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Abstract: High spatio–temporal resolution remote sensing images are of great significance in
the dynamic monitoring of the Earth’s surface. However, due to cloud contamination and the
hardware limitations of sensors, it is difficult to obtain image sequences with both high spatial and
temporal resolution. Combining coarse resolution images, such as the moderate resolution imaging
spectroradiometer (MODIS), with fine spatial resolution images, such as Landsat or Sentinel-2,
has become a popular means to solve this problem. In this paper, we propose a simple and
efficient enhanced linear regression spatio–temporal fusion method (ELRFM), which uses fine spatial
resolution images acquired at two reference dates to establish a linear regression model for each
pixel and each band between the image reflectance and the acquisition date. The obtained regression
coefficients are used to help allocate the residual error between the real coarse resolution image and
the simulated coarse resolution image upscaled by the high spatial resolution result of the linear
prediction. The developed method consists of four steps: (1) linear regression (LR), (2) residual
calculation, (3) distribution of the residual and (4) singular value correction. The proposed method
was tested in different areas and using different sensors. The results show that, compared to the
spatial and temporal adaptive reflectance fusion model (STARFM) and the flexible spatio–temporal
data fusion (FSDAF) method, the ELRFM performs better in capturing small feature changes at the
fine image scale and has high prediction accuracy. For example, in the red band, the proposed method
has the lowest root mean square error (RMSE) (ELRFM: 0.0123 vs. STARFM: 0.0217 vs. FSDAF:
0.0224 vs. LR: 0.0221). Furthermore, the lightweight algorithm design and calculations based on the
Google Earth Engine make the proposed method computationally less expensive than the STARFM
and FSDAF.
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1. Introduction

With the development of Earth observation technology over the last few decades, a large amount
of time series of satellite images have been accumulated, and the number of freely available satellite
images is growing at fast pace. For example, Landsat data became available at no cost in 2008 [1].
In 2015 and 2017, Sentinel-2A and Sentinel-2B satellites were launched with the data freely available to
everyone without any restrictions [2]. In recent years, the Google Earth Engine (GEE), a planetary-scale
platform with the capability to process massive satellite images, facilitated the application of satellite

Remote Sens. 2020, 12, 3900; doi:10.3390/rs12233900 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-7608-4779
https://orcid.org/0000-0003-0447-8223
https://orcid.org/0000-0002-3280-3858
https://orcid.org/0000-0002-3249-8363
http://dx.doi.org/10.3390/rs12233900
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/23/3900?type=check_update&version=2


Remote Sens. 2020, 12, 3900 2 of 16

image time series to large-scale land and water monitoring [3–8]. Therefore, time series-based research
has developed considerably in the last decade [9–12].

However, currently available satellite sensors still cannot meet the demands of the rapid changes
monitoring in time series studies [13–15], such as high-frequency mapping of the landslides and
floods [16], monitoring the phenological changes of crops [17,18], monitoring coal fires [19], and other
emergency events. Time series satellite images with the high spatial and temporal resolution are
required for these studies, which are difficult to obtain. Because the trade-off between swath width
and pixel resolution, it is difficult for existing satellites to acquire images with both high temporal
and spatial resolution [20,21]. Although companies, such as Planet, have announced that they can
capture high spatial resolution images of the Earth once a day, these images are mainly commercially
available, restricting their use only to a limited number of applications. On the other hand, in some
regions, particularly in cloudy tropical regions, the availability of cloud-free optical remote sensing
data is greatly reduced due to cloud contamination [22].

The spatio–temporal fusion of multi-source satellite images is an effective method to solve the
above problems [23–25]. It mixes fine spatial resolution data (e.g., Landsat or Sentinel-2) with coarse
spatial resolution data, such as the moderate resolution imaging spectroradiometer (MODIS) or
Sentinel-3, to improve the temporal resolution of the fine spatial resolution data. Different from
other image synthesis techniques, including the intermediate value synthesis method and time series
interpolation method, the spatio–temporal fusion method exploits the value of images with a low spatial
but high temporal resolution to improve the temporal resolution of the time series. The spatio–temporal
fusion method is of great significance for the research applications focusing on the monitoring of the
dynamics of Earth’s land-use changes.

