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Abstract: Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and
object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented,
thanks to the availability of the many state-of-art functions comprising various Machine Learning
(ML) algorithms. OO approaches, including both object segmentation and object textural analysis,
are still not common in the GEE environment, probably due to the difficulties existing in concatenating
the proper functions, and in tuning the various parameters to overcome the GEE computational
limits. In this context, this work is aimed at developing and testing an OO classification approach
combining the Simple Non-Iterative Clustering (SNIC) algorithm to identify spatial clusters,
the Gray-Level Co-occurrence Matrix (GLCM) to calculate cluster textural indices, and two ML
algorithms (Random Forest (RF) or Support Vector Machine (SVM)) to perform the final classification.
A Principal Components Analysis (PCA) is applied to the main seven GLCM indices to synthesize
in one band the textural information used for the OO classification. The proposed approach is
implemented in a user-friendly, freely available GEE code useful to perform the OO classification,
tuning various parameters (e.g., choose the input bands, select the classification algorithm, test various
segmentation scales) and compare it with a PB approach. The accuracy of OO and PB classifications
can be assessed both visually and through two confusion matrices that can be used to calculate the
relevant statistics (producer’s, user’s, overall accuracy (OA)). The proposed methodology was broadly
tested in a 154 km2 study area, located in the Lake Trasimeno area (central Italy), using Landsat 8
(L8), Sentinel 2 (S2), and PlanetScope (PS) data. The area was selected considering its complex LULC
mosaic mainly composed of artificial surfaces, annual and permanent crops, small lakes, and wooded
areas. In the study area, the various tests produced interesting results on the different datasets
(OA: PB RF (L8 = 72.7%, S2 = 82%, PS = 74.2), PB SVM (L8 = 79.1%, S2 = 80.2%, PS = 74.8%), OO RF
(L8 = 64%, S2 = 89.3%, PS = 77.9), OO SVM (L8 = 70.4, S2 = 86.9%, PS = 73.9)). The broad code
application demonstrated very good reliability of the whole process, even though the OO classification
process resulted, sometimes, too demanding on higher resolution data, considering the available
computational GEE resources.

Keywords: land use land cover; Google Earth Engine (GEE); Sentinel 2; Landsat 8; PlanetScope; SNIC;
GLCM; machine learning; Random Forest (RF); Support Vector Machine (SVM); accuracy assessment

1. Introduction

Satellite remote sensing (RS) provides essential data that helps in mapping and studying the Earth’s
surface. RS data archives, thanks to the growing availability of satellites and the increase of image
resolutions (radiometric, spectral, spatial, and temporal) are constantly expanding, allowing the users to

Remote Sens. 2020, 12, 3776; doi:10.3390/rs12223776 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-4238-8897
http://dx.doi.org/10.3390/rs12223776
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/22/3776?type=check_update&version=2


Remote Sens. 2020, 12, 3776 2 of 17

potentially access and analyze very large time-series datasets, but at increasing time and computational
costs. In the last decade, RS data processing has moved from traditional workstations equipped with
state-of-the-art (and often very expensive) hardware, and RS software, to cloud-based platforms that
allow users to instantly access and analyze huge pre-processed geospatial data through user-friendly,
web-based interfaces, and effective scripting languages. Among these platforms, Google Earth Engine
(GEE) is achieving considerable success because it is a cloud-based geospatial analysis platform that
allows users to solve, in a very efficient way, the primary problems related to the management of
immensely large amounts of data, their storage, integration, processing, and analysis [1].

A typical RS data application is the production of Land Use/Land Cover (LULC) maps,
which describe how land is used for various human purposes, such as agriculture or residential
areas, or the physical characteristics of the Earth’s surface (i.e., water bodies, grasslands, rocks) [2].
LULC maps are very useful for analyzing landscape composition and configuration, and for detecting
changes that are taking place in the landscape, as well as considering transformations with environment
gradients [3,4]. Understanding the LULC changes and spatially identifying the transformation hotspots
are extremely relevant for ecosystem monitoring, planning, and management. Such classifications
generally require an initial step aimed at the multitemporal image composition to limit the cloud
coverage and to calculate image statistics and spectral indices used to improve the classification
accuracy. In this regard, GEE allows the users to define different modus operandi for the combination
of the input data, allowing to efficiently create light, cloud-free, multi-temporal, composite dataset
without having to run into blocks related to limited local computational resources images [5,6].

