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Abstract: The escape probability of Solar-induced chlorophyll fluorescence (SIF) can be remotely
estimated using reflectance measurements based on spectral invariants theory. This can then be
used to correct the effects of canopy structure on canopy-leaving SIF. However, the feasibility of
these estimation methods is untested in heterogeneous vegetation such as the discontinuous forest
canopy layer under evaluation here. In this study, the Discrete Anisotropic Radiative Transfer
(DART) model is used to simulate canopy-leaving SIF, canopy total emitted SIF, canopy interceptance,
and the fraction of absorbed photosynthetically active radiation (fAPAR) in order to evaluate
the estimation methods of SIF escape probability in discontinuous forest canopies. Our simulation
results show that the normalized difference vegetation index (NDVI) can be used to partly eliminate
the effects of background reflectance on the estimation of SIF escape probability in most cases, but fails
to produce accurate estimations if the background is partly or totally covered by vegetation. We also
found that SIF escape probabilities estimated at a high solar zenith angle have better estimation
accuracy than those estimated at a lower solar zenith angle. Our results show that additional errors
will be introduced to the estimation of SIF escape probability with the use of satellite products,
especially when the product of leaf area index (LAI) and clumping index (CI) was underestimated.
In other results, fAPAR has comparable estimation accuracy of SIF escape probability when compared
to canopy interceptance. Additionally, fAPAR for the entire canopy has better estimation accuracy
of SIF escape probability than fPAR for leaf only in sparse forest canopies. These results help us to
better understand the current estimation results of SIF escape probability based on spectral invariants
theory, and to improve its estimation accuracy in discontinuous forest canopies.

Keywords: SIF; spectral invariants theory; discontinuous forest canopy; DART; 3-D radiative budget;
total emitted SIF

1. Introduction

Solar-induced chlorophyll fluorescence (SIF) is emitted from within the photosynthetic apparatus
of all higher plants and is a good indicator of carbon assimilation and plant physiological status [1,2].
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Hence, SIF has been used to characterize the spatiotemporal dynamics of gross primary productivity
(GPP), and strong correlations have been found between satellite-derived SIF and landscape-scale GPP
across different biomes [3–8].

Many research studies have reported a strong linear relationship between TOC (Top of
Canopy) SIF and ecosystem-scale GPP over different biomes [9]. However, whether or not
a universal linear relationship exists across biomes at ecosystem-scale is still an open question [6,10].
Usually, GPP is calculated as the difference between NEE (Net Ecosystem Exchange) and ER (Ecosystem
Respiration) [11], while the satellite-observed TOC SIF is calculated based on the directional canopy
spectrum [12–14]. TOC SIF is only a part of the total emitted SIF of vegetation and is influenced by
canopy structure and solar-viewing geometry. These factors weaken the relationship between SIF and
GPP. For this reason, the total emitted SIF of vegetation (SIF emission from all leaves within the canopy)
is more directly related to GPP than TOC SIF [13,14].

Canopy radiative transfer models (RTMs) offer an easy and direct way to estimate the total
emitted SIF through model inversion. This process amounts to the compensation of the observed
TOC SIF for the structure-dependent multiple scattering and re-absorption events that occur from
the leaves to sensor. Today, several SIF models have already been developed that are capable of this,
including the one-dimensional (1-D) SIF RTM, such as the Soil-Canopy Observation of Photochemistry
and Energy (SCOPE) balance model [15] and three-dimensional (3-D) SIF RTM, such as the FluorWPS
model [16], the FluorFLIGHT model [17], and the Discrete Anisotropic Radiative Transfer (DART)
model [18]. However, a lot of input parameters from leaf to canopy are needed for these models to
carry out the inversion process, and these input parameters are not always available on a global scale.

Spectral invariants theory (SIT) was developed and introduced to remote sensing to simplify
the radiative transfer processes among leaf, shoot, and canopy [19–21]. When compared with
RTMs, the radiation scattering processes within canopies can be characterized just by leaf albedo
and three spectral invariant parameters: canopy interceptance (io), directional escape probability,
and recollision probability under the assumption that soil background has no (or negligible) effects on
canopy reflectance. Recently, a semi-empirical approach has been developed to estimate SIF escape
probability by Yang et al. [22]. Here canopy SIF scattering at far-red band is estimated using TOC
pure vegetation reflectance, in addition to two other parameters, canopy interceptance and leaf albedo.
These parameters are combined to estimate the SIF escape probability based on SIT ( f esc

yang = NIRv/io·ωλ,
NIRv is defined as the vegetation canopy reflectance by vegetation, io is the canopy interceptance,
and ωλ is the leaf albedo at the specific wavelength), which is finally used to derive total emitted SIF
from observed TOC SIF.