Various spatio–temporal fusion algorithms have been developed in the past ten years, including
fusion methods for surface reflectance [26,27], specific parameters or indices, such as the normalized
difference vegetation index (NDVI) [28], leaf area index (LAI) [29] and land surface temperature
(LST) [30]. Spatio–temporal fusion algorithms can be divided into machine learning-based methods [31],
unmixing-based methods [32], and the spatial and temporal adaptive reflectance fusion model
(STARFM) [33] or its improved methods [32,34]. The methods based on machine learning learn
the relationship between the coarse–fine image pairs to guide the predictions of fine images from
coarse images [35]. This method predicts reflectance changes in a unified framework, and it is
difficult to distinguish the land cover changes [27]. The unmixing-based methods typically require a
land-use/land-cover (LULC) image with fine spatial resolution as assistance and assume that (1) no
LULC change occurs during the study period, and (2) the proportions of land cover types are constant
for low spatial resolution images on different dates. The STARFM, although developed more than ten
years ago, it and its improved algorithms are widely used in current research. They are continuously
being adapted and improved for different situations, such as the enhanced STARFM (ESTARFM),
which increases STARFM’s accuracy in heterogeneous areas [36]. The STARFM and STARFM-derived
methods assume no LULC change occurs between the reference and prediction time [33,37], and are
proposed base on the two hypotheses: (1) the same type of ground objects in a neighborhood have
the same reflectance, and (2) the types of ground objects in the front- and back-phase images are
invariable. Therefore, they can predict reflectance changes, such as changes in vegetation phenology,
as these changes are closely related to similar pixels selected from the reference image. The flexible
spatio–temporal data fusion (FSDAF) method [26] is based on spectral unmixing and thin-plate spline
interpolation, which can maintain more spatial details compared to STARFM. However, these existing
methods are not effective in predicting sudden spectral changes, as the changes cannot be predicted
from similar pixels at the reference time. These changes include flooding, seasonal water level
fluctuations, and other land cover transitions. Moreover, most of the existing fusion algorithms are
relatively complex in design and low in calculation efficiency that does not scale that well on GEE, which
hinders their applications [38]. In 2018, a fusion algorithm called Fit-FC [39] was developed based on
linear regression (LR) for nearly daily Sentinel-2 image creation and presented satisfactory accuracy.
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It includes three steps of regression model fitting, spatial filtering, and residual compensation. Several
studies showed that, compared with the STARFM and ESTARFM methods, the linear interpolation
model (LIM) can produce higher prediction accuracy sometimes [40].

Here, we propose a new simple enhanced linear regression spatio–temporal fusion method
(ELRFM). This method uses two pairs of fine–coarse (i.e., Landsat-MODIS) spatial resolution images
acquired at the reference dates and one coarse MODIS image acquired at a prediction date to generate a
fine resolution image at the prediction date (Figure 1). The developed method builds a linear regression
model, using two fine resolution images acquired at the reference dates, between the image reflectance
and the acquisition date for each pixel and each band. The regression coefficients are used to assign
residuals which are calculated from the coarse images to compensate for the result of the first linear
prediction to further improve the prediction accuracy. The proposed method can be used to predict fine
spatial resolution images in heterogeneous areas with abrupt LULC changes and has good adaptability
on different remote sensing data sources (e.g., Sentinel-2 and Sentinel-3).
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Figure 1. Schema of the enhanced linear regression spatio–temporal fusion method (ELRFM). F1/C1,
F2/C2, and F3/C3 indicate fine/coarse resolution images at t1, t2, and t3, respectively.

2. Materials and Methods

2.1. Data

Landsat 8 top-of-atmosphere (TOA) images archived in GEE platform with a 30 m spatial resolution
acquired on 4 June (t1), 6 July (t2), and 7 August (t3) 2019 from operational land imager (OLI) sensor,
with Worldwide Reference System (WRS)-2 path/row of 44/34 were used. The study area is a subset of
one TOA scene covering an area of 28.8 km × 28.8 km (960 × 960 pixels) (Figure 2). The LULC of the
areas marked by yellow rectangles in Figure 2 changes during the study period, which can help to
evaluate the performance of the ELRFM. The coarse spatial resolution images used are the simulated
MODIS aggregated from Landsat.