Ordinary LULC automatic classification approaches, applied to RS data, are based on a calculation
of spectral signatures of selected LULC classes using training data and pixel-based discrimination
between different land cover types [7]. Thanks to the recent improvements in image segmentation
algorithms, the object-based approaches (so-called Geographic Object-Based Image Analysis—GEOBIA)
are becoming more popular compared to traditional image analysis and classification, due to their
capability in delineating and classifying the landscape objects or patches, at different scales [8].
Object-oriented (OO) methods generally produce better results on higher resolution data, despite
the higher computational costs of segmentation and the use of several features for the classification,
while the use of the pixel-based (PB) approach is typically recommended for lower resolutions. The latter,
as frequently happens, suffers from the so-called “salt-pepper” effect on higher spatial resolutions.
The object delineation is performed in a crucial step based on an image clustering and segmentation
aimed at grouping similar pixels into image clusters and converting them to vectors [9–11]. In this
regard, the Simple Non-Iterative Clustering (SNIC) algorithm, available in GEE, resulted very efficient
in grouping similar pixels and identifying potential, individual objects [12]. After the segmentation,
GEOBIA generally combines spectral and spatial information with the texture and context information
of the image to perform the final object classification [13]. In GEE, the Gray-Level Co-occurrence
Matrix (GLCM) is available, a very effective method for the extraction of 18 textural indices from
8-bit greyscale images. This feature appears very useful since allowing the GEOBIA application even
on greyscale images. The subsequent application of the Principal Component Analysis can help in
effectively reducing the high dimensionality of GLCM outputs in a few, representative bands [14].

The classification step, both in PB and OO processes, can be performed using various solutions.
The recent Machine Learning (ML) classifiers have demonstrated a higher performance compared
to the traditional maximum likelihood ones [15] and do not require any assumptions about the data
distribution. In particular, non-parametric ML classifiers, such as Classification and Regression Trees
(CART), Random Forest (RF), and Support Vector Machine (SVM) have been reported to provide
extremely accurate LULC classification results from remotely sensed images [16,17]. CART is a simple
binary decision tree classifier and works using a pre-defined threshold [18], while RF is an ensemble
classifier based on the combination of multiple CART-like trees. RF is highly efficient and accurate,
and is one of the favorite classifier for LULC classification [19,20], because, generally, it performs better
than other popular classifiers [21]. SVM is a well-performing classifier, but appears slightly more
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complex since it requires the choice and tuning of kernels and other input parameters [22,23]. Most of
these classification methods rely on high-quality training data, and on proper combinations of features
that directly affect the stability of the classification results [24]. The selection and implementation of
such features are generally time-consuming and require wide engineering skill and technical expertise.
Differently, in modern Deep Learning (DL) approaches, features are automatically implemented from
input data using learning procedures based on neural networks that generate multiple processing
layers. These layers provide more effective feature representations through multiple abstraction levels
which result very effective in discovering complex structures and discriminative information hidden in
multi-dimensional data [25]. DL models can be also used in GEE through the TensorFlow platform [26];
however, their implementation is not straightforward for ordinary GEE users, since these models must
be developed and trained outside GEE using the GEE API and the Google Colab platform. Thus,
the application of ordinary ML classification algorithms, such as RF and SVM, is still a convenient
option in the GEE environment.

GEOBIA, including both object segmentation and object textural analysis, is still no common in
the GEE environment, probably due to the difficulties existing in concatenating the proper functions
and in tuning the various parameters to overcome the GEE computational limits. The SNIC algorithm
has been widely used in GEE to identify spatial clusters and improve LULC classification. For instance,
Mahdianpari et al. [27,28], to produce the Canadian Wetland Inventory, implemented an object-based
classification of S2 and S1 data, based on SNIC and RF, which substantially improved the PB
classification. Paludo et al. [29] mapped soybeans and corn in Paraná, achieving very high accuracy,
applying SNIC and the Continuous Naive Bayes classifier on Landsat-8, Sentinel-2, and SRTM+