As stated above, canopy interceptance (io) is required for the estimation of SIF escape probability
and not commonly available on a global scale. To address this problem, Liu et al. [23] proposed
a method to estimate the SIF escape probability using random forest with only TOC SIF and reflectance
data. As this estimation method is based on an empirical approach, a more generalizable physical
based approach is also sought. Zeng et al. [12] proposed an extended method for the estimation of
SIF escape probability based on the concept of Yang et al. [22] (i.e., f esc

yang = NIRv/io·ωλ), fraction of
absorbed photosynthetically active radiation (fAPAR) was used to replace the canopy interceptance for
remote sensing applications in this method. In addition, the normalized difference vegetation index
(NDVI) was used in this study to assess the reflectance of pure vegetation (NIRv ≈NIRT·NDVI) to solve
the “black soil problem” [24]. Zhang et al. [14] proposed to directly derive the canopy interceptance
from remotely sensed data at hand (leaf area index (LAI) and clumping index (CI) satellite products)
using the method of [25] (i.e., i◦ = 1− exp(−G(θ)·LAI·CI/COS(θ))).

However, these estimation methods were developed for homogeneous vegetation which tend to
the theoretical and have been mainly validated using 1-D radiative transfer models. Their performance
for the estimation of SIF escape probability has not yet been tested and evaluated for sparse vegetation
canopies which typify large areas of the boreal forest [26], most such forests are discontinuous
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in structure and contain overstory and understory layers with varying species and phenologies which
depend on factors such as site fertility [27].

In this study, we investigate whether the estimation methods of far-red SIF escape probability
based on SIT holds for discontinuous forest canopies using the model-based assessment strategy.
To achieve this, we used a 3-D RT model, DART, to simulate the TOC SIF and per-leaf emitted SIF
(i.e., total emitted SIF) based on the 3-D radiative budget simulation results. After that, the escape
probability of SIF in the forest area was directly calculated based on the 3-D simulation results.
Subsequently, the performance of estimation methods for escape probability based on SIT was analyzed
under different vegetation conditions, such as different leaf optical properties, canopy structure,
and background optical properties.

2. Materials and Methods

2.1. Spectral Invariants Theory and SIF Escape Probability

The original estimation method (Equation (1)) for SIF escape probability at far-red band based
on SIT was developed by [22]. It combines top of canopy reflectance NIRv, canopy interceptance io,
and leaf single scattering albedo ωλ as

f esc =
NIRv

i◦ ·ωλ
. (1)

In a remote sensing application, NIRv is generally replaced by NIRT or NIRT·NDVI, where NDVI
is used to solve the “black soil problem” [12]. In addition, fAPAR can be used to replace canopy
interceptance io because fAPAR is simpler to estimate. Based on these considerations, we decided
to calculate and evaluate SIF escape probability ( f esc

SIT: fesc based on SIT) using four formulas shown
in Table 1.

Table 1. Four estimation formulas for Solar-induced chlorophyll fluorescence (SIF) escape probabilities
based on spectral invariants theory (SIT) ( f esc

SIT).

fesc
SIT NIRT NIRv ≈ NIRT·NDVI

io
NIRT
i◦ ·ωλ

NIRv

i◦ ·ωλ

fAPAR NIRT
fAPAR·ωλ

NIRv

fAPAR·ωλ

2.2. DART Simulation

2.2.1. Simulation of SIF Escape Probability

The Discrete Anisotropic Radiative Transfer (DART) model is a 3-D RT model [28] that works
with realistic representations of plant architecture described by the foliage distribution, including leaf
clumping at branch and crown levels, along with detailed geometry of stems and branches.
Recently, the leaf fluorescence FLUSPECT model has been integrated into the DART model to simulate
fluorescence from leaf to canopy level [18]. Besides the simulation of spectral total and SIF radiance that
escape the canopy, DART also simulates the 3-D, 2-D, and 1-D spectral radiative budgets of vegetation
scenes per type of scene element (e.g., ground, woody elements, and leaves). It can also simulate
the radiative budget of individual facets (i.e., triangles) that are used to represent scene elements such
as leaves. These radiative budgets are computed at different stages of the radiative transfer modeling:
after direct sun illumination, after atmosphere illumination, and after each subsequent DART iteration.
They include radiation that is intercepted, scattered, absorbed, and emitted (i.e., SIF in the short
waves and thermal emission in the long waves), and also the irradiance and exitance at each face
of each voxel with which the landscape is simulated. Units can be W/m2/µm or percentage of top
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of canopy irradiance. Therefore, DART can compute the light regime and instantaneous incoming
photosynthetically active radiation (PAR) and fAPAR of each leaf element and each voxel and layer of
the canopy.