2.2. Methods

2.2.1. Data Pre-Processing and Environment

The strategy of conducting tests on simulated images was adopted, that is, the high spatial
resolution images used the original Landsat 8 images, while the coarse spatial resolution images used
the simulated MODIS images, which were aggregated from Landsat. This strategy is adopted by
many spatio–temporal fusion studies [26,41,42] to avoid the interference caused by the radiometric
or geometric inconsistencies between two sensors. The application of the proposed method to real
scenarios and the evaluation of the effects of the above are beyond the scope of this research, but they
will be tested and discussed in our future research.
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Figure 2. Color composited images (RGB: near-infrared, red, green) of the study area. (a–c) are the
Landsat 8 images acquired on 4 June, 6 July and 7 August 2019, respectively (960 × 960 pixels with a
30 m resolution), and (d–f) are moderate resolution imaging spectroradiometer (MODIS) images (480 m
resolution) aggregated from (a–c).

The simulated MODIS images were obtained by upscaling the Landsat images to a spatial
resolution of 480 m. The Landsat 8 images acquired on 4 June and 7 August 2019 and the MODIS
image simulated from the Landsat 8 image acquired on 6 July 2019 were used as the input for the
fusion algorithm. The task is to predict the high spatial resolution Landsat-like image on 6 July 2019.
The original Landsat 8 image acquired on 6 July 2019 is later adopted for evaluation (i.e., not used as
the algorithm input).

The proposed method runs on the GEE platform and is written with JavaScript.

2.2.2. Enhanced Linear Regression Spatio-Temporal Fusion Method

The ELRFM is based on two assumptions: (1) if there is no change in the reflectance of the ground
object between the two Landsat reference images, the reflectance of the object in the predicted image
does not change either (that is, the prediction error mainly comes from the areas where the reflectance
changes greatly between the two reference images); and (2) the reflectance relationship between the
Landsat image and the MODIS image at different times is consistent.

The method is divided into four steps (Figure 3). In step 1 (linear regression), the first predicted
image at the prediction time (t2) and the change slope (i.e., the regression coefficient) are generated
using linear regression of the two fine resolution images at t1 and t3. Step 2 (residual calculation)
calculates the residual from the coarse image at t2 and the first predicted image. Step 3 (distribution of
the residual) is the key to the method in which the residual is allocated based on the change slope and
assumption 1 to produce the final predicted image. The singular values in the final predicted image
are further revised in step 4 (singular value correction).
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Step 1. Linear Regression

With the two reference fine resolution images, the linear regression model is built for the correlation
between the observed reflectance and the acquisition date for each band and each pixel to obtain the
regression coefficient and the first linear predicted image at the prediction date. Here, the image of
the first linear prediction is also the result of the linear interpolation prediction. The calculation is
performed per-pixel without a contextual neighborhood evaluation. This enables it to provide the best
capability to model local spatial variability.

The calculation of the first linear predicted image is shown in Equation (1):

Flp(xi, yi, b) = F1(xi, yi, b) + a(xi, yi, b) × ∆t (1)

where Flp(xi, yi, b) is the reflectance of pixel (xi, yi) in band b on the first predicted image at t2, F1(xi, yi, b)
is the reflectance of pixel (xi, yi) in band b on the fine resolution at t1, a(xi, yi, b) is the calculated change
slope from the linear regression model based on the two fine reference resolution images and ∆t is the
time interval from reference time t1 to prediction time t2.

Step 2. Residual Calculation

The predicted coarse resolution image Cp at time t2 is obtained by upscaling the first predicted
fine resolution image Flp(xi, yi, b), as shown in Equation (2). That is, the reflectance of each coarse pixel
is the average of all the fine pixels under its corresponding position. The residual R(x, y, b) is computed
as the reflectance difference between the simulated and predicted MODIS image at t2 (Equation (3)).