(Shuttle Radar Topography Mission) data. To classify the LULC of Iran, SNIC was to identify segments
on S2 data and to enhance the classification result of the pixel-based RF algorithm using a majority
calculation within each segment [30]. Djerriri et al. [31] proposed an object-oriented approach based
on the classification of S2 images using SNIC clustering combined with the RF classifier and the
results were more accurate than those from the pixel-based approach. Firigato [32] performed an
RF classification of high-resolution satellite images using SNIC and subsequent vectorization, and a
feature selection based on NDVI mean the gradient of directions, and other properties, such as area,
height, and width. In some GEE-based researches, the segmentation step was developed outside
GEE. For example, Stromann et al. [33] developed an object-based LULC SVM classification, using S1
and S2 data, through a preliminary segmentation step performed in commercial software and a
subsequent feature characterization in GEE based on GLCM. Xiong et al. [34] produced a 30-m cropland
map of continental Africa by integrating PB and OO algorithms using S2 and L8 data, using SVM
and RF; the segmentation step was based on a recursive hierarchical segmentation carried out on
NASA Pleiades supercomputer. The GLCM has been used in GEE to derive textural indices and
improve LULC classification. For instance, besides the above-cited research from Stromann et al. [33],
Godinho et al. [35] combined multispectral bands with the vegetation indices, and GLCM textures to
improve the LULC classification. Mananze et al. [36] derived a Land Cover map of a study area in
Mozambique from Landsat 7 and Landsat 8 bands, vegetation indices, and textural features extracted by
GLCM. Radar and optical imagery were combined to map oil palm plantations in Sumatra, Indonesia,
using GLCM textural features, derived from SAR (Synthetic Aperture Radar) data, to improve the
classification [37].

The users of LULC maps need to know how accurate the maps are to use the data more
coherently [38]. The most widely used classification accuracy assessment approach is in the form of a
confusion matrix based on a comparison between the classification outputs and ground truth data [39,40].
The matrix is used to derive a series of descriptive and analytical statistics (user’s, producer’s, and overall
accuracy—OA—and Kappa statistic—K) useful to interpret and synthesize the accuracy level of a
given LULC map [16,41]. Despite its broad application, kappa statistics can be very misleading to
assess or communicate the accuracy of classification due to its high dependency on the variation of
class prevalence [42]. An automatic comparison between PB and OO methods in LULC classification,
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based on confusion matrices, could result very useful to define the best approach in terms of accuracy
of the various LULC classes [43] and to assess the improvement achieved with the OO approach,
since the final accuracy is always conditioned by the proprieties of the input data [44], the quality of
training information, and the peculiarities of the study areas.

In this context, this work is aimed at developing and testing an OO classification approach
combining the SNIC algorithm to identify spatial clusters, the GLCM to calculate cluster textural indices
and two broadly used ML algorithms (RF and SVM) to perform the final classification. The proposed
approach is implemented in a user-friendly, freely available GEE code useful to perform the OO
classification tuning various parameters (e.g., choose the input bands, select the classification algorithm
RF or SVM, test various segmentation scales) and compare it with a PB approach. The accuracy of
the two approaches is assessed both visually, and through two confusion matrices and their related
statistics (producer’s, user’s, and overall accuracy).

2. Materials and Methods

2.1. Study Area

The 154 km2 study area, selected for the development and testing of the proposed methodology,
is located around the Trasimeno Lake, in Umbria, Central Italy (43◦06′N, 12◦07′E) (Figure 1).
Lake Trasimeno, the fourth largest Italian lake, is situated in the northwestern part of Umbria
and has a surface area of about 120.73 km2 [45]. Since March 1995, the area has become a regional
nature park [46]. The lacustrine ecosystem is an area of exceptional value for its wealth of flora and
fauna and its diversity of species. Tourism, agriculture, and livestock breeding are the most important
activities in the Trasimeno area: cultivated lands cover about 70% of the catchment area of the lake,
even if intensive agriculture with irrigational needs is only present in 28% of the area [47]. The zone is
characterized by a multifunctional landscape mosaic with high abundance and diversity of agricultural
lands (e.g., sow-lands, grasslands, vineyards, olive groves), wooded areas, artificial surfaces, and many
small private artificial lakes.
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2.2. Training and Validation Sample Data