The spectral SIF escape probability (fesc) was defined as the ratio of canopy-leaving SIF observed
by sensors (SIFobs) to total emitted SIF from whole-canopy (SIFtot) at a given wavelength [12],

f esc
DART =

SIFobs
SIFtot

, (2)

where SIFobs is the TOC SIF exitance. It corresponds to the angular integration of DART TOC SIF
radiance images; more details about the simulation process can be found in [29]. SIFtot is the sum of
all SIF photons emitted by all leaves within the canopy in all directions [12,24]. SIFtot was derived
from the DART 3-D radiative budgets of SIF emitted in all directions for each leaf within the 3-D
vegetation canopy.

2.2.2. Simulation of Canopy Interceptance

Canopy interceptance (io) is defined as the probability that an incoming solar photon interacts
in first-order with leaves (or needles) within the canopy at any wavelength [21]. Because it is equal to
one minus directional gap fraction, it is often derived from the simulation of directional gap fraction
as in the works of [12,22] using the SCOPE model. In DART, io is the “Intercepted” term of the 3-D
and 1-D vegetation radiative budgets at the end of the direct sun illumination stage (i.e., “Illudir”
stage in DART), before the scattering stage. It is equal to 1—“Intercepted” terms of the ground and
trunk/branch radiative budgets of the Illudir stage.

iDART
o =

RBintercepted
lea f (λ)

RBintercepted
lea f (λ) + RBintercepted

ground (λ)
, (3)

where RBintercepted
lea f and RBintercepted

ground are the leaf absorbed irradiance and ground intercepted radiation at
a specific wavelength, respectively.

2.2.3. Simulation of fAPAR

fAPARcanopy was defined as the fraction of absorbed photosynthetically active radiation (APAR)
by the entire canopy (i.e., leaves and wood elements without ground) over the PAR region from 400 nm
to 700 nm [30]. Accordingly, fAPARleaf was defined as the fraction of absorbed photosynthetically
active radiation (APAR) only by leaves. To evaluate the impact of woody elements on the simulation
and estimation of SIF escape probabilities, two types of fAPAR (i.e., fAPARcanopy = fAPARleaf+woody and
fAPARleaf) were used to estimate SIF escape probabilities (Section 3.4).

In DART, fAPARcanopy and fAPARleaf were derived from the radiative budget of facets per type of
scene element (i.e., leaf, wood element, ground).

fAPAR =

∫ 700 nm
400 nm RBabsorbed(λ)dλ∫ 700 nm

400 nm E(λ)dλ
, (4)

where E(λ) is the incident irradiance, and λ is wavelength over the spectral region from 400 to
700 nm, RBabsorbed(λ) is the irradiance absorbed by leaf only (i.e., RBabsorbed

lea f (λ)) or entire canopy (i.e.,

RBabsorbed
canopy (λ) = RBabsorbed

lea f (λ) + RBabsorbed
woody (λ)). In addition, RBabsorbed(λ) was calculated by area-weighted

average as below:

RBabsorbed(λ) =
∑n

i=1

(
RBabsorbed

i ·Selement
i

)
/Selement

canopy , (5)
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where n is the number of leaves in the canopy, RBabsorbed
i and Selement

i are the absorbed irradiance and
area of scene elements of type i (e.g., leaf, woody element), respectively, and Selement

canopy is the sum of areas
of all elements within the canopy.

2.2.4. Simulation Experiment

We conducted a numerical simulation experiment to simulate SIF escape probability using the 3-D
DART model and then using it to evaluate the validity of the remote estimation methods described
in Section 2.1. DART provides a realistic representation of plant architecture [18,29]. Hence, DART
provides a way to simulate and evaluate SIF escape probability in a more realistic vegetation scene
relative to simpler models, especially for sparse forest stands which are found across the boreal
forest [31].

A 3-D Silver birch tree (Betula pendula Roth) reconstructed from Terrestrial laser scanning (TLS)
data, measured in the vicinity of the Station for Measuring Ecosystem-Atmosphere Relations II
(SMEAR II) in southern Finland (24.31478◦ E, 61.84335◦ N), was used to generate a 3-D simulation
scene. We used an option of repetitive scene of the DART model to eliminate boundary effects [29].
The scene horizontal dimension was set to 4 m for default configuration (i.e., fractional vegetation
cover (FVC) = 0.6, see Table 2). By adjusting the scene horizontal dimensions, the fractional vegetation
cover (FVC) was modified from sparse forest (FVC = 0.3) to a dense forest (FVC = 0.8).

Table 2. Main input parameters of the Discrete Anisotropic Radiative Transfer (DART) simulations
with indication of the default configuration.

