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Abstract: An urban riverway extraction method is proposed for high-resolution synthetic aperture
radar (SAR) images. First, the original image is partitioned into overlapping sub-image blocks,
in which the sub-image blocks that do not cover riverways are regarded as background. Sub-image
blocks covering riverways are then filtered using the iterative adaptive speckle reduction anisotropic
diffusion (SRAD) that introduces the relative signal-to-noise ratio (RSNR). The filtered images
are segmented quickly by the Sauvola algorithm, and the false riverway fragments are removed
by the area and aspect ratio of the connected component in the segmentation results. Using the
minimum convex hull of each riverway segment as the connection object, the seeds are automatically
determined by the difference between adjacent pyramid layers, and the sub-image block riverway
extraction result is used as the bottom layer. The discontinuity connection between river segments
is achieved by multi-layer region growth. Finally, the processed sub-image blocks are stitched to
get the riverway extraction results for the entire image. To verify the applicability and usefulness
of the proposed approach, high-resolution SAR imagery obtained by the Gaofen-3 (GF-3) satellite
was used in the assessment. The qualitative and quantitative evaluations of the experimental results
show that the proposed method can effectively and completely extract complex urban riverways from
high-resolution SAR images.

Keywords: synthetic aperture radar (SAR); urban riverway; filtering; segmentation; image pyramid;
discontinuity connection

1. Introduction

As an important carrier of urban water resources, the urban riverway is a type of ground object
formed by natural and anthropogenic factors and affects various important functions, including urban
ecological landscapes, flood control, and the regulation of heat island effects [1]. In recent years, the use
of remote sensing satellite images to extract urban riverways quickly and accurately has significantly
improved the rational utilization, macro-monitoring, real-time planning, and future protection of
urban water resources.

In remote sensing, the water body’s spectral feature serves as the primary indicator in the
identification and extraction of the riverway [2]. In the visible waveband, the water body has less
light absorption and higher reflectivity [3]. However, physical and chemical characteristics of different
water body segments may cause measurement variations, thereby increasing the difficulty of water
body extraction. As the wavelength increases, the reflectivity of the water body decreases; when the
wavelength exceeds 0.75 µm, it almost becomes an absorber. The wavelength used for Synthetic
Aperture Radar (SAR) imaging is usually at centimeter-level, which is much larger than the wavelength.
As a result, the water body behaves like a region with lower overall brightness in the SAR image [4].

Remote Sens. 2020, 12, 4014; doi:10.3390/rs12244014 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs12244014
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/24/4014?type=check_update&version=3


Remote Sens. 2020, 12, 4014 2 of 23

As an active microwave sensor, SAR has pronounced advantages over optical sensors, providing
wider coverage in all weather conditions [5]. SAR images have become the main data source for water
body extraction.

Few studies have been conducted on SAR image urban riverway extraction, usually part of
larger research delineating water bodies [6]. SAR-based water body extraction methods based on SAR
image mainly include texture analysis, data fusion, and threshold-based segmentation. The texture
analysis method uses local binary patterns and a gray-level co-occurrence matrix to describe the texture
features of water bodies [7,8]. This method is a classical approach for water body extraction, but many
calculations and uneven texture features in water bodies reduce its accuracy and applicability. In the
data fusion method, water body extraction is achieved mainly through the fusion of optical images,
thematic maps, digital elevation models, and other information [9–11]. Due to the introduction of
varying data types, this approach has large random errors and can sometimes be impractical and
unfeasible due to difficulties in obtaining fusion data. For the threshold-based segmentation method,
the threshold used for delineating water features is obtained through the water body’s spectral features
in the SAR image. Due to its simplicity and efficiency, this approach has been widely used in water
body extraction studies. For example, in [12–16], histograms, Otsu, maximum entropy, and clustering
methods have been used to select the threshold for water body extraction. However, due to the
inherent speckle noise in SAR images, the results yielded many false extractions. Some postprocessing
methods are used to eliminate false extractions. However, if these false extractions are connected to
real water bodies, the postprocessing methods would be invalid, seriously reducing the extraction
accuracy. The most simple and effective way to solve this problem is to filter the SAR image in advance.
For this purpose, filters, such as Lee, Frost, Kuan, and speckle reduction anisotropic diffusion (SRAD)
in [17–20], can be used prior to the water body extraction.

Compared with lakes, reservoirs, wetlands, and other water bodies, urban riverways in
high-resolution SAR images have meandering geometries and are usually accompanied by natural
obstacles (such as tree shadows) and human-made infrastructure (such as bridges and dams), appearing
in the image as curved riverway segments with certain discontinuities [21]. The urban riverway spans
over a large image region, while the ratio of the riverway object to the background is very small, resulting
in the whole image being extracted with a larger scale and more complex background. These properties
of urban riverways in high-resolution SAR images make the above methods unsuitable for extraction.
To quickly and effectively extract riverways from large-scale urban SAR images, an extraction
method based on blocking segmentation and discontinuity connection is proposed. The method first
partitions the original image into a collection of overlapping sub-image blocks and extracts riverway
segments in sub-image blocks by iterative adaptive SRAD and the Sauvola local threshold algorithm.
The discontinuity between the riverway segments is then automatically connected, and the extraction
results of each sub-image block are stitched to obtain the final extraction result.

The main methodological improvements and contributions of this paper are as follows.
(1) The original image is partitioned into sub-image blocks with a shared boundary region.

These sub-image blocks are then classified into two categories according to whether they cover the
riverway. As not all sub-image blocks cover the riverway, two schemes can be implemented on the
classified sub-image blocks: the sub-image blocks that do not cover the riverway can be processed as
background, while the sub-image blocks that cover the riverway are the processing units to be extracted.
By introducing image blocking and a classification processing mechanism, the limited computing
resources can be concentrated on specific regions of interest, which can improve the efficiency of
riverway extraction. This can also effectively reduce background information not relevant in riverway
extraction, thereby improving accuracy. Due to the shared boundary region of adjacent sub-image
blocks, the riverway segment occupying these blocks has a buffer that can be better stitched during
segment extraction.