Cp(x, y, b) =

∑n
i=1 Flp(xi, yi, b)

n
(2)
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R(x, y, b) = C2(x, y, b) −Cp(x, y, b) (3)

where Cp(x, y, b) and C2(x, y, b) are the predicted and simulated coarse MODIS reflectance of the pixel
(x, y) in band b at t2, respectively, and n is the number of Landsat pixels used to aggregate to one
MODIS pixel (here n is 256). R(x, y, b) is the residual of the pixel (x, y) in band b at t2.

Step 3. Distribution of the Residual

According to assumption 1, regions with a larger surface reflectance change (i.e., regions with a
larger change slope) have higher prediction uncertainty, resulting in a greater residual. This means
that residual compensation should be performed in these areas. For example, a positive residual R
means that the observed surface reflectance is larger than the predicted reflectance. Therefore, the areas
with a positive change slope may need an increment to make the reflectance change faster to offset the
residual, or the areas with a negative change slope may also need to be increased by an increment
to make the reflectance change more slowly to offset the residual. In an extreme case, if the change
slope is 0 in some areas, meaning there is barely any change in the reflectance in these areas during the
study period. Therefore, the linear prediction in these areas is considered to be highly reliable and no
residual distribution will take place in these areas.

In this study, approximate calculations and thresholds are used to identify the Landsat pixels
with great reflectance changes in each MODIS pixel. Considering that the difference between the
positive and negative changes of the surface reflectance is always large, the areas with the largest
positive and negative changes (i.e., the maximum and minimum value of change) of surface reflectance
are identified, respectively. Assume that the residuals that should be allocated to the two areas are
R1(xi, yi, b) and R2(xi, yi, b), respectively, then the calculations are as in Equations (4) and (5):

nR(xi, yi, b) = n1R1(xi, yi, b) + n2R2(xi, yi, b) (4)

R1(xi, yi, b)
R2(xi, yi, b)

=

∑n
i=1 a(xi, yi, b)

∣∣∣
>T/n1∑n

i=1 a(xi, yi, b)
∣∣∣
<−T/n2

(5)

where R(xi, yi, b) is the residual with a 30 m spatial resolution downscaled by R(x, y, b), T is the positive
threshold set as half the absolute value of extremum change slope of the Landsat pixels in one MODIS
pixel, −T is the corresponding negative threshold, n1 and n2 are the numbers of pixels where the slope
is above T and below −T, respectively, and a(xi, yi, b)

∣∣∣
>T and a(xi, yi, b)

∣∣∣
<−T are the change slopes above

T and below −T, respectively.
There may be some independent pixels in the identified areas that need to be compensated for

residuals. A morphological open operation is adopted to remove them. Because the distribution of
residuals is performed on each MODIS pixel, the residuals allocated to one object composed of multiple
MODIS pixels are often uneven, which leads to a patch effect. Therefore, the compensation values of
each connected compensation area are averaged to eliminate the patch effect. This process is shown in
Figure 4.

The final predicted fine resolution image is calculated using Equation (6):

Fp(xi, yi, b) = Flp(xi, yi, b) + R(xi, yi, b) (6)

where Fp(xi, yi, b) is the reflectance of pixel (xi, yi) in band b on the final predicted fine resolution image
at prediction time t2.
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Step 4. Singular Value Correction

Due to the approximate calculation of the residuals and some cases that do not meet the
assumptions, singular values may exist after the residual compensation. This could be partly corrected
by removing the single pixels that appear in the areas that need to be compensated. On the other hand,
we adopted a linear increment during the study period as the extreme value of the compensation.
For the areas that exceed the compensation extreme value in the final prediction results, the linear
prediction results are used as replacements.

2.2.3. Comparison and Evaluation

The results of the proposed method are compared with those of the STARFM [33], FSDAF [26],
and LR methods. The STARFM and FSDAF methods have different adaptability in different scenarios.
With their relatively desirable prediction effect and open source code (code websites, STARFM:
https://www.ars.usda.gov/; FSDAF: https://xiaolinzhu.weebly.com/open-source-code.html), they are
widely used and constantly compared. The LR method here also refers to the linear interpolation
method, which is based on the interpolation or the regression of the fine resolution images at two dates.
The proposed method uses the residual calculated from the coarse resolution images to compensate for
the linear prediction result, which improves the LR prediction results. Hence, the LR method is also
used for comparison.