Parameters Unit Values Default

Leaf optical
properties Chlorophyll content (Cab) µg/cm2 15, 35, 60 35

Canopy structure Fractional vegetation cover
(FVC) [-] 0.3, 0.6, 0.8 0.6

Background
spectral properties

Background reflectance
spectra [-] Three reflectance spectra (see Figure S1: Ref-1,

2, and 3) and a non-reflecting background Ref-2

Solar-view
geometry Solar zenith angle (SZA) [◦] 20–70◦ with a step of 10◦ 30

Due to the computational constraints, four key input parameters of the DART model were
varied to generate the simulation database (see Table 2), including leaf chlorophyll content (Cab),
fractional vegetation cover (FVC), background spectra, and solar zenith angle (SZA). Variable values of
leaf chlorophyll content were used to represent the variation of leaf optical properties. Varying values of
fractional vegetation cover were used to describe the canopy structure of different forest types: 0.3, 0.6,
and 0.8 are referred to as very sparse, little sparse, and dense forest, respectively. Given the two-layer
structure of the forest and its seasonal variation in spectral properties, three typical background spectra
were adapted to represent the change of background spectral properties. In addition, a non-reflecting
background was used to test the ability of SIF escape probability that was estimated using SIT.
Contrary to the DART simulations carried out by previous studies in which the solar zenith angle was
set to a constant value [12,23], the solar zenith angle was varied here from 20◦ to 70◦ with a step of 10◦

to represent the seasonal variation for most of the boreal forest areas. Details about the other default
variables for the DART simulations can be found in [29].

All simulations were performed between 640 and 850 nm at a spectral resolution of 7.5 nm.
Directional and total emitted SIF at 760 nm were used for the simulation and estimation of SIF escape
probability. All canopy reflectance and SIF were retrieved in nadir viewing direction (i.e., view zenith
angle equal to 0) to keep consistent with the default observation mode of current SIF satellite (such as
the OCO-2 satellite). NDVI was derived from the canopy reflectance in the red (650 nm) and
near-infra-red (NIR) (800 nm) bands according to [32]. SIF escape probabilities simulated by the DART
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model ( f esc
DART) were regarded as ‘real’ value, the relative estimation accuracy of SIF escape probabilities

using SIT ( f esc
SIT) were calculated as ( f esc

SIT − f esc
DART)/ f esc

DART.

2.3. Remote Estimation of Canopy Interceptance

In addition to canopy reflectance, canopy interceptance (io) is a crucial parameter for the estimation
of SIF escape probability [22]. Although io is not easily accessed directly from remote sensing
measurements, it can be indirectly estimated from remotely sensed data using equations such that
of [25]:

i◦ = 1− exp(−G(θ)·LAI·CI/COS(θ)), (6)

where G(θ) is the mean value of leaf projection function for direction θ. It is generally fixed to 0.5
for global-scale remote sensing applications [33]. LAI and CI are the leaf area index and clumping
index, respectively. They are directly available from satellite remote sensing products. To explore
the uncertainties of the remote sensing products on the estimation of SIF escape probability, artificial
errors (−50% and +50% constant value error of LAI*CI) were generated and then were used to estimate
SIF escape probability.

2.4. Evalution Process

In Section 3.2, all four estimation formulas in Table 1 were evaluated with ‘real’ values simulated
by the DART model (Section 3.1); in Section 3.3, only NIRv

i◦ ·ωλ
was used to evaluate the usability of remotely

sensed canopy interceptance (io); in Section 3.4, only NIRv
fAPAR·ωλ

was used to evaluate the influence
of woody elements on the estimation of SIF escape probability. The complete evaluation process is
outlined as a flowchart in Figure 1.
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3. Results

3.1. Simulation of ‘Real’ fesc in Discontinuous Forest Canopies

Using the variable input parameters listed in Table 2, TOC SIF and total emitted SIF were simulated
respectively using the DART model. After that, SIF escape probabilities (i.e., ‘real’ f esc) were calculated
according to Equation (2) in Section 2.2.1.

Figure 2 shows the simulated TOC SIF and total emitted SIF, as well as corresponding SIF escape
probabilities. It appears that varying input parameters for a given sun direction greatly impacts
the simulated TOC SIF, total emitted SIF, and corresponding SIF escape probabilities in all simulations.
The variability of canopy structure (i.e., FVC) has a larger impact on TOC SIF (Figure 2a) than total
emitted SIF (Figure 2b), which then induced a large variability of SIF escape probabilities from 0.2 to
0.4 (Figure 2c). Even though leaf chlorophyll content has a considerable impact on TOC SIF and total
emitted SIF, respectively, SIF escape probabilities remain relatively stable if leaf chlorophyll content
varies from 15 to 60 µg/cm2 (Figure 2f). On the other hand, with the increase of the solar zenith angle
from 20◦ to 70◦, TOC SIF and total emitted SIF decrease at most angles, except from 20◦ to 30◦ where
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the total emitted SIF slightly increases in most cases (Figure 2b,e). At the same time, the corresponding
SIF escape probabilities remain relatively stable for all simulations between 30◦ and 70◦ (Figure 2c,f).Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 16 
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Figure 2. DART-simulated Top of Canopy (TOC) SIF (a,d), total emitted SIF (b,e), and corresponding
SIF escape probabilities (c,f). BS means black soil (i.e., non-reflecting background). The label -•-
indicates the default configuration (fractional vegetation cover (FVC) = 0.6, chlorophyll content (Cab)
= 35 µg/cm2, Ref-2). The top row refers to varying canopy structure, and the bottom row refers to
variable leaf and background spectral properties.