(2) For the sub-image blocks covering the riverway, the iterative adaptive SRAD that introduces
RSNR is used for filtering as a preprocessing step. The riverway segments are quickly extracted by
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the Sauvola algorithm [22], and the false riverway fragments are removed by the area and aspect
ratio of connected components. The filtering procedure can greatly reduce the effect of speckle noise
in SAR images during segmentation. The introduction of the RSNR quantitative index in SRAD to
control the number of filtering iterations in different sub-image blocks can reduce artificially specified
errors. Using the Sauvola algorithm in segmentation, the filtered image can overcome the uneven
brightness of the image. Likewise, the use of morphological features of riverways in postprocessing
the segmentation results can effectively improve the extraction accuracy.

(3) For each extracted sub-image block, the minimum convex hull in each riverway segment is
calculated to form the search sub-image block with a convex hull as the connection object used as
the bottom stratum of the multi-layer pyramid [23]. The seeds between the riverway segments in
the pyramid’s top layer are located by the search strategy. The seeds are then grown by the growth
strategy, and the growth results are mapped in the next layer. The process of seed location and growth
is repeated layer by layer until the bottom layer realizes the automatic connection of the discontinuities.
By taking the minimum convex hull that envelops each riverway segment as the connection object,
the meandering riverway can be taken as a whole to avoid a riverway being connected at the meanders.
By constructing pyramids for multi-layer region growth, the discontinuity between riverway segments
can be connected automatically.

The rest of this paper is organized as follows. Section 2 gives a detailed description of the
high-resolution SAR image urban riverway extraction process. In Section 3, the experimental results
are shown. Finally, a short conclusion is given in Section 4.

2. Algorithm Description

Let I = {Ii, j, (i, j) ∈ Ω} be a SAR intensity image defined on its spatial domain Ω = {(i, j): i = 1, . . . ,
M, j = 1, . . . , N}, where (i, j) denotes the pixel lattice position, Ii, j ∈ {0, . . . , 255} is the intensity at (i, j),
and M and N are the numbers of rows and columns of I, respectively.

The proposed urban riverway extraction method consists of five parts: (1) image block partition
and classification, (2) SRAD filtering preprocessing, (3) riverway segments extraction, (4) discontinuity
connection, and (5) output of extraction result. The framework of this method is shown in Figure 1.
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Figure 1. Framework of urban riverway extraction method.



Remote Sens. 2020, 12, 4014 4 of 23

2.1. Overlapping Block Partition and Classification

The original image is first partitioned into a collection of non-overlapping, fully covering image
blocks. The image blocks are then extended to adjacent blocks along the X- and Y-axes of the image
space with overlapping degrees (v0 and h0) to obtain a set of sub-image blocks. The overlapping block
partition process can be expressed as

I =


I1,1 · · · I1,N

...
. . .

...
IM,1 · · · IM,N

 =


B1,1 · · · B1,v
...

. . .
...

Bh,1 · · · Bh,v

→


B′1,1 · · · B′1,v
...

. . .
...

B′h,1 · · · B′h,v

 (1)

where B = {Bl, l = 1, . . . , h × v} and B’ = {B’l, l = 1, . . . , h × v} represent the partitioned non-overlapping
and overlapping image block collections, l is the index of the image block, and v and h are the number
of image blocks along the X- and Y-axes.

v = bN/Vc, h = bM/Hc (2)

where b·c is the down rounding operator, and V and H are the sizes of the non-overlapping block set
along the X- and Y-axes.

The sub-image blocks in B’ can be classified into blocks covering riverways and blocks not covering
riverways by visual interpretation. Suppose that the number of sub-image blocks B’l1 covering riverway
and B’l2 not covering riverway in B’ is n1 and n2, where l1 ∈ {1, . . . , n1}, l2 ∈ {1, . . . , n2}. For B’l2 ,
which is processed as background, the result is denoted as Jl2 = {Ji, j, (i, j) ∈ Ωl2 }, where Ji, j = 0 means
background, and Ωl2 is the spatial domain corresponding to B’l2 .

2.2. SRAD Filtering Preprocessing

For B’l1 , the spatial domain is denoted as Ωl1 , l1 ∈ {1, . . . , n1}. Taking Ii, j, (i, j) ∈ Ωl1 , as input,
SRAD uses the following update function for the iterative filtering,

It
i, j = It−1

i, j +
ζ

4ξ2

 ct−1
i+1, j(I

t−1
i+1, j − It−1

i, j ) + ct−1
i, j (It−1

i−1, j − It−1
i, j )

+ct−1
i, j+1(I

t−1
i, j+1 − It−1

i, j ) + ct−1
i, j (It−1

i, j−1 − It−1
i, j )

 (3)

where ξ and ξ are time and spatial steps, respectively. The parameter ct−1
i, j is the diffusion coefficient at

(i, j) for the (t−1)-th iteration and is expressed as

ct−1
i, j = c

q
 1

It−1
i, j

∇It−1
i, j ,

1
It−1
i, j

∇
2It−1

i, j


 (4)

where 5 and 52 represent the gradient and Laplacian operator, respectively, and c(q) is defined as

c(q) =
1

1 +
[
q2

i, j − q2
0(ζ)

]
/
[
q2

0(ζ)(1 + q2
0(ζ))

] (5)

where qi, j is the instantaneous diffusion coefficient, which can be calculated by the equation

qi, j =

√√√√√√ (1/2)
(∣∣∣∇Ii, j

∣∣∣/Ii, j
)2
− (1/42)

(
∇2Ii, j/Ii, j

)2[
1 + (1/4)

(
∇2Ii, j/Ii, j

)]2 (6)

The smoothing scale function, q0(ξ), can be approximated by

q0(ζ) ≈ q0 exp(−ρζ) (7)

where ρ is the speckle reduction exponential, and 0 < q0 ≤ 1 is the initial diffusion coefficient.
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In order to adaptively control the number of filtering iteration, RSNR is introduced as a termination
condition, defined as

PSNRt = 10 log

∑
(i, j)∈Ωl1

(
It
i, j

)2

∑
(i, j)∈Ωl1

(
It
i, j − It−1

i, j

)2 (8)

where It
i, j and It−1

i, j are the results of the t− and (t−1)-th filtering of I at (i, j), respectively.
When the filtering iteration satisfies the Equation (9), the iteration is terminated, and the

corresponding filtered image Fl1 = {Fi, j, (i, j) ∈ Ωl1 } is obtained, where Fi, j = It
i, j.

|PSNR(t)
− PSNR(t−1)

|/PSNR(t−1)
≤ ε (9)

where ε is the preselected threshold, which is generally adopted as ε ≥ 0.01.