The performance of the ELRFM was evaluated using a variety of methods, including calculating
the quantitative evaluation indicators, drawing scatter plots between the predicted and observed
image on the sample points, and comparing the average of the predicted reflectance of each method
at the predicted time. Quantitative assessment indicators of the root mean square error (RMSE),
average difference (AD), average absolute difference (AAD), and correlation coefficient r are used.
These indicators are commonly adopted in many spatio–temporal fusion method studies [26,27].
The RMSE and AAD refer to the deviation and average of the absolute error between the predicted
and observed reflectance, respectively. AD is used to evaluate whether the result is overestimated or
underestimated as opposed to the observed reflectance. A positive AD value indicates that the predicted
results are higher than the observed reflectance, while a negative AD value implies the opposite. As the

https://www.ars.usda.gov/
https://xiaolinzhu.weebly.com/open-source-code.html
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proposed method is an improvement on LR, the absolute difference between the predicted and the
observed reflectance of the ELRFM and LR methods is compared on every sample point.

The sample data for evaluation includes 853 points, which are randomly generated from forest
land, bare land, and residential areas manually selected through visual interpretation.

In addition, to test the adaptability of the developed method to different sensors and areas,
the fusion of Sentinel-2 and simulated Sentinel-3 are carried out in the other two regions. The results
are also evaluated by quantitative evaluation and scatter plots.

3. Results

3.1. Comparison

The prediction results of the STARFM, FSDAF, LR and ELRFM are shown in Figure 5.
Two sub-regions of the study area are zoomed-in to show the result differences in detail between the
various methods.
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One sub-region is the area bounded by the red rectangle in Figure 5a. From ݐଵ to ݐଷ, a dark 
object appears. This feature can be identified on the fine resolution Landsat image, but it is too small 
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this change. The linear regression method captures the feature at ݐଶ but with certain reflectance 

Figure 5. Color composited image (RGB: near-infrared, red, green) results from four spatio–temporal
fusion methods: (a) reference image at t2; (b) spatial and temporal adaptive reflectance fusion
model (STARFM); (c) flexible spatio–temporal data fusion method (FSDAF); (d) linear regression (LR);
(e) ELRFM. The images at (f–j) and (k–o) are the corresponding zoomed-in sub-region images bounded
by the red and yellow rectangles in (a), respectively.

One sub-region is the area bounded by the red rectangle in Figure 5a. From t1 to t3, a dark object
appears. This feature can be identified on the fine resolution Landsat image, but it is too small to be
recognized on the coarse resolution MODIS image. In reality, it exists at t2. The different methods
are applied to determine whether the object cloud be predicted at the prediction time. The results
are shown in the middle row of Figure 5. Neither the STARFM nor the FSDAF could capture this
change. The linear regression method captures the feature at t2 but with certain reflectance errors.
The proposed ELRFM enhances the linear regression result and produces an image with a reflectance
closest to the observed image.

The other sub-region is the area enclosed by the yellow rectangle in Figure 5a. Similar to the first
sub-region, a dark object emerges in this area from t1 to t3. This object is distinguishable on the Landsat
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image, while it is only represented by a few pixels on the MODIS image. Unlike the first sub-region,
the object does not exist at t2. The prediction results of the four methods are shown in the bottom row
of Figure 5. The result predicted by the ELRFM is comparable to that of the STARFM and FSDAF,
and they are all close to the original image, while the linear regression performs the worst with the
most errors.

It is worth mentioning that the STARFM and FSDAF use one pair of Landsat-MODIS images for
prediction, which has advantages in regions with less cloud-free data. However, due to the reduction
in effective information, the prediction accuracy is also lowered. Although it is possible to perform
STARFM or FSDAF predictions on two pairs of data separately, the prediction results may show great
differences, which leads to a decrease in the credibility of the comprehensive results. In addition,
the operation time will be doubled when conducting prediction operations on two pairs of data.

By visual inspection, the proposed ELRFM enhances the linear regression prediction results and
presents acceptable prediction results in various situations. Particularly, the ELRFM is able to capture
small changes in ground objects with high prediction accuracy.