3.2. Estimation of fesc and SIFtot Using Simulated Canopy Interceptance and fAPARleaf

io and fAPARleaf were first simulated using methods described in Sections 2.2.2 and 2.2.3, and then
used to estimate SIF escape probabilities using SIT described in Section 2.1. Figure 3 illustrates
the variation of io and fAPARleaf with the increase of FVC, for Cab = 35 µg/cm2, background reflectance
= Ref-2. Both io and fAPARleaf increase with solar zenith angle. It appeared that io is usually higher
than fAPAR for a solar zenith angle larger than 30◦.

Figure 4 shows the relative errors of SIF escape probabilities that are estimated using SIT with
DART-simulated values (i.e., ‘real’ values). It appears that FVC generally has a much larger impact
on the estimation accuracy of SIF escape probabilities than leaf chlorophyll content. For example,
in Figure 4a, varying FVC greatly influences the estimated SIF escape probability with relative errors
up to about 180%. In comparison, also in Figure 4a, the relative errors caused by the variation of leaf
chlorophyll content were no more than 50%. Furthermore, the varying background spectrum has
a considerable impact on the estimation of SIF escape probabilities. With a non-reflecting ground,
the relative errors between estimation and simulation were no more than 10%. As for the effect of
the solar zenith angle, it is clear that the SIF escape probabilities estimated at high solar zenith angles
always have smaller relative errors than those estimated at lower solar zenith angles.
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SIT in the first column (a,c) were estimated using NIRT; while in the second column (b,d) using

NIRv. f esc
SIT in the first row (a,b) were estimated using io; while in the second row (c,d) using fraction

of absorbed photosynthetically active radiation (fAPAR). BS means black soil (i.e., non-reflecting
background). Relative error was calculated as ( f esc

SIT − f esc
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DART.

We compared the SIF escape probabilities estimated using canopy interceptance as input and
those using fAPARleaf as input (i.e., comparison between Figure 4a,c, or Figure 4b,d). No apparent
differences were observed in most cases. For the estimations using high FVC (i.e., FVC equal to 0.8),
however, the estimation accuracy of SIF escape probability using fAPARleaf as input was slightly better
than using canopy interceptance as input.
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We also compared the estimated SIF escape probabilities using NIRT as input and using NIRv as
input that was mentioned in Table 1 (i.e., comparison between Figure 4a,b, or Figure 4c,d). The accuracy
of the SIF escape probability was better when using NIRv than using NIRT. This was especially true
with high FVC (i.e., FVC equal to 0.8) as illustrated by the comparison of the estimation accuracy
between 0% and 50% with NIRv (Figure 4b) compared to the accuracy between 50% and 180% with
NIRT (Figure 4a).

We further calculated total emitted SIF (SIFSIT
tot ) using the estimated SIF escape probabilities ( f esc

SIT)
mentioned above. Here only the results of NIRv

i◦ ·ωλ
were used to estimate SIFSIT

tot (corresponding to the f esc
SIT

in Figure 4b). SIFSIT
tot in Figure 5a was calculated using specific SIF escape probabilities ( f esc

SIT) that were
estimated at varying solar zenith angles from 20◦ to 70◦. While for Figure 5b,c, SIFSIT

tot was calculated
using constant SIF escape probabilities ( f esc

SIT) estimated at a fixed solar zenith angle (i.e., SZA = 70◦ and
SZA = 20◦ for (b) and (c), respectively). In other words, SIF escape probabilities ( f esc

SIT) estimated at SZA
= 70◦ or SZA = 20◦ were used to assess other cases when solar zenith angles change from 20◦ to 70◦.
It is clear that f esc

SIT estimated at high solar zenith angles produces higher accuracy (R2 = 0.95) of SIFSIT
tot

than that estimated at varying solar zenith angles (R2 = 0.85) and low solar zenith angles (R2 = 0.81).
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3.3. Estimation of fesc and SIFtot Using Remotely Sensed Canopy Interceptance

Canopy interceptance (io) was estimated using the method described in Section 2.3 with leaf area
index (LAI) and clumping index (CI), which were then used to estimate SIF escape probability based
on SIT. Figure 6 shows the comparison between estimated and simulated results (i.e., ‘real’ f esc) of SIF
escape probability.