2.3. Extraction of Riverway Segments

Considering the spectral features of the riverway and the uneven brightness of the filtered image,
the Sauvola algorithm is used to directly binarize the filtered image. The false riverway fragments are
removed to realize the extraction of riverway segments.

In the optimized Sauvola algorithm, the integral image of Fl1 is used to quickly obtain the average
pixel intensity µi, j and the standard deviation σi, j in a w × w window centered on (i, j). To calculate the
threshold Ti, j at (i, j), the following equation is used,

Ti, j = µi, j ·

[
1 + κ

( σi, j

128
− 1

)]
(10)

where (i, j) ∈ Ωl1 , κ ∈ [0.2, 0.5] is the empirical adjustable parameter. To facilitate the subsequent
processing, the Ti, j is used to binarize Fl1 :

Ri, j =

{
1, Ii, j ≤ Ti, j
0, Ii, j > Ti, j

(11)

where Ri, j = 0 means background, and Ri, j = 1 means riverway, Rl1 = {Ri, j, (i, j) ∈ Ωl1 }.
The connected component search is performed on the obtained Rl1 , and the false riverway

fragments are removed by setting the area and aspect ratio thresholds of the connected component:

(Az > Ta)∩ (Lz/Wz > Tr) (12)

where z is the index of the connected component and also serves as the riverway segment index,
z ∈ {1, . . . , Z}; Z is the total number of connected components in Rl1 ; Ta is the area threshold; and Tr is
the aspect ratio threshold. If Equation (12) is satisfied, the z-th connected component is considered as
a true riverway segment. After traversing all connected components, the number of true riverway
segments is denoted as Z’, and the extraction result is R’l1 = {R’i, j, (i, j) ∈ Ωl1 }, where R’i, j ∈ {0, 1},
R’i, j = 1 means riverway, R’i, j = 0 means background.

2.4. Discontinuity Connection between Riverway Segments

As other objects often overshadow the upper parts of urban riverways, a certain distance
discontinuity is generated between the extracted riverway segments. In order to obtain complete
riverway information, it is necessary to automatically connect the discontinuities between
riverway segments.

2.4.1. Construction of the Convex Hull

To better correspond to the complex shapes of urban riverways, the minimum convex hull for
each riverway segment is first calculated and regarded as the connecting object.
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Take a riverway segment and its nine edges (E0, E1, . . . , E8) as example. E0, the point with the
smallest Y-coordinate value, is taken as the reference point. The other points E1–E8 are connected to E0

and sorted according to their angles with the X-coordinate, as shown in Figure 2a. The coordinates of
three adjacent edge points form a third-order square matrix, where the determinant can be calculated.
For example, given E0(x0, y0), E1(x1, y1), and E2(x2, y2), the determinant of the square matrix formed by
these points can be calculated as

P =

∣∣∣∣∣∣∣∣∣
x0 y0 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣∣∣∣ = (x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0) (13)

where | · | is the determinant operator. If P < 0, then E1 is determined as a convex hull point. As shown
in Figure 2, all the edge points are processed (the green lines indicate the intermediate process, and the
red lines are determined convex hull borders) to obtain the convex hull of the riverway segment.
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Using this method to process the R’l1 , the results are denoted as Pl1 = {Pl1 (z), z = 1, . . . , Z’},
where l1 ∈ {1, . . . , n1}, Pl1 (z) is the convex hull of the z-th riverway segment in R’l1 .

2.4.2. Pyramid Representation of Convex Hull Image

Taking Pl1 as input, a Gaussian Pyramid (GP) is constructed by Gaussian smoothing and
sub-sampling Pl1 .

Gk = (↓ S)[Hr ⊗Gk−1]

G0 = Pl
(14)

where Gk is the k-th layer of GP; k ∈ {1, . . . , K}, K is the total number of layers; Hr is the 2-D Gaussian
low-pass filter for reducing resolution; ⊗ is the convolution operation; and S is the step size, such that
(↓S)[·] means downsampling with step size S.
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The Connection Pyramid (CP) is constructed by upsampling the Gk and superimposing it with
the Gk-1, k ∈ {1, . . . , K}. When k = K,

G′k = He ⊗ (↑ S)[Gk]

Ck−1 = Gk−1 + G′k
(15)

When k < K,
G′k = He ⊗ (↑ S)[Ck]

Ck−1 = Gk−1 + G′k
G0 = Pc

(16)

where Ck represents the k-th layer of CP; C′k is the extension of Ck to match the size of Gk-1, He is the
2-D Gaussian high-pass filter for resolution expansion, and (↑S)[·] means upsampling with step size S.

2.4.3. Multi-Layer Region Growth

The resolution difference of adjacent GP layers is used to automatically determine the seeds of
each CP layer. The discontinuity connection is realized by combining the region growth results of
seeds in each CP layer.

(a) Automatic location of seeds

For any layer Ck of CP, three kinds of pixel intensity values can be obtained based on its construction
process. For Ck(i, j) = 0, Gk(i, j) = C’k+1(i, j) = 0, such that k- and (k+1)-th layers are both background
at (i, j). For Ck(i, j) = 2, Gk(i, j) = C’k+1(i, j) = 1, such that k- and (k+1)-th layers are both riverway
at (i, j). For Ck(i, j) = 1, Gk(i, j) = 0 and C’k+1(i, j) =1, indicating that the position (i, j) may belong
to the discontinuity between riverway segments. Therefore, the search strategy for the seeds in
Ck, k ∈ {1, . . . , K} is to select the points with Ck(i, j) = 1 as the seeds.

(b) Growth range of seeds

With the increase of k, the growth range of seeds should be gradually reduced, and the maximum
growth range of the k-th layer can be expressed as

Rk = SK−k+1 (17)

where S is the sampling step size for constructing GP.