3.2. Accuracy Assessment

We calculated the quantitative indicators and drew a scatter plot between the predicted and
observed reflectance for each band of the sample points. The quantitative evaluation results are
shown in Table 1. It shows that the proposed ELRFM has the smallest RMSE and AAD in all bands,
and in the red and near-infrared (NIR) bands, it has the lowest prediction deviation AD. However,
the STARFM and FSDAF have a smaller AD in the green band. The ELRFM also has the highest
correlation coefficient in each band. Overall, our method is comparable to the other three methods.
Quantitative indicators show that the proposed ELRFM has less prediction deviation, and its prediction
result is closer to the original image.

Table 1. Quantitative assessment results of the four data fusion methods. Root mean square error
(RMSE), average difference (AD), average absolute difference (AAD), and correlation coefficient r,
near-infrared (NIR).

Methods Band RMSE AAD AD r

STARFM
Green 0.0123 0.0084 −0.0003 0.9405
Red 0.0217 0.0147 −0.0021 0.9054
NIR 0.0344 0.0176 0.0081 0.8886

FSDAF
Green 0.0128 0.0091 −0.0005 0.9357
Red 0.0224 0.0157 −0.0022 0.8985
NIR 0.0312 0.0177 0.0056 0.9136

LR
Green 0.0127 0.0107 −0.0074 0.9589
Red 0.0221 0.0181 −0.0131 0.9372
NIR 0.0299 0.0145 0.0033 0.9159

ELRFM
Green 0.0112 0.0084 −0.0039 0.9605
Red 0.0123 0.0091 −0.0021 0.9738
NIR 0.0244 0.0131 0.0013 0.9453

The bold numbers indicate the results with the best accuracy.

Scatter plots of the observed and the predicted reflectance from the four methods in different
bands are plotted (Figure 6). It can be found that here STARFM is more accurate than FSDAF with
a higher R2 in red and green bands, while ELRFM is the most accurate of the four methods, and it
exhibits an improvement over the linear regression method.
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The ELRFM was also compared with LR specifically. The absolute difference between the observed
and the predicted reflectance from these two methods in the green, red and NIR bands of the sample
points are plotted with the corresponding histograms attached (Figure 7). The closer the point is to
the origin zero, the smaller the absolute difference between the predicted and observed reflectance
is, which means the greater the accuracy. From Figure 7, it can be seen that the ELRFM has more
points near zero than the LR in the three bands, especially in the green and red bands, which indicates
that the ELRFM performs more accurately than the LR. This conclusion could also be reached from
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the attached histogram, which shows that the ELRFM histograms are positively skewed and the LR
histograms are more flattened and spread out.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 16 
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Figure 7. Distribution of the absolute difference between the observed and predicted reflectance from
the LR and ELRFM in the green (B3), red (B4), and near-infrared (B5) bands.

Figure 8 shows the average of the observed and predicted reflectance from the four fusion methods
in different bands. In the green band, the STARFM and FSDAF are closer to the observed average
reflectance than the ELRFM and LR. In the red band, the ELRFM, STARFM, and FSDAF are similarly
close to the observed reflectance, while LR is farther away. In the NIR band, among the four methods,
the ELRFM is the closest to the observed average reflectance.
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3.3. Further Verification