Figure 6a shows the estimated results of SIF escape probability using DART-simulated (i.e., ‘real’)
LAI and CI as input for the estimation of canopy interceptance. We found that the estimation accuracy
of SIF escape probability was markedly improved (maximum relative error less than 30%) when
compared to the estimated results using simulated (i.e., ‘real’) canopy interceptance (maximum relative
error up to 50%, see Figure 4b), except for the cases with a non-reflecting background where the SIF
escape probabilities were generally underestimated.
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Additional errors can be introduced into the estimation of SIF escape probability when remotely
sensed data of LAI and CI were used as input compared to real LAI and CI values. To explore this
impact, artificial errors (−50% and +50% constant value error of LAI*CI) were generated and then were
used to estimate SIF escape probability (Figure 6b,c). Introducing a −50% error of LAI*CI, SIF escape
probabilities were overestimated in most simulations, especially for the cases with high FVC and
background mostly covered by vegetation (Ref-2). We noted that the introduction of a +50% error
on LAI*CI has no apparent impact on the estimation of SIF escape probability, with only a slight
underestimation per simulation.

To further evaluate the influence of remotely sensed canopy interceptance on the estimation of
SIF escape probability, we calculated SIFSIT

tot (Figure 7) using the estimated SIF escape probabilities
(i.e., SIFSIT

tot = SIFobs/ f esc
SIT) mentioned in Figure 6. When compared with the DART-simulated reference

values (SIFDART
tot ), additional errors of LAI*CI reduce the estimation accuracy of SIFSIT

tot (and f esc
SIT)

(R2 reduced from 0.91 to 0.66 and 0.88). Further, underestimated LAI*CI produces a larger influence on
the estimation accuracy (R2 = 0.66) of SIFSIT

tot (and f esc
SIT) than overestimated LAI*CI (R2 = 0.88).
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3.4. Estimation of fesc Using fAPARcanopy and fAPARleaf

SIF escape probabilities were also estimated using two types of fAPAR (i.e., fAPARcanopy =

fAPARleaf+woody and fAPARleaf) whose simulation methods were described in Section 2.2.3. Figure 8
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shows that the values of SIF escape probability estimated using fAPARcanopy as input were smaller
than that using fAPARleaf as input in all simulations. The estimation accuracy of SIF escape probability
was improved only for the case with high FVC (FVC equal to 0.8), and the estimation accuracy was
decreased for other simulation cases.
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4. Discussion

4.1. DART-Based Simulation of fesc in Discontinuous Forest Canopies

Although several 3-D SIF models can simulate canopy-leaving SIF [16–18], SIF escape probability
can be simulated directly only by 3-D models that simulate the SIF emitted per unit area (i.e., per leaf).
This is especially important for sparse 3-D vegetation scenes [12]. Since it simulates the total and SIF 3-D
radiative budgets, we used the DART model (Figure S2) to simulate the total SIF emitted by the canopy
simultaneously with canopy-leaving SIF radiance in a sparse 3-D vegetation scenes (see methods
in Section 2.2 and results in Section 3.1). Furthermore, we also simulated canopy interceptance (io)
and fAPAR for the same 3-D scenes (Figure 3), which enabled the calculation of escape probabilities
using SIT.

Recently, researchers from [34] developed a relatively simple SIF model based on escape and
recollision probability (FluorRTER), which is capable to simulate canopy-leaving and total emitted
SIF in 3-D discontinuous canopies. Compared to the DART model, however, the scenes simulated by
FluorRTER are much simpler. Tree crowns are cylinders, ellipsoids, or conics, and the heterogeneity
within tree crowns is not considered, just like its parent model [35]. This missing complexity is
important, as woody elements influence forest reflectance and SIF [25,29,36,37]. With the simulation of
fAPAR of leaves and woody elements using the DART model, respectively, we evaluated the impact
of woody elements on the simulation and estimation of SIF escape probabilities (see Section 3.4).
Although the fine structure of the simulation scene is well described in DART, the computational cost
of simulating the 3-D radiative budget of very large regions is too large for practical applications.
Then, spatial sampling of 3-D radiative budget should be considered in order to keep reasonable
computer time and memory according to the complexity of canopy. Here, we did not meet such
limitations because we conducted a theoretical analysis of canopy-leaving and total SIF for assessing
the SIF escape probability of a complex but small canopy. It is interesting to note that the very recent
bi-directional Monte Carlo mode of DART, called DART-Lux, decreases computer time and memory of
simulations of bottom and top of the atmosphere SIF radiance images by a hundredfold [38]. This mode
opens new perspectives but must be combined with the standard DART mode because it does not
simulate 3-D radiative budgets. Moreover, DART-based simulation can also be used to evaluate and
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validate other models with simplified canopy structure that are more suitable for global application,
such as the FluorRTER model.