(c) Growth strategy of seeds

For any seed in Ck, k ∈ {1, . . . , K}, the seed can grow in four directions along in eight angles with
its position as the center, as shown in Figure 3. The four directions are horizontal (1↔5), right diagonal
(2↔6), vertical (3↔7), and left diagonal (4↔8). The seed’s growth strategy is to expand along each
growth angle from seed until the pixel with intensity value 2 is found in its maximum growth range
and there is no pixel with intensity 0 on the growth path. On each growth angle, the length of the
growth path in pixels is denoted as ro

k, where o ∈ {1, . . . , 8} is the growth angle index.

(d) Riverway segment connection

If the growth results in any of the four directions meet the discontinuity condition, the seeds are
connected to the riverway segment. Taking the horizontal direction as example, when the length of the
growth path r1

k + r5
k ≤ Rk, the seed can be determined to belong to the discontinuity between riverway

segments. The connection process is employed to change the seed into a riverway segment, such that
Ck(i, j) = 1→ Ck(i, j) = 2.

(e) Termination of seed growth connection

The seeds are grown and connected according to the conditions in (b), (c), and (d). As all seeds
determined in (a) are traversed, the growth connection ends.
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Starting from CK, the determined seeds are used for region growth, and the growth results are
passed to the next layer to connect the discontinuities, layer by layer. When k = 1, C0 is obtained,
which is the connection result of Pl1 . For the final riverway extraction image Jl1 = C0 − Pl1 + R’l1 = {Ji, j,
(i, j) ∈ Ωl1}, where Ji, j ∈ {0, 1}, Ji, j = 1 means riverway, and Ji, j = 0 means background. If there is a little
background noise inside the riverway extracted in Jl1 , the connected component method of Section 2.3
can be used to optimize it.
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Figure 3. Schematic diagram of search directions and radius for seeds with S = 2, k = 1.

2.5. Riverway Extraction Result Output

In order to obtain the output image in the riverway extraction, the resulting sub-image blocks
have to be stitched. Considering the accuracy and computational efficiency, the output operation can
be simply regarded as the inverse process of image-overlap partitioning.

First, for the riverway extraction results of each sub-image block, the overlapping degrees of h0

and v0 pixels are removed along the X- and Y-axes of the image space. The non-overlapping riverway
extraction results are then stitched to form the output image. The process of riverway extraction can be
expressed as 

J1,1 · · · J1,v
...

. . .
...

Jh,1 · · · Jh,v

→


J′1,1 · · · J′1,v
...

. . .
...

J′h,1 · · · J′h,v

 =


J1,1 · · · J1,N
...

. . .
...

JM,1 · · · JM,N

 = J (18)

where Jl and J’l are the l-th overlapping and non-overlapping image blocks, respectively,
and l ∈ {1, . . . , h × v}, J = {Ji, j, (i, j) ∈Ω} is the final riverway extraction output image, where Ji, j ∈ {0, 1},
Ji, j = 1 means riverway and Ji, j = 0 means background.

3. Experiment and Analysis

For this study, a personal computer with Intel (R) Core (TM) CPU 32G, Windows 10 32-bit
professional operating system, and MATLAB R2018b was used in the experiments. The experimental
results were then evaluated quantitatively and quantitatively.

3.1. Data

The GaoFen-3 (GF-3) satellite is China’s first C-band multi-polarization SAR satellite with a
1-m resolution. It was launched on 10 August 2016 and can receive and transmit fully polarized
electromagnetic waves with 12 imaging modes, such as Spotlight (SL), Fine Strip (FS), Ultra Fine Strip
(UFS), and Standard Strip (SS).

As a case study, a partial region of a GF3-UFS intensity image was selected, which was taken
in Beijing, China in September 2017, with a size of 2800 × 4000 pixels and a 3-m spatial resolution.
Figure 4 shows the original image of the study area, which contains objects, such as riverways, roads,
buildings, and bridges that cross the riverway and connect to the road. Compared with other objects,
the riverway shows a lower gray value and has a meandering shape.
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3.2. Experiment and Results

Taking the partition parameters of Figure 4 (i.e., V = 890, H = 675, v0 = h0 = 5), Figure 4 is
partitioned into 16 sub-image blocks, denoted as B’1,1–B’4,4, as shown in Figure 5. According to
whether there is riverway cover, the partitioned sub-image blocks can be classified as B’l1 = {B’1,1,
B’1,2, B’1,3, B’1,4, B’2,3, B’2,4, B’3,2, B’3,3, B’3,4, B’4,1, B’4,2} and B’l2 = {B’2,1, B’2,2, B’3,1, B’4,3, B’4,4} by
visual interpretation. As the sub-image blocks in B’l2 were regarded as background (i.e., blocks were
converted into binary images with all pixel intensity values of 0), the results are not shown here.
Three sub-image blocks—B’1,3, B’1,4, and B’3,4 in B’l1 —with different riverway morphology were
selected to display the results of each processing step.

The parameters of SRAD for each sub-image block in B’l1 were set as ξ = 0.5, ξ = 1, ρ = 0.1,
and q0 = 0.5. The filtering results of the selected three sub-image blocks are shown in Figure 6a1–c1.
The speckle noise was effectively filtered out, and the water and land boundaries had been well
preserved. Figure 6a2–c2 are the results of segmenting the filtered outputs using the Sauvola algorithm,
where w = 50 and κ = 0.3. From the segmentation results, there were some false riverway fragments.
The false riverway fragments can be removed by taking the thresholds Ta = 400 and Tr = 1.5 of
the connected components to obtain the extraction results of the riverway segments, as shown in
Figure 6a3–c3.

As shown by the extraction results of the riverway segments in Figure 6a3–c3, there were
discontinuities between the riverway segments. Some riverway segments showed branching and
annular distribution (see green ellipses in Figure 6b3), which can interfere with the connection of
discontinuities. To accommodate the complex riverway morphology, each extracted riverway segment
is tightly enveloped with a minimum convex hull, as shown in Figure 7a1–c1. As shown in the figures,
the convex hull can effectively take the annular riverway segments as a whole.
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Figure 7. Results and evaluation. (a1)–(c1) Constructed convex hull. (a2)–(c2) Riverway extraction
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The connection for each riverway segment was achieved by combining each layer of the growth
results (S = 3, K = 5), as shown in Figure 7a2–c2.