The study area is featured by a complex landscape mosaic composed of six LULC classes:
(1) built-up areas, including settlements and other artificial surfaces; (2) annual crops, comprising
various crops such as cereals, grain legumes, and horticultural plants; (3) permanent crops, mainly
including vineyards and olive groves; (4) grasslands; woodlands, composed by small and fragmented
areas; (5) riparian vegetation and shrubs, including the lakeside or riverside vegetation and other
sparse small areas covered by shrubs; (6) water bodies that include the Trasimeno Lake and other
small private lakes. To test the usability and reliability of the whole procedure, only 10 points for
each class have been identified through the GEE interface, using the S2 RGB and composite infrared
layers, and the high-resolution layer of Google Maps, for collecting the training information. A total of
450 validation points were randomly generated and manually labeled through a visual interpretation
of the same base layers (Table 1). This approach is largely used in the literature [48,49].

Table 1. The number of validation points for each Land Use–Land Cover (LULC) class.

CLASS Number of Validation Points

Built-up 35
Annual crops 154

Permanent crops 40
Grasslands 59
Woodlands 65

Riparian Vegetation or Shrubs 17
Water 80
Total 450

2.3. Methodology

The general workflow is composed of three main steps, implemented in two GEE scripts (Figure 2):
the composition of the initial dataset, the LULC classification, and the accuracy assessment. The first
step was implemented in a separate script to speed-up the classification and accuracy assessment
procedures also considering that the base composite image, once generated, requires fewer adjustments
compared to the subsequent steps. The classification and accuracy assessment steps were implemented
in a single GEE script. The former includes a PB and an OO approach, both using the same training
data and applying the RF or the SVM classifier. The latter was performed, for both methods, through a
confusion matrix using the same, above-mentioned, validation data.
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To investigate the reliability of the proposed approach, verify its applicability on different
resolution RS data, and assess the influence of some important input parameters, the code was broadly
tested on the study area: (a) using data from three different satellites—Landsat 8 (L8), Sentinel 2 (S2),
and PlanetScope (PS); (b) applying the RF or the SVM classifier; (c) including or excluding textural
information for the OO approach; (d) using different seed distances for spatial cluster identification.
PlanetScope images were chosen to test the code on higher spatial resolution data considering that,
in GEE, S2 is the highest spatial resolution data available for the study area.

The results were preliminarily compared in terms of overall accuracy. On this basis, the most
effective OO and PB parameter combinations were selected for each dataset and compared both visually
and in terms of percentage of total area, user’s and producer’s accuracy of LULC classes. The execution
time of the selected classification was measured and compared as well.

2.3.1. Dataset Composition

The creation of the base dataset is generally a critical step for every LULC classification. In this
application, the composition of this dataset for the L8 and S2 data starts, in GEE, from a filtered
and cloud-masked image collection. Then, the Normalized Difference Vegetation Index (NDVI) and
the Bare Soil Index (BSI) are calculated for each image. The NDVI is often used for the mapping
of changes in land cover [50,51] and, according to Singh et al. [52], this index, used in the LULC
classification, produces a significant improvement in classification accuracy. The BSI is mainly used
to highlight the difference between agricultural and non-agricultural land thanks to its enhanced
ability in identifying bare soil and fallow lands [53]. These additional indices are commonly used to
improve the LULC classification. Data augmentation was implemented using the main statistics of
NDVI and BSI (mean, standard deviation, and maximum) to generate six additional bands containing
main statistics of the two spectral indices useful to account for season variability of the LULC classes.
The code generates a final composite dataset calculating the median pixel values for the selected bands
and adding to the composite the selected spectral indices statistics among those available. The final
phase is the export of the desired bands of the dataset.

The input requirements to set for the execution of the code are:

• roi (region of interest), a polygon used to delimitate the study area;
• period of interest, based on the definition of start date (MM-DD-YYYY) and end date

(MM’-DD’-YYYY’);
• inBands, which are the input bands selected from the L8 or S2 available bands [45];
• outBands, which are the output bands of the final dataset. As Indicated, they are selected from

the median of the inBands and on the other mean, max, and standard deviation of NDVI ad
BSI indices.