4.2. Influence of Background and Solar Zenith Angle on the Estimation of SIF Escape Probability

We compared the simulation values of SIF escape probability (as ‘real’ value) with the estimated
values using SIT (Figure 4). The estimation accuracy of SIF escape probability is quite high with
a non-reflecting background, both with dense forest (FVC = 0.8) and sparse forest (FVC = 0.3),
which means that SIT can be directly used in the estimation of SIF escape probability for forest
area with a non-reflecting background. However, in the presence of realistic background instead of
the non-reflecting background, the estimation accuracy greatly decreased for each simulation setup,
especially for the sparse scene (FVC = 0.3) and for a vegetation-covered background (Ref-3). This is
because the reflecting background contaminates the NIRv used to estimate the SIF escape probability.
This result agrees with previous studies [12,22] and the theoretical limit (i.e., black soil problem) of
SIT [19,20,39].

Recently, NIRv (NIRv = NIRT × NDVI) was proposed to replace NIRT for the estimation of SIF
escape probability using SIT [12,14], where the use of NDVI is intended to reduce the contamination
of soil reflectance on canopy reflectance. Our results confirmed the feasibility of NIRv for specific
simulation cases where the background was not totally covered by vegetation. However, the estimation
accuracy of SIF escape probability was not improved with the use of NDVI for the simulation case
where the background was mostly covered by vegetation (i.e., Ref-3). Considering the seasonal
variation of understory LAI in sparse forests [31,40], the use of NDVI for the estimation of SIF escape
probability is still questionable in summer when the background is mostly covered by vegetation
(i.e., high understory LAI value).

With regards to the effect of the solar zenith angle on the estimation of SIF escape probability,
Figure 4 shows that the accuracies of SIF escape probability estimated at a high solar zenith angle are
higher than those estimated at a low solar zenith angle in most studied cases. This phenomenon may
be due to the potential link between solar zenith angle and background reflectance. With the solar
zenith angle increasing from 20◦ to 70◦, more incident photons will be absorbed by the tree crown,
and fewer incident photons will be absorbed by the background, which then will weaken the impact
of background reflectance on the estimation of SIF escape probability. The above phenomenon was
further confirmed by Figure 5b where the estimation accuracy of total emitted SIF was clearly improved
when using a constant value of SIF escape probability estimated at 70◦ (R2 increased from 0.85 to
0.95). Conversely, the estimation accuracy of total emitted SIF slightly decreased (R2 decreased from
0.85 to 0.81) when using a constant value of SIF escape probability estimated at 20◦ (Figure 5c). It is
worth noting that these findings were based on the assumption that other input parameters remain
constant when the solar zenith angle changes from 20◦ to 70◦ (i.e., over the season). In reality, it is
not the case, because canopy structure and leaf optical properties change over the season [1,31,41].
Fortunately, Figure 2 shows that the impact of leaf optical properties (represented by Cab) on SIF
escape probability is slight in the far-red region, which agrees with results obtained with the SCOPE
model (Figure 4 in [22]).

4.3. Influence of Remotely Sensed io and fAPAR on the Estimation SIF Escape Probability

In general, remotely sensed canopy interceptance (Figure 6a) led to a relatively accurate SIF
escape probability compared to the simulated canopy interceptance (i.e., ‘real’ value, see Figure 4b).
Interestingly, the use of remotely sensed canopy interceptance slightly improved the estimation
accuracies for configurations with the natural background spectrum. This phenomenon was explained
by the joint influences of canopy interceptance and canopy reflectance on the estimation of SIF escape
probability, which we term the contamination compensation effect. Firstly, SIF escape probability was
generally overestimated by the use of canopy reflectance (NIRv or NIRT), because canopy reflectance
is contaminated by the reflectance of the background (see Figure 4). Then, the use of overestimated
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canopy interceptance (Figure S3a–c) partly reduces the estimation errors caused by the contaminated
canopy reflectance, especially for the sparse forest canopies. On the contrary, for these configurations
with a non-reflecting background spectrum, because there is no more contamination caused by
the background reflectance, the estimation accuracy of SIF escape probability was mostly reduced
(Figure 6a). However, it should be noted that the above analysis was based on the assumption that
G(θ) was fixed to 0.5, as for global-scale remote sensing applications [13,14,25,33], and LAI and CI
were set to simulation values (i.e., ‘real’ value).

The introduction of artificial constant value errors on LAI*CI has a remarkable influence on
the estimation accuracy of SIF escape probability (and total emitted SIF), with a clear overestimate
of SIF escape probabilities if LAI*CI is underestimated (Figure 6b). To better explain this trend,
canopy interceptance was plotted using LAI*CI with corresponding artificial errors (Figure S3a–c).
It demonstrated that an underestimated LAI*CI implies an underestimated canopy interceptance,
which amplifies the overestimation induced by the contaminated canopy reflectance. An overestimated
LAI*CI tends to produce an overestimated canopy interceptance, which is somewhat compensated by
the contaminated canopy reflectance.

