The average weight of the dry samples was
mdry = 67.14 g and that of the water-saturated samples was mwet = 69.94 g. The volume of open pores
was calculated using the formula

Vopen =
mwet − mdry

ρwat
, (4)

where ρwat is the density of water. Accordingly, the average open porosity defined as

Popen =
Vopen

Vsample
, (5)

was equal to 9.5%.

2.5. Mechanical Tests Accompanied by Infrared Radiation Measurements

The samples were subjected to uniaxial compression using an LFM-50 testing machine. The load
rate of the samples was 0.28 kN/s, and longitudinal deformations were measured using the LDVT
method of this machine. Deformation and IR radiation intensity were measured synchronously
(Figure 8).
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Figure 8. Experimental setup: IR radiation detector (1) and limestone sample (2).

An IR radiation detector based on a «RTN-31» detector [51] with a bandwidth from 3 to 14 µm
was located facing the center of the sample at a distance of 0.5 cm from its surface. The wide frequency
range made it possible to record the spectra of gases, liquids, and all minerals in the sample.

3. Results and Discussion

Figure 9 shows «σ − ε» plots derived from the above-described experiment. The σ(ε) curves
reflect the well-known fact that changes in the strength and deformation properties of limestone
samples greatly depend on water saturation [25,27].
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Figure 9. Plots «σ− ε» for dry (1) and water-saturated (2) limestone samples.

Figure 10 shows the dependence of the intensity of infrared radiation on deformation of dry
and water-saturated limestone samples (W1(ε) and W2(ε), respectively) under uniaxial loading at
a constant loading rate ( dσ

dt = const). Note that the linear sections of the stress σ vs. deformation ε
curves correspond to directly proportional dependences of W1(ε) and W2(ε) on ε.
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Clearly, the inclination of the straight line approximating W2(ε) is significantly greater than that
of the straight line approximating W1(ε), which indicates higher thermoactivity of water-saturated
limestone. This is consistent with conclusions in [11,29]: the intensity of IR radiation from rock samples
under compression increases with their water saturation. At the same time, it is mentioned that
changes in the thermo-physical and physical and mechanical properties of samples under the influence
of water saturation are the main factor causing the observed thermo-mechanical effect.

In order to verify the results, it is interesting to estimate temperature increments ∆T for
dry or water-saturated samples. For this purpose, we apply the well-known approximation [52],
which connects stress increments with changes in temperature during the uniaxial adiabatic straining
of solid body

∆T =
α
ρ·c

T0∆σ, (6)
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where T0 is the absolute value of temperature prior to deformation; α is the coefficient of linear
expansion, c is the specific heat at constant pressure; ρ is the density of material.

Then, as follows from expression (6), the relationship between temperature changes in dry and
water-saturated solid samples as a result of uniaxial adiabatic straining is as follows (provided that the
samples exhibit the same stress increment ∆σ)

ρdry × cdry

αdry
×

∆Tdry

T0
=
ρwet × cwet

αwet
×

∆Twet

T0
, (7)

as is shown in [52], α2E = const, where E is the modulus of elasticity of material under uniaxial
compression. Elastic moduli Edry and Ewet of dry and water-saturated samples are calculated from the
deformation curves (Figure 10): Edry = 69 GPa and Ewet = 42 GPa. Taking into account these parameters,
Formula (7) takes the following form

∆Twet =
ρdry × cdry ×

√
Edry

ρwet × cwet ×
√

Ewet
·∆Tdry, (8)

The densities and moduli of elasticity were measured. Therefore, in order to assess the relationship
between temperature changes in dry and water-saturated limestone samples, it was necessary to
calculate their specific heat capacities c. According to [9], the specific heat of a heterogeneous medium
is the arithmetic weighted average of all mineral components with their share ki and specific heat ci,
that is

c =
∑

ci × ki, (9)

Since the principal component of the limestone samples is calcite and there are pores, the following
formula for the specific heat of water-saturated limestone is derived from (8)

cwet =
∑

ci × ki =
ccal × ρcal × (1− P) + cwater × ρwater × Popen

ρwet
, (10)

The index “cal” refers to calcite grains. Similarly, in accordance with [9], the following expression
is derived for the specific heat of dry limestone

cdry =
ccal × ρcal × (1− P)

ρdry
, (11)

In expression [11], the heat capacity of air in pores of dry limestone is not taken into account.
Specific heat capacities of dry and water-saturated samples, calculated by Formulas (10) and (11),
are presented in Table 2.