In detail, the code performs an initial collection of images filtered by the specific period of interest
(three years, from 1 January 2017 and 31 December 2019), the region of interest (roi), the maximum
percent of cloud cover (10), and the cloud mask (maskS2clouds). The cloud cover masking for S2 is
computed using the QA60 band provided in GEE with the S2 Surface Reflectance data. QA60 band is a
60 m resolution layer that combines dense clouds and cirrus clouds mask [54]. The cloud cover masking
for L8 is performed using the “pixel_qa” band provided in GEE with the L8 Surface Reflectance
data. This cloud-masking step is coherent with Nyland et al. [55] and Xye et al. [56] who suggest
selecting input images with a maximum cloud cover and over three years to create a very effective
composite image. This selection process produced, for the study area, two image collections, including
43 images for the L8, and 119 images for the S2 on which the “inBands” are selected and the median
bands are computed. NDVI and BSI are calculated for each image and the relative spectral indices
statistics are obtained using the proper reducer functions. The final exporting phase regards only the
desired bands (”outBands”) previously defined. In this application, to create the initial S2 dataset,
bands 2, 3, 4, 6, 8, NDVI mean, NDVI Std. Dev. (Standard Deviation), and BSI mean were selected.
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For composing the initial L8 dataset, bands 2, 3, 4, 5, 6, 7, NDVI mean, NDVI Std. Dev., and BSI
means were selected. Differently than L8 and S2, the base dataset for PS data was generated through a
simplified composition step, calculating on a pixel-basis the median between the 4 multispectral bands
of two images (30 March 2019 and 26 August 2020) collected during the research and uploaded to the
GEE cloud. In this case, to account for seasonality, two NDVI additional bands, derived from the two
images, were added to the initial dataset.

2.3.2. LULC Classification

The LULC classification is based on a supervised approach which, as usual, needs to collect from
the training points the necessary information utilized to train the classifiers [57]. Considering the
specific objective of this research, two approaches (PB and OO) were implemented in GEE, both using
alternatively the RF or the SVM classifiers. To perform the LULC classification, the code needs this set
of inputs:

• roi: region of interest;
• newfc: a collection of features containing all training data labeled with codes corresponding to

LULC classes;
• valpnts: validation points randomly generated and manually labeled with the same LULC code

used to assess the model’s accuracy;
• dataset: previously generated in the “Dataset composition” step.

Training data (points or polygons) can be conveniently input using the GEE interface and adding
as many feature collections (including more geometries) as the desired LULC classes. To improve
the amount of supervised information, a buffer with a fixed radius (10 m) is created around each
point. The training information from the “LULC” property of the “Newfc” feature collection is used to
train the chosen classifier. The dataset containing the validation points can be inserted using the GEE
interface or built-in a GIS environment (e.g., QGIS [58]) and imported in shapefile format. This dataset,
as indicated, is used for the accuracy assessments of the two methods.

The code executes the PA and OO LULC classifications according to the two mentioned approaches.
In both cases, the classification relies on the same, previously created, initial composite dataset,
and training data.

In the PB classification stage, the image is quickly classified by a preliminary definition of the RF
classifier, or the SVM classifier, and the subsequent training phase. As generally performed, a band
normalization of the input dataset was applied before applying the SVM classification. For the RF
classifier, the number of trees was set to 50, while for the SVM a radial basis function kernel (RBF) was
applied (with gamma = 1 and cost = 10). To clean up all the output and reduce the “salt and pepper”
effect, a final morphological operation (based on a focal mode) is performed on the output classification.