To investigate whether the proposed ELRFM could also perform well in different areas and using
different sensors, two other test areas were selected. One site (zone 1) is located near Hatton in Adams
County, Washington, United States (Lat/Lng: 46.81/−118.92), which is dominated by cropland and bare
land. The other site (zone 2) is located in a section of Green River, Wyoming (Lat/Lng: 42.06/−110.12),
United States. This area is dominated by water and shrubs. Sentinel-2 (10 m spatial resolution for
green, red and NIR bands) and Sentinel-3 (300 m spatial resolution) data are selected as the fine and
coarse resolution images, respectively, for the fusion experiment. Sentinel-2 used here is the level-1C
orthorectified TOA reflectance data from GEE. Similarly, to avoid the interference caused by the
radiometric or geometric inconsistencies between the two sensors, the simulated Sentinel-3 (also called
Sentinel-3-like) images are aggregated from the Sentinel-2 images. For zone 1, the fine–coarse image
pairs (i.e., Sentinel-2 and simulated Sentinel-3) acquired on 29 May and 3 July 2020, respectively,
and the simulated Sentinel-3 image acquired on 18 June 2020 are used to predict the Sentinel-2-like
image of 18 June 2020. For zone 2, the fine–coarse image pairs acquired on 13 May and 12 July 2019,
respectively, and the Sentinel-3-like image from 12 June 2019 are used to predict the Sentinel-2-like
image of 12 June 2019. The images used in zone 1 and zone 2 are shown in Figures S1 and S2 of the
Supplementary Material.
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The fusion results from different methods are shown in Figure 9. In zone 1, ELRFM achieves a
similar result to that of STARFM and FSDAF methods, while it is superior to detect the feature type
changes in some areas. For example, in the yellow ellipses of the original image, the ELRFM detects
the transition between the crops and the bare land. In zone 2, the ELRFM works better where the water
area changes significantly. For example, in the yellow ellipses shown in the original image, the ELRFM
predicts the water body more accurately than the other methods. The boundaries of the water are
almost within one coarse pixel, which shows that the ELRFM has the advantage of being able to predict
small LULC type changes within one coarse pixel. Moreover, the tests in zone 1 and 2 illustrate that the
ELRFM cloud works well even when the fine resolution and the coarse resolution differ by 30 times.
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predictions of different fusion methods for the other two test areas.

In addition, 599 and 700 sample points are randomly generated in zone 1 and 2, respectively, for
quantitative evaluation and scatter plot drawing. The results are shown in Table S1, Figures S3 and S4
of the Supplementary Materials.

4. Discussion

Unlike the STARFM and FSDAF methods that use similar pixels to predict reflectance, ELRFM
builds a linear model for each pixel. Therefore, it is able to preserve spatial detail. In addition, ELRFM
is more computationally efficient than STARFM and FSDAF, as it is based on the GEE platform and
uses GEE’s cloud computing capability.

The proposed method also has certain limitations. It is not always better than the STARFM
and FSDAF methods at predicting the reflectance. The scatter plots of the observed and predicted
reflectance of zone 1 (see Figure S3) show that the ELRFM is inferior to STARFM and FSDAF, with a
lower R2 (e.g., for the green band, ELRFM vs. STARFM and FSDAF: 0.6526 vs. 0.8044 and 0.7999).
From the quantitative evaluation results of zone 1 (see Table S1), ELRFM only predicts the lowest
RMSE (ELRFM vs. STARFM, FSDAF, and LR: 171.61 vs. 183.75, 172.69 and 282.56) and a higher r (0.96
vs. 0.95, 0.96 and 0.92) in the red band with slight advantages. In the prediction of the green and NIR
bands, the FSDAF has the smallest RMSE. In all three bands, the predicted result from the STARFM has
the smallest AAD. The above evaluation results show that the STARFM and FSDAF methods perform
better than the ELRFM. This is because zone 1 is mainly faced with surface reflectance changes rather
than LULC changes. The STARFM and FSDAF methods are advantageous in this case.

The observed and predicted reflectance scatter plots of zone 2 (see Figure S4), where some areas
experienced LULC type changes, show that the ELRFM is superior to the STARFM and FSDAF methods
by predicting the highest R2 in all three bands. Taking the green band as an example, the R2 of the
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ELRFM is 0.951, while those of the STARFM, FSDAF, and LR methods are 0.5913, 0.8716 and 0.9368,
respectively. The quantitative evaluation index results of the four methods in zone 2 are shown in
Table S1. In this zone, the RMSE and AAD of the ELRFM in the three bands are the smallest (e.g., in the
green band, ELRFM vs. STARFM, FSDAF, and LR, RMSE: 111.07 vs. 146.23, 173.67 and 123.66; AAD:
67.27 vs. 75.14, 102.14 and 71.46) and the r is the largest (0.98 vs. 0.96, 0.93 and 0.97), which shows
that the ELRFM has the best prediction accuracy in zone 2. This is because LULC changes occurred in
many parts of this region, and the ELRFM is based on the linear regression of each pixel, which can
better capture this change.