As shown in Figure 7b2, the construction of a convex hull can avoid the internal connection of
annular regions (see green ellipses). For discontinuities caused by dense scattering points near the
riverway (see yellow ellipse in Figure 7c2), the number of seeds located was limited due to the linearity
of the convex hull border, resulting in insufficient connection.

For the qualitative evaluation of the extraction results, the extracted riverway was represented as
red and superimposed on the original image, as shown in Figure 7a3–c3. The superposition results
show that the riverway was completely extracted, and the boundary of the extraction result agrees
well with real riverway boundaries.

For the quantitative evaluation of the object regions, the Sorensen–Dice and Jaccard similarity
metrics are used [24,25]. The Sorensen–Dice similarity evaluates the extraction quality based on all
pixels inside the riverway regions, which is computed as

dice
(
J, Jg

)
=

2
∣∣∣J∩ Jg

∣∣∣
|J|+

∣∣∣Jg

∣∣∣ (19)

where Jg is the corresponding ground truth of J, | · | denotes the number of elements in the set,
dice(J, Jg) ∈ [0, 1], the higher the value, the better the extraction result. The Jaccard similarity has a
relation with the Sorensen–Dice similarity as follows,

jaccard
(
J, Jg

)
=

dice
(
J, Jg

)
2− dice

(
J, Jg

) (20)

where jaccard(J, Jg) ∈ [0, 1]; the higher the value, the better the extraction result.
For the quantitative evaluation of the object boundaries, the assessment criteria proposed by

Modava et al. [26] was used. Hand-drawn riverway boundary lines were used as standard data, and the
evaluation region with a 4-pixel radius was established as the center. The cumulative percentage of the
extracted riverway boundary falling into the evaluation region with different radius was calculated
using the formula
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Aλ =

4∑
λ=0

∣∣∣bufλ ∩ bor
∣∣∣

|bor|
× 100% (21)

where λ is the index of the evaluation region radius, bufλ is the evaluation region with radius λ,
bor is the riverway boundary obtained from the experiment when λ = 0, buf is the standard riverway
boundary line, and Aλ is the cumulative percentage of overlap within λ. The accuracy evaluation
results are presented in Table 1.

Table 1. Boundary-based riverway extraction accuracy (%).

Sub-Image Block dice jaccard
Radius of the Evaluation Region

Overlap 1 Pixel 2 Pixels 3 Pixels 4 Pixels

B’1,3 96.93 94.04 45.28 74.26 94.63 98.37 99.34
B’1,4 95.46 91.31 43.96 73.99 92.11 94.00 96.55
B’3,4 94.86 90.22 40.51 71.57 91.06 93.81 94.72

As shown in the table, the evaluation values of each sub-image block for Sorensen–Dice and
Jaccard similarity metrics are more than 90%, indicating that the proposed method has good regional
accuracy. For the boundary accuracy, about 43% of the boundary lines extracted by each sub-image
block are accurately located on the manually drawn boundary lines. When the radius of the evaluation
region reached 2 pixels, the locational accuracy of the riverway boundaries increased to more than
90%, indicating high boundary accuracy achieved by the proposed method.

The processing results of each sub-image block are stitched according to the defined stitching
line to obtain the riverway extraction result for the entire image, which is represented as red and
superimposed on the original image, as shown in Figure 8a. In addition, compared with the 1-D Otsu
method of the work in [12], the 2-D Otsu method of the work in [13], and the FCM method of the work
in [16], the results are shown in Figure 8c–d. For objective comparison, each method uses the filtering
preprocessing and connected component postprocessing measures of the proposed method.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 27 
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From the superimposed images of the extraction results of each method, it can be seen that in the
1-D Otsu method of the work in [12], there are many mis-extractions connected to the real riverway.
This is because Otsu is a global threshold method, and the optimal threshold determined by Otsu in
large-scale images with complex background is not suitable for some local regions. The 2-D Otsu method
in [13] considers the texture information of the pixel neighborhood, which improves the extraction
accuracy. The FCM method in [16] considers the neighborhood information of pixels and the class
fuzziness of pixels, and its extraction is better than 1-D and 2-D Otsu methods. The proposed method
can make full use of the local information of the image because of the sub-image blocks processing
strategy, so that there is almost no mis-extraction in the result, and because of the discontinuity
connection measures, the riverway segments are connected together. This is of great significance for
subsequent processing such as hydrological analysis and riverway planning.

The quantitative evaluation of each method is shown in Table 2. It can be seen from the table
that the proposed method gives the highest Sorensen dice and Jaccard scores, reaching 93.97% and
88.63%, respectively, indicating that it has good regional extraction accuracy. With the increase of the
evaluation radius, the boundary accuracy advantage of the proposed method is more obvious.

Table 2. Comparison of riverway extraction accuracy of each method (%).

Method dice jaccard
Radius of the Evaluation Region

Overlap 1 Pixel 2 Pixels 3 Pixels 4 Pixels

Proposed method 93.97 88.63 44.65 72.07 94.23 97.82 98.69
1-D Otsu in [12] 72.52 56.89 32.47 58.27 72.60 75.26 76.65
2-D Otsu in [13] 84.47 73.12 37.51 63.47 77.78 81.01 81.89

FCM in [16] 87.08 77.12 39.85 65.41 80.13 83.28 83. 96

4. Discussion

In order to verify the feasibility and efficiency of the proposed method, the performance of image
block processing strategy and sub-image block filtering was analyzed and evaluated.

4.1. Block Processing Strategy

The SRAD filter preprocessing was used as an example to determine the usefulness of the
image blocking processing strategy proposed in this paper. The necessity and advantage of boundary
overlap are illustrated by the stitching results of adjacent sub-image blocks. The extraction processing
of all sub-image blocks is used to observe the impact of the operation of classifying sub-image
blocks as covered or uncovered riverways through visual interpretation on the final river channel
extraction results.