The OO classification stage combines a spatial clustering step, aimed at grouping similar and
contiguous pixels together, a subsequent calculation of textural indices on a cluster basis, and a final
classification step. In this regard, the proposed method is based on a novel two-step procedure combining
the SNIC and the GLCM algorithms, already applied separately in GEE. SNIC is performed on the
same bands used for the PB classification, using a regular grid of seeds as input generated by the
“Image.Segmentation.seedGrid” function which requires a superpixel seed location spacing (in pixels).
The latter influences the cluster size and can be varied to find an optimal value. In the code testing phase,
various seed spacing (5, 10, 15, 20 for L8 and S2, and 35, 40, 45, 50 for PS) were applied on the different
datasets and compared in terms of OA. These values were identified after some initial general testing
and considering the textural characteristics of the landscape patches in the study areas. SNIC identifies
the objects (clusters) according to the input parameters and generates a multi-band raster, including
the clusters and additional layers containing the average values of the input features. SNIC, in GEE,
requires setting some main parameters: the “compactness factor” influences the cluster shape (larger
values produce more compact clusters); the “connectivity” (4 or 8) defines if consider a Rook’s or Queen’s
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contiguity to merge adjacent clusters; a “neighborhoodSize” to avoid tile boundary artifacts. In our
application, always considering the study area characteristics, these parameters were set as follows:
compactness = 0, connectivity = 8, and neighborhood size = 256. SNIC outputs are variable depending on
the visualization scale. Thus, in the code, was necessary to fix a proper output scale of clusters through
the “reproject” function (L8 = 30, S2 = 10, PS = 6). For the L8 and S2 the native resolution was used, while,
for the PS output, half spatial resolution was chosen to speed up the subsequent steps.

GLCM algorithm, as indicated, requires a grey-level 8-bit image as input. In our code, this image
was generated through a linear combination of NIR, Red, and Green bands of the initial composite
image, according to the following formula:

Gray = (0.3 × NIR) + (0.59 × RED) + (0.11 × GREEN) (1)

Then, after a proper standardization, a PCA of the most relevant 7 GLCM metric (Table 2), selected
according to Hall-Beyer et al. [14], is applied to derive a single representative band (the first PC) which
generally contains the vast majority of the textural information. The average of PC1 is then calculated
in a separate band for each object included in the SNIC “clusters” band. The PC1 object-averaged band
is finally added to those extracted from the SNIC segmentation process. On this dataset, the same
definition and training procedure of the pixel-based RF or SVM classification is reproduced to get
the LULC classification through the OO approach. To overcome the GEE computational limitations,
faced working with PS data, it was necessary to export the final classification to an asset before
visualizing the final OO LULC classification. The initial testing on PS data was conducted on a smaller
window within the study area.

A final computation is done counting the number of the pixel belonging to each class to calculate
the total area (km2 and percentage) for each LULC class. All of these operations are developed in the
raster domain to speed up the code execution without applying conversions to the vector domain.

Table 2. List and short descriptions of the selected the Gray-Level Co-occurrence Matrix (GLCM) metrics.

Bands Description

Angular Second Moment (ASM) Measures the uniformity or energy of the gray level
distribution of the image

Contrast Measures the contrast based on the local gray level
variation

Correlation Measures the linear dependency of gray levels of
neighboring pixels

Entropy Measures the degree of the disorder among pixels in
the image

Variance Measures the dispersion of the gray level distribution
to emphasize the visual edges of land-cover patches

Inverse Difference Moment (IDM) Measures the smoothness (homogeneity) of the gray
level distribution

Sum Average (SAVG) Measures the mean of the gray level sum distribution of
the image

2.3.3. Accuracy Assessment

The accuracy of both LULC classifications is evaluated using a confusion matrix implemented in GEE
in which the LULC linked to the validation points is statistically compared with the output classifications.
The confusion matrix allows calculating the overall accuracy (OA) and kappa statistics (K) and shows
where the classification generates confusion (omission and commission errors, quantified respectively by
the user’s accuracy—UA and producer’s accuracy—PA) among the LULC classes producing inaccuracies.
The accuracy is typically considered as the degree of closeness of the results to values accepted as true [59],
while the Kappa coefficient expresses the proportional reduction of the errors generated by a classification
process compared with the error of a completely random classification [60]. In this study, considering the
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above-mentioned issues regarding the Kappa coefficient [42], only the OA, PA, and UA, derived from the
confusion matrices, were analyzed. Of course, many factors can influence the measurement of accuracies,
such as the characteristics and the resolution of the satellite data, the distribution of the validation points,
and the classes chosen for the LULC classification. In the code, the same steps were applied to assess and
compare all the classifications.