Developing generic fusion algorithms suitable for all types of scenarios and applications remains
an open problem. In general, the ELRFM is advantageous in monitoring the changes in surface feature
categories. Therefore, it could be used in applications focused on surface feature changes, such as
water monitoring. For applications that focus on changes in surface reflectance, such as crop growth,
the STARFM and FSDAF methods are a better choice.

The algorithm proposed in this paper is an improvement on the linear fitting method, and it
generally more accurate than the linear method. However, due to the statistical calculation and
compensation of the residual error within each coarse pixel, the ELRFM has a plate effect on the coarse
pixels scale. In addition, a fixed threshold strategy in determining the degree of change also has certain
limitations. Further research could be conducted on automatic threshold determination based on the
statistical information in the coarse pixels. As data acquisition and processing become easier, further
work could also focus on the comprehensive use of time series information to aid data spatio–temporal
fusion. For example, a time series could be used to make preliminary predictions and then compensate
for residuals.

5. Conclusions

Dense daily time series Earth observation data are important for surface monitoring. However, they
are currently not freely available. Therefore, data fusion methods can be applied to generate synthetic
high-resolution and dense images. In this paper, we developed an efficient spatio–temporal fusion
model, ELRFM, based on linear regression. This method compensates for the residual error between the
linear regression prediction results and the actual coarse resolution image with a regression coefficient.

The ELRFM maintains spatial details and presents a better ability to capture small feature changes
at the fine image scale compared with the spatial and temporal adaptive reflectance fusion model
(STARFM) and the flexible spatio–temporal data fusion (FSDAF) method. In addition, it is more
computationally efficient than the STARFM and FSDAF due to the simple design and implementation
on the Google Earth Engine platform. The ELRFM is applicable not only to the fusion of Landsat and
the moderate resolution imaging spectroradiometer (MODIS), but also to the fusion of Sentinel-2 and
Sentinel-3. However, since the ELRFM is based on certain assumptions and the residual compensation
process in it is an approximate calculation, the prediction accuracy will not be high in cases that
do not meet these assumptions. For example, a longer study period will result in lower prediction
accuracy, because the land-use/land-cover types do not typically show linear changes over a long
period. Overall, the proposed method is typically more accurate than the linear fitting method, and,
in some cases (such as feature type changes in the coarse pixel), outperforms the existing STARFM
and FSDAF methods. The ELRFM could be used as a supplement for the spatio–temporal fusion
algorithm community.

The method proposed performs well on the fusion of simulated data. Future research could
consider its testing and application in real scenarios. In addition, with more satellite launches and
an increasing number of freely available medium and high-resolution images, future research may
include other higher spatial resolution data such as Gaofen-1 wide field of view (GF-1 WFV) sensor,
which became free in 2019. These data have a higher temporal resolution (a 2-day revisit cycle) than
Landsat and presents a great potential for time series applications.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/23/3900/s1,
Figure S1: Color composited images (RGB: near-infrared, red, green) of zone 1. (a–c) are Sentinel-2 images acquired
on May 29, June 18, and July 3, 2020, respectively (1230 × 1200 pixels with 10 m resolution), and (d–f) are Sentinel-3
like images aggregated from (a–c), Figure S2: Color composited images (RGB: near-infrared, red, green) of zone 2.
(a–c) are Sentinel-2 images acquired on May 13, June 12, and July 12, 2019, respectively (1530 × 1500 pixels with
10m resolution), and (d–f) are Sentinel-3 like images aggregated from (a–c), Figure S3: Scatter plots of the observed
and predicted reflectance of zone 1 from the four data fusion methods in green (B3), red (B4), and near-infrared
(B8) bands, respectively, Figure S4: Scatter plots of the observed and predicted reflectance of zone 2 from the
four data fusion methods in green (B3), red (B4), and near-infrared (B8) bands, respectively, Table S1: Accuracy
assessment results of the four data fusion methods. Root mean square error (RMSE), average difference (AD),
average absolute difference (AAD), and correlation coefficient r, near-infrared (NIR).
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