The goal of SRAD is to adjust the intensity value of any pixel using Equation (3) in order to
minimize image noise. For the computational complexity of SRAD, the c(q) at (i ± 1, j ± 1) needs to be
calculated when smoothing points (i, j). From Equation (4), the process involves square operation,
which means that the computational complexity of SRAD filtering (Figure 4) in each iteration would
not be less than (2 ×M × N)2. The image was processed using the proposed blocking strategy, and the
study area was partitioned into 16 sub-image blocks (see Figure 5). The computational complexity of
the SRAD filter was less than 16(2 ×M/4 × N/4)2, as the sub-image blocks that do not cover riverways
are only used as background and not for filtering. The results were then graphed and compared using
the number of pixels as abscissa and the computational complexity as ordinate. As shown in Figure 9,
the number of calculations can be significantly reduced using the proposed blocking procedure.

For the filtering effect, the whole image was taken as the input, and the same parameters were
adopted. As shown in the filtering result in Figure 10, the speckle noise in the homogeneous region of
the filtered image has been smoothed, while some riverway boundaries became blurred due to some
strong speckle noises in the image. If these strong noises are filtered out during global processing,
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the weak noise region must be oversmoothed. When the image is partitioned, the background in each
sub-image block becomes relatively simple, and the noise intensity is relatively consistent, effectively
alleviating the problem.

Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 27 

 

Table 2. Comparison of riverway extraction accuracy of each method (%). 

Method dice jaccard 
Radius of the Evaluation Region 

Overlap 1 pixel 2 pixels 3 pixels 4 pixels 
Proposed method 93.97 88.63 44.65 72.07 94.23 97.82 98.69 
1-D Otsu in [12] 72.52 56.89 32.47 58.27 72.60 75.26 76.65 
2-D Otsu in [13] 84.47 73.12 37.51 63.47 77.78 81.01 81.89 

FCM in [16] 87.08 77.12 39.85 65.41 80.13 83.28 83. 96 

4. Discussion 

In order to verify the feasibility and efficiency of the proposed method, the performance of 
image block processing strategy and sub-image block filtering was analyzed and evaluated. 

4.1. Block Processing Strategy 

The SRAD filter preprocessing was used as an example to determine the usefulness of the 
image blocking processing strategy proposed in this paper. The necessity and advantage of 
boundary overlap are illustrated by the stitching results of adjacent sub-image blocks. The 
extraction processing of all sub-image blocks is used to observe the impact of the operation of 
classifying sub-image blocks as covered or uncovered riverways through visual interpretation on 
the final river channel extraction results. 

The goal of SRAD is to adjust the intensity value of any pixel using Equation (3) in order to 
minimize image noise. For the computational complexity of SRAD, the c(q) at (i ± 1, j ± 1) needs to 
be calculated when smoothing points (i, j). From Equation (4), the process involves square operation, 
which means that the computational complexity of SRAD filtering (Figure 4) in each iteration 
would not be less than (2 × M × N)2. The image was processed using the proposed blocking strategy, 
and the study area was partitioned into 16 sub-image blocks (see Figure 5). The computational 
complexity of the SRAD filter was less than 16(2 × M/4 × N/4)2, as the sub-image blocks that do not 
cover riverways are only used as background and not for filtering. The results were then graphed 
and compared using the number of pixels as abscissa and the computational complexity as ordinate. 
As shown in Figure 9, the number of calculations can be significantly reduced using the proposed 
blocking procedure. 

 
Figure 9. Computational complexity of speckle reduction anisotropic diffusion (SRAD) before and 
after blocking. 

For the filtering effect, the whole image was taken as the input, and the same parameters were 
adopted. As shown in the filtering result in Figure 10, the speckle noise in the homogeneous region 

 
Figure 9. Computational complexity of speckle reduction anisotropic diffusion (SRAD) before and
after blocking.

Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 27 

 

of the filtered image has been smoothed, while some riverway boundaries became blurred due to 
some strong speckle noises in the image. If these strong noises are filtered out during global 
processing, the weak noise region must be oversmoothed. When the image is partitioned, the 
background in each sub-image block becomes relatively simple, and the noise intensity is relatively 
consistent, effectively alleviating the problem. 

 

 

Figure 10. SRAD filtering result of the entire image. 

For the boundary effect of block partition, it is due to image degradation that occurs at the 
boundary of the block when the sub-image blocks are processed, which makes the objects 
occupying adjacent sub-image blocks appear dislocation or even discontinuous in the stitching 
result. Therefore, this paper adopts the sub-image block overlap partition strategy. The adjacent 
sub-image blocks (B1,2 and B1,3) in the non-overlapping partition and the adjacent sub-image blocks 
(B’1,2 and B’1,3) in the corresponding overlapping partition are selected as an example, as shown in 
Figure 11(a1)–(d1), where B’1,2 and B’1,3 share a region of 10 pixels wide at the adjacent boundary 
relative to B1,2 and B1,3. After SRAD filtering, riverway segments extraction and discontinuity 
connection, the extraction results are stitched, as shown in Figure 11(a2),(b2), and the stitched 
boundary parts are marked by a red rectangle box. To make it clearer, enlarge the red rectangle as 
shown in Figure 11(a3),(b3). 

It can be seen from the comparison that Figure 11(a3) has dislocation at the stitching line and 
the connection is not smooth. Figure 11(b3) can discard the boundary degradation part through the 
shared region between B’1,2 and B’1,3 during stitching, so that the object can naturally transition at 
the stitching line. 

 Figure 10. SRAD filtering result of the entire image.