3. Results

The OA results from the various tests conducted in the study area are reported in Table 3. The best
OA (89.3%) is achieved with the S2 data using the OO method and including the GLCM textural
information. On L8 data the PB approach performs better than the OB approach (79.1% vs. 78.4%),
while, on the higher spatial resolution datasets, the OO method produces better results (S2: 89.3% vs.
82%; PS: 77.9% vs. 74.8%). The incorporation of the textural information improves the OO classification
for both S2 and PS data, even though the increase in OA is more pronounced for the PS dataset
(S2: 89.3% vs. 86.6%; PS: 77.9% vs. 74%). The SVM classifier results more effective in terms of OA in
both the PB and OO approaches on the lower resolution L8 data (PB: 79.1% vs. 72.7%; OO without
GLCM: 78.4% vs. 68%). This classifier performs slightly better with the PB approach on PS data as well
(74.8% vs. 74.2%). However, the RF classifier gained better results on S2 data, both with the PB and
OO approach (PB: 82% vs. 80.2%; OO with GLCM: 89.3% vs. 86.9%) and with the OO approach on the
PS data (77.9% vs. 73.9%).

Table 3. Overall accuracies resulted from the pixel-based (PB) and object-oriented (OO) approaches,
using data from three different satellite data (L8: Landsat 8; S2: Sentinel 2; PS: PlanetScope), applying
the Random Forest (RF) or the Support Vector Machine (SVM) classifier, excluding or including textural
information (GLCM) for the OO approach, using different seed spacing (5, 10, 15, 20 pixels for L8 and
S2, and 35, 40, 45, 50 for PS-in italic), and. The best results from the PB and OO approaches, for the
three datasets, are highlighted in bold.

Sat Classifier PB
OO Without GLCM OO With GLCM

5 (35) 10 (40) 15 (45) 20 (50) 5 (35) 10 (40) 15 (45) 20 (50)

L8
RF 72.7 68.0 58.9 48.7 38.7 64.0 57.3 54.6 58.4

SVM 79.1 78.4 71.3 61.1 73.1 70.4 67.6 61.3 64.4

S2
RF 82 83.6 82.2 86.6 83.3 83.5 83.8 89.3 82.9

SVM 80.2 80.9 84.2 85.3 82.4 83.8 86.2 86.9 84

PS
RF 74.2 74 72.4 71.8 70.4 76.7 77.9 76.3 72.9

SVM 74.8 72.4 73.1 70.9 70.8 74.9 73.9 73.6 71.7

Figure 3 shows the best PB and OO outputs for each sensor selected considering the above-described
OA outputs. In Figure 4, the difference between the selected classifications, also in terms of cluster size,
is shown in an interesting portion of the study-area characterized by the presence of the main urban
center, a section of Trasimeno Lake, and the neighboring multicultural area. The percentage of the total
area occupied by each class, according to the selected classification approaches, is reported in Figure 5.

The LULC maps and the related areas of LULC classes show very significant differences between
the outputs from the various classification approaches. The main discrepancies, compared to the S2
OO classification, can be observed for permanent crops, grasslands, and annual crops, but, considering
their small area coverage, a relevant divergence can be also observed for the built-up areas, and the
riparian vegetation and shrubs as well. Built-up areas result particularly underestimated in the L8
classification. Water, woodlands, apart from the L8 classifications, appear more similar in their total
extension. However, comparing the LULC maps with the OO S2 output (Figure 3), a very inconsistent
spatial configuration of permanent crops, grasslands, and riparian vegetation and shrubs can be
observed in the L8 outputs. Similarly, a very abnormal distribution of permanent crops can be observed
in the PB S2 and PB PS outputs as well.
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Figure 5. Percentages of the total area occupied by the LULC classes in the selected classifications
(L8: Landsat 8, S2: Sentinel 2; PS: PlanetScope; PB: pixel-based; OO: object-oriented).