The errors of satellite-retrieved LAI and CI products, including theoretical and physical errors, are
inevitable [42]. These will be more significant for forest biomes where the accurate estimation of LAI
remains challenging with an uncertainty relatively higher than for other biomes [43–45]. In a recent
study, Zhang et al. [14] demonstrated that total emitted SIF, estimated using satellite-retrieved LAI
and CI products, was better correlated with GPP for all C3 sites combined, but was less correlated for
forest sites. The above phenomenon could be partly attributed to the high error and uncertainty of
satellite-retrieved LAI and CI products. Our result (see Figure 7) also demonstrated the high uncertainty
of estimation of canopy interceptance in the forest using LAI and CI, especially for underestimated
LAI*CI. Furthermore, G(θ) was fixed to 0.5 for all biomes, which can also be a potential source of
error because it only holds for homogeneous canopy with spherical leaf orientation distribution [25,33].
Overall, the estimation of canopy interceptance, and the SIF escape probability or total emitted SIF,
using satellite-retrieved LAI and CI products is still questionable and needs further investigation.

Owing to the high uncertainty of estimated canopy interceptance using satellite-retrieved LAI
and CI products, Zeng et al. [12] proposed to use fAPAR to approximate canopy interceptance
instead of canopy interceptance. Our simulation results support this approach since it leads to
comparable and even better estimation of SIF escape probability than the method using canopy
interceptance (Figure 3). However, fAPAR for whole canopy (i.e., fAPARcanopy) generally can be
divided into fAPAR for photosynthetic elements (i.e., fAPARleaf) and fAPAR for non-photosynthetic
elements (i.e., fAPARwoody), respectively [46,47]. The impact of fAPARwoody is neglected in most
satellite-retrieved fAPAR products [48]. As a result, the direct use of satellite-retrieved fAPAR
products (mostly fAPARcanopy) to estimate SIF escape probability still needs further investigation [12,49].
Our simulation results illustrated that using fAPARcanopy will induce an underestimation of SIF
escape probability when compared to fAPARleaf (Figure 8). This underestimation can be a potential
advantage for the sparse forest where the SIF escape probabilities are generally overestimated due
to the contamination of background, providing an additional mechanism behind the contamination
compensation effect. Still, more measurement data from stand to global scale are needed to explore
this finding and develop a robust method to separate the various canopy layers.

5. Conclusions

This study evaluated the feasibility of SIF escape probability estimation methods in discontinuous
forest canopies. In general, these estimation methods based on spectral invariants theory have good
accuracy for relatively dense forest canopies. The use of NDVI can partly improve the low estimation
accuracy for sparse forest canopies. However, if the forest background is partly or totally covered by
vegetation, NDVI failed to eliminate the effects of background reflectance on the estimation of SIF
escape probability, because NDVI failed to totally reduce the contamination of background reflectance
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on canopy reflectance. SIF escape probability estimated at a high solar zenith angle will have a higher
accuracy than those estimated at a low solar zenith angle in most studied cases due to the potential link
between solar zenith angle and background reflectance. For global-scale remote sensing applications,
spectral invariant canopy interceptance can be remotely sensed using the current satellite LAI and CI
products. However, additional errors will be introduced with the use of satellite products, especially
when the product of LAI and CI was underestimated. Our simulation results also show that canopy
interceptance can be replaced by fAPAR with a comparable estimation accuracy, and the direct
use of fAPARcanopy may have a potential advantage than fAPARleaf in sparse forest canopies due to
a contamination compensation mechanism. To summarize, our results improved our understanding of
SIF escape probability estimation methods in discontinuous forest canopies. However, future work
is required to evaluate these findings using measurement data. Such work could explore OCO-2 or
TROPOMI SIF retrievals or field observations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/23/3962/s1,
Figure S1: Three background reflectance spectra used for DART simulations (Ref-1: bare soil; Ref-2: soil is partly
covered by vegetation; Ref-3: soil is totally covered by vegetation), Figure S2: DART-simulated radiative budgets
(Intercepted, Scattered, Absorbed, and Emitted radiance) at each layer of the forest crown (a), emitted SIF at each
layer under different simulation settings (b). SIF was simulated at 740 nm. The solar zenith angle was set to
30◦ for all simulations, Figure S3: Simulated canopy interceptance (i.e., first row) and corresponding SIF escape
probabilities (i.e., second row) using ‘real’ LAI*CI, −50% error LAI*CI, and +50% error LAI*CI. (a,d) FVC = 0.8;
(b,e) FVC = 0.6; (c,f) FVC = 0.3.
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