For the boundary effect of block partition, it is due to image degradation that occurs at the
boundary of the block when the sub-image blocks are processed, which makes the objects occupying
adjacent sub-image blocks appear dislocation or even discontinuous in the stitching result. Therefore,
this paper adopts the sub-image block overlap partition strategy. The adjacent sub-image blocks
(B1,2 and B1,3) in the non-overlapping partition and the adjacent sub-image blocks (B’1,2 and B’1,3)
in the corresponding overlapping partition are selected as an example, as shown in Figure 11a1–d1,
where B’1,2 and B’1,3 share a region of 10 pixels wide at the adjacent boundary relative to B1,2 and
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B1,3. After SRAD filtering, riverway segments extraction and discontinuity connection, the extraction
results are stitched, as shown in Figure 11a2,b2, and the stitched boundary parts are marked by a red
rectangle box. To make it clearer, enlarge the red rectangle as shown in Figure 11a3,b3.Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 27 
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Figure 11. Example of stitching non-overlapping and overlapping sub-image block extraction results.
(a1)–(d1) Original sub-image blocks. (a2)–(b2) Stitching of extraction results of non-overlapping and
overlapping partition. (a3)–(b3) Comparison of partial enlargement near the stitching line.

It can be seen from the comparison that Figure 11a3 has dislocation at the stitching line and
the connection is not smooth. Figure 11b3 can discard the boundary degradation part through the
shared region between B’1,2 and B’1,3 during stitching, so that the object can naturally transition at the
stitching line.

For the overlap degree v0 and h0, selecting a larger value can ensure smooth connection, but it will
increase the amount of calculation. As the sub-image block extraction result is a binary image, it will
not involve the color difference of different categories, so we select an overlap of 5 to 10 pixels that can
meet the stitching requirements. The overlap degree can also be adjusted adaptively according to the
size of the block, such as setting it to 5% of the block size.

The impact of the step of classifying the sub-image blocks by visual interpretation on the final result
is verified by processing all sub-image blocks. According to the previous classification, each sub-image
block in the set B’l2 = {B’2,1, B’2,2, B’3,1, B’4,3, B’4,4} is processed by the extraction procedure of this
paper, and the results are shown in Figure 12a1–e1. As can be seen from Figure 12a1–e1, there are
regions identified as riverways in each sub-image block. This is because the extraction is based on
the regions with low overall brightness and continuous distribution, while there are always some
regions with relatively low brightness in the sub-image blocks. It can be seen from the comparison
with the original image in Figure 4 that these mis-extractions are low brightness object regions in the
sub-image blocks, such as asphalt road, shadow, urban artificial lake, sewage pool and so on. All the
extraction results are stitched together, as shown in Figure 12a2. It can be seen from the figure that these
mis-extractions are not connected to the real riverway, while those originally interrupted riverway
segments are connected together after the treatment of the discontinuity connection measures proposed
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in this paper. In the last step of this method, the connected component processing of Figure 12a2 can
remove the mis-extractions, and the result is shown in Figure 12b2.
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By processing all the sub-image blocks, it can be found that classifying the sub-image blocks
in advance can reduce the amount of unnecessary calculations. When human judgment is wrong,
these sub-image blocks that do not cover the riverway only increase the amount of calculations,
but have no effect on the accuracy of the final extraction results. This is mainly due to the natural
characteristic of riverway connectivity and the operation measure of discontinuity connection proposed
in this paper, so that the mis-extracted regions can be removed in the final treatment.

4.2. Sub-Image Block Filtering

To illustrate the advantages of the proposed sub-image block filtering, Lee, Kuan, and Frost
filtering methods were used as comparisons, and all methods use the iterative criteria used in this
paper. The filtering results are shown in Figure 13.

Comparing Figure 13 with Figure 6a1–c1, the comparative analysis shows the Lee filtering approach
yielded poor results. Lee filtering is a model-based method, where the static noise assumption does
not often meet the actual situation. Compared with the Lee method, Kuan and Frost use adaptive local
statistical features to consider the nonuniformity of the image. Their results show much better removal
of speckle noise, but many stray points still remain. The adaptive SRAD proposed in this paper can
fully smoothen the internal noise of the region and keep the edge information of the water–land
junction, which yields a more accurate extraction of riverways.

For the quantitative evaluation of the filtering results, two indexes—the Equivalent Numbers of
Looks (ENL) and the Contrast Noise Ratio (CNR)—were selected. ENL is an index that measures
regional smoothness. A 128 × 128 pixels background region was selected as ROI1 (red rectangular
in Figure 13), and four 60 × 60 pixels object regions were used as ROI2–ROI5 (blue rectangular in
Figure 13) to calculate the average value of the ENL:

ENL = (1/5)
5∑

I=1

µ2
i /σ2

i (22)
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where µi and σi are the mean and standard deviation of the i-th ROI, respectively. Larger ENL values
mean that the image is smoothed well. CNR, which measures image contrast by dividing the intensity
difference between the selected object and the background regions by the sum of standard deviations,
can be calculated as

CNR = 1/5
5∑

i=2

[
10 log

(∣∣∣µi − µ1
∣∣∣/ √

σ2
i + σ2

1

)]
(23)

The larger the value of CNR, the stronger the separability between the object and the background
region, which is more conducive for riverway extraction. The summary of the evaluation results is
presented in Table 3.Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 27 
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Table 3. Comparison between Equivalent Numbers of Looks (ENL) and Contrast Noise Ratio (CNR)
evaluation of different filter results.

Image Index Lee Kuan Frost SRAD

B’1,3
ENL 9.76 10.45 11.20 12.51
CNR 16.94 17.82 17.35 18.55

B’1,4
ENL 5.33 7.07 8.76 8.89
CNR 8.91 11.02 11.27 11.74

B’3,4
ENL 7.38 7.95 7.81 8.41
CNR 12.79 13.56 13.87 15.19

As shown in the table, SRAD has larger ENL and CNR values, which verifies the feasibility and
advantages of selecting SRAD for filtering sub-image blocks.

4.3. Discontinuity Connection

In view of the complex shape and discontinuity of the urban riverway, the minimum convex
hull and multi-layer region growth processing mechanism is designed to automatically connect the
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discontinuities between riverway segments. Although this mechanism can achieve good connection
results, it also has limitations.