Table 2. Specific heat capacities of dry and water-saturated limestone samples.

Dry Limestone Samples Water-Saturated Limestone Samples

No. c, J/(kg·K) No. c, J/(kg·K)

1d 1059 1w 1149

2d 1023 2w 1177

3d 1015 3w 1131

4d 1021 4w 1182

5d 1044 5w 1185

Average 1032 Average 1165
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The average values of specific heat capacities
(
cdry

)
and (cwet) of dry and water-saturated samples

(see Table 2) are used in subsequent calculations by Formula (8), T0 = 300 K at that.
Substituting the above values into (7), we find that the temperature increment for water-saturated

samples is as follows: ∆Twet ≈ 1, 2 × ∆Tdry, which confirms the experimental findings presented in
Figure 5.

Thus, our experiments and numerical evaluation show that the water saturation of porous
materials significantly affects their mechanical and thermo-physical characteristics, which is manifested,
in particular, in a significant increase in the thermal activity initiated by deformation processes.

4. Conclusions

Our study demonstrates an integrated approach to laboratory research into thermo-mechanical
processes in complexly structured heterogeneous materials (limestone samples) under loading conditions.

Conventional methods of scanning electron microscopy were employed to perform petrographic
analysis of limestone samples and reveal limestone structural features. It is shown that laser ultrasonic
structuroscopy can be efficiently used to quickly evaluate the porosity in rocks.

It is found that the intensity W(t) of thermal radiation emitted by the surface of limestone samples
under uniaxial loading depends on the water content. Importantly, variations in the intensity of
thermal radiation and changes in mechanical parameters were measured synchronously. Analysis of
these measurements of axial stresses and strains showed the expected significant deterioration of the
mechanical properties (i.e., ultimate strength under uniaxial compression and modulus of elasticity)
of water-saturated samples as compared to dry ones. Analysis of the IR radiometric measurements
shows that the nature of W(t) unambiguously depends on the water saturation of limestone samples,
which means that the revealed regularity should be taken into account when monitoring and evaluating
changes in the stress–strain behavior of stone elements of constructions under real-life conditions.
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Appendix A

Calculation of Quasi-Longitudinal Wave Velocities in Calcite

The conditions of the existence of eigenvalues of phase velocities and eigenvectors with components
Ul = (l = 1, 2, 3) in quasi-longitudinal and quasi-transverse waves propagating in an arbitrary direction
are determined using the Green–Christoffel equation(

Γil − ρ×V2
× δil

)
×Ul = 0 (A1)

where ρ is the density of material, V is the phase velocity, Γil(i = 1, 2, . . . , 6) is the Christoffel tensor,
δil is the Kronecker symbol.

System (A1) has a unique nontrivial solution if the determinant composed of the coefficients at Ul
is equal to zero ∣∣∣Γil − ρ×V2

× δil
∣∣∣ = 0 (A2)

Equation (A2) in the general case is a cubic equation with respect to ρ×V2.
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For the |110| direction of the trigonal symmetry class, the components of the Christoffel tensor are
as follows

Γ11 = C11 + C66 Γ12 = C12 + C66Γ22 = C66 + C11 Γ13 = 2C14Γ33 = 2C44 Γ23 = −C14

Then, the determinant (A2) is as follows∣∣∣∣∣∣∣∣∣
C11 + C66 − ρ×V2 C22 + C66 2C14

C12 + C66 C66 + C11 − ρ×V2
−C14

2C14 −C14 2C44 − ρ×V2

∣∣∣∣∣∣∣∣∣= 0 (A3)

This determinant is equivalent to an cubic equation with respect to ρ×V2, the roots of which specify
the phase velocities of two quasi-transverse waves and one quasi-longitudinal wave, to which the
greatest value corresponds. This equation was numerically solved; it was found that the quasi-longitudinal
wave velocity was 4900 m/s in the |110| direction.
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