Supplementary Materials for

Characterizing the diurnal evolution of the wintertime boundary layer in urban Beijing, China: Insights from integrated observations from Doppler lidar and a 325-m meteorological tower

Yuanjian Yang¹, Sihui Fan ^{1,2}, Linlin Wang^{1,2*}, Zhiqiu Gao^{1,2}, Yuanjie Zhang¹, Han Zou², Shiguang Miao³, Yubin Li¹, Meng Huang ¹, Steve H.L. Yim^{4,5,6}, Simone Lolli^{7,8}

1 Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing,210044, China

2 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
3 Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100081, China
4 Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China

5 Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China

6Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Hong Kong, China

7 CNR-IMAA, Istituto di Metodologie Ambientali, Tito (PZ), Italy

8 Department of Physics, Kent State University (Florence Campus), 44240 Kent, OH, USA

* Correspondence to: Dr. L. Wang, linlinwang@mail.iap.ac.cn

Figure S1. Height dependence of Ri_b (calculated by Eq.1 with b=100) at 08:00CST (purple line), 10:00CST (orange line), and 20:00CST (black line) on 19 December, 2016.

Figure S2. Hourly variation of simulated PBLH derived by three different PBL parameterization schemes (detail as followings) in Weather Research and Forecast (WRF) model during 16–21, December 2016.

Figure S3. Synoptic weather patterns at 850hPa geopotential height (Data source: NCEP FNL) at 14:00 CST on (a) December 17, 2016 and (b) December 17, 2016. The shadings, blue vectors, and red star indicate the geopotential heights, winds, and Beijing location, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Scheme	Surface layer scheme	Closure order and localization	PBLH definition
Local Mellor- Yamada-Janjic (MYJ) scheme	Monin– Obukhov (Janjic Eta)	1.5 local	$TKE=0.1m^{2}/s^{2}$
the University of Washington moist turbulence (UW) scheme	Revised MM5 Monin– Obukhov	1.5 (1.0) local	Ri _g =0.19 (stable), ~ 0.0 (unstable)

Table S1 Properties of the three different boundary layer parameterization schemes.

SH	Revised MM5	1.0 non-local	$Ri_{b} = 0.25$
	Monin-		(stable), 0.0
	Obukhov		(unstable)

Abbreviations: bulk Richardson number (Ri_b), gradient Richardson number (Ri_g), and turbulent kinetic energy (TKE).