First, the minimum convex hull processing mechanism requires a postprocessing to perfect the
result. For safety and beautification considerations, some bridges, dams, and other human-made
infrastructures are provided with guardrails, lamp posts, drainage, etc. on the surface boundaries,
causing them to appear as incompletely homogeneous regions on the image. Due to the heterogeneity
of these infrastructures at the boundary, the two ends of the extracted riverway segment may not
be straight. The minimum convex hull processing mechanism will fill the concave part of the cross
section, resulting in these concave parts will be retained after discontinuity connection. Take B’4,1 as
an example to illustrate the limitation of the convex hull processing mechanism, as shown in Figure 14.Remote Sens. 2020, 12, x FOR PEER REVIEW 22 of 27 
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Figure 14. Example of the limitation of the minimum convex hull. (a) Original image. (b) Extracted
riverway segments. (c) Constructed convex hulls. (d) Regions of growth. (e) Riverway with discontinuity
connection. (f) Optimization of riverway extraction.

It can be inferred from the red box in Figure 14a that the small areas with high brightness on both
sides of the bridge should be guardrails and lamp posts. This makes the cross section of riverway
segment extracted in Figure 14b uneven, while the convex hull in Figure 14c fills these concave parts.
Figure 14d is the result region of growth using multi-layer region growth with convex hull as the
connecting object. By superimposing Figure 14d over Figure 14b, as shown in Figure 14e, it can be seen
that these concave parts are retained. For this reason, this paper again uses the connected component
method in Section 3.2 to remove these concave parts, as shown in Figure 14f.

Second, the parameters of multi-layer region growth cannot be adjusted adaptively. Due to the
difference of the distance between the river segments in each sub-image block, when the number of
layers of the pyramid is small, some wider discontinuities cannot be fully connected. To reduce the
debugging of the layer number setting and adapt to all sub-image blocks, a larger layer number is set
in this paper. Two sub-image blocks—B’1,1 and B’1,2—with different size discontinuities are selected as
an example to illustrate the limitations of parameter adjustment, as shown in Figure 15.
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From the comparison in Figure 15, it can be seen that because the discontinuity width of B’1,1

is small, when the 3-layer search is set, the discontinuity connection can be completed, while the
discontinuity of B’1,2 is only partially connected. B’1,2 can complete the discontinuity connection when
the 5-layer search is set, while B’1,1 has stopped the connection.

In order to reduce the dependence of layer number setting, the morphological dilation and
Fast-R-CNN are used to estimate the boundary of discontinuities, so as to adjust the number of layers
of each sub-image block adaptively. However, at present, only the detection of similar discontinuity
objects in the image is realized, and its accuracy and robustness need to be improved.

4.4. Feasibility and Robustness Analysis

To verify the feasibility and robustness of the proposed method, about 50 SAR urban riverway
images obtained from the GF-3 satellites are tested in this section. Limited by the layout of the article,
four images with different types of urban riverways are selected for display and analysis. The strip
imaging modes of these images are UFS, FSII, FSI, and UFS, with sizes of 1100 × 1800, 3000 × 1950,
1400 × 1000, and 1550 × 2950 pixels, respectively, as shown in Figure 16a–d.

From the selected images, it can be seen that the urban riverways have complex geometric
shapes such as transverse, longitudinal and crisscross, and so on due to the joint action of nature
and human-made, and the span range is large, which makes the background more complex and
increases the difficulty of accurate extraction of riverway. To this end, this paper partitions each image
into overlapping sub-image blocks. The partitioning strategy can artificially specify the size of or the
number of sub-image blocks. For example, in Figure 16a–d, the numbers of sub-image blocks are
specified as 6, 12, 8, and 15, respectively; h0 = v0 = 5; and the partition results are displayed as red
rectangular boxes in the figures. It can be seen from the partition that some sub-image blocks do
not cover riverway and can be directly processed as the background, while the background of the
sub-image blocks covering the riverway is relatively simple, which is beneficial to the extraction of
the riverway. Each image is processed by the proposed method, and the riverway extraction result is
represented as red and superimposed on the original image, as shown in Figure 17.
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Figure 16. SAR test images covering urban riverways. (a) 1100 × 1800; (b) 3000 × 1950; (c) 1400 × 1000,
and (d) 1550 × 2950 pixels.

From the superposition of the results, it can be seen that the riverway extracted from each test
image has good visual accuracy in terms of completeness and boundary positioning. The quantitative
evaluation of each image is shown in Table 4.

Table 4. Quantitative evaluation of riverway extraction results of each image (%)

Image dice jaccard
Radius of the Evaluation Region

Overlap 1 Pixel 2 Pixels 3 Pixels 4 Pixels

Figure 15a 92.45 85.96 45.51 79.43 84.23 91.89 92.59
Figure 15b 93.84 88.39 45.23 80.74 86.37 92.74 93.25
Figure 15c 90.89 83.30 43.78 78.26 83.64 91.27 92.10
Figure 15d 95.04 90.55 46.03 82.72 87.46 94.28 94.89
Average: 93.06 87.05 45.14 80.29 85.42 92.55 93.21
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Figure 17. Riverway extraction results and its qualitative evaluation. (a) 1100 × 1800; (b) 3000 × 1950;
(c) 1400 × 1000, and (d) 1550 × 2950 pixels.

As can be seen from the table, the average Sorensen–Dice and Jaccard scores of images are
93.06% and 87.05%, respectively, and the boundary accuracy has reached 85% on average when the
radius is 2 pixels. Based on the qualitative and quantitative evaluation of the above extraction results,
the feasibility and robustness of the proposed method are verified.

5. Conclusions

In this paper, a method of urban riverway extraction from high-resolution SAR images is proposed.
According to the distribution characteristics of urban riverways, this method adopts the sub-image
block extraction processing strategy. Sub-image blocks that do not cover riverways are treated as
background. For those that do cover riverways, the designed extraction method first uses an iterative
adaptive SRAD and optimized Sauvola local threshold algorithm to quickly obtain the riverway
segments in sub-image blocks. The minimum convex hull of each riverway segment is then taken as
the connection object, and the discontinuity connection is realized by multi-layer region growth.
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The qualitative and quantitative evaluations of the riverway extraction results show the
effectiveness of the proposed method. However, for different sub-image blocks, some operations in the
extraction method would have to be adjusted and selected manually, reducing the automated nature of
the extraction method. For future research, the adaptive adjustment of the extraction parameters for
each sub-image block need to be studied further to achieve automatic extraction of urban riverways
from large-scale high-resolution SAR images.
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