A deeper insight into the reliability of the selected outputs and the affordability of the various
selected approaches is provided by the comparison of PA and UA derived from the confusion matrices
(Figure 6; the full confusion matrices are reported in the Supplementary Materials, Tables S1–S3). PA,
quantifying the percentage of correctly classified validation points for each LULC class, supports
the interpretation of the omission (or the exclusion) errors (Figure 6a), while the UA, measuring the
percentage of correctly classified points in the output LULC classes, indicates the commission (or the
inclusion) errors (Figure 6b). As expected, all of the tested approaches perform very well on water
and woodlands classes (only L8 OO shows 42% of omission errors of woodlands validation points).
Thus, to improve the readability of graphs and to focus on the most interesting results, these classes
were excluded from Figure 6 and the following analysis. The other LULC classes are characterized by
very variable classification outputs from the different methods. As already shown by the OA, the S2
OO produces the best compromise in all classes in terms of PA and UA. S2 PB shows worse results
mainly in the classification of riparian vegetation and shrubs, permanent crops, and built-up areas,
while grasslands are classified slightly better than the OO method. Permanent crops, and riparian
vegetation and shrubs, as expected considering the S2 resolution, are the most critical LULC classes for
both approaches. The inaccuracy of the formers is mainly due to the commission with annual crops
and grassland, while the latter is often mixed up with grasslands and woodlands. The accuracy results
for the other LULC classes (annual crops, grasslands, woodlands, and water bodies) indicate only
small differences between the two approaches from the user perspective.

L8, due to the lower spatial resolution, performs generally worse than S2. Only some classes show
a very good PA (grasslands and riparian vegetation and shrubs, especially with the PB approach),
but their outputs in the maps are considerably mixed with other classes. Built-up areas from PB show
very low inclusion errors, but very high exclusion errors. PA and UA results for PS, despite the higher
spatial resolution, show various inaccuracies. The PS OO approach performs generally better than the
PB from both the producer’s and the user’s point of view. The most problematic classes are, once again,
permanent crops, grasslands, and built-up areas. Despite the low omission errors of the permanent
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crops and built-up areas, they are characterized by high commission errors in both approaches mainly
due to the poor classification of the annual crops (built-up areas have lower commission errors in the
OO approach). The annual crops, and the riparian vegetation and shrubs classes, despite the average
PA, show a very good UA in the OO approach.
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Regarding the execution time of the six selected above-described approaches, as expected, it is
proportional to the image resolution and the complexity of the processing. Thus, the OO approach,
on average, is more time demanding than the PB one (L8: 15.76 s vs. 6.35 s; S2: 35.75 s vs. 4.11 s;
PS: 75.25 s vs. 7.25 s). The PS OO execution time includes the necessary exporting step of the final
LULC classification.

4. Discussion

The world of remote sensing (RS) is constantly growing thanks to the launch of new earth
observation satellites, to the increasing resolutions of sensors, to the massive archives of (often
freely) available data, and to the increased computational resources. Google Earth Engine (GEE)
has achieved considerable success because it is a free cloud-based geospatial analysis and modeling
platform that allows users to access, observe, and analyze geospatial data over the entire planet,
thanks to a huge, ready-to-use data archive that allows the experimentation of many applications.
The use of ML algorithms combined with geographic object-oriented analysis (GEOBIA) techniques
is constantly evolving, and GEE, as shown in this research, is an effective environment to build
multi-temporal composite images, and implement, in a straightforward way, complex image processing
and classification processes.

This work successfully developed an object-based approach combining SNIC, GLCM, and ML
algorithms in a user-friendly, freely accessible, GEE code. This latter, broadly commented, allows the
user to set and tune various input parameters and to compare the results from the OO approach with a
PB one, developed with the same input bands and classification algorithm. The comparison can be
performed both visually, assessing the output LULC maps, and analyzing the accuracy matrices for a
given study area. The matrices allow the user to calculate the user’s and producer’s accuracy for each
class and the overall accuracy. These measures give more sound information about the reliability of the
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two classification approaches and on the possible added value of using an OO approach. In most cases,
as highlighted in the introduction, the latter provides higher accuracy in the classification compared to
the pixel-based one, due to the combined use of spectral, spatial, and textural information. However,
as shown in this study for the L8 data and other researches [44,47], the results are variable depending
on the input datasets, the selected LULC classes, and the peculiarities of the study area. In this regard,
as shown in this application, the script could be conveniently used to compare the OO and PB results
produced using datasets at different resolutions, to test several settings and input parameters, and to
select various classification algorithms.

The SNIC resulted very effectively in the object delineation (in this case, the landscape patches),
even though, in its ordinary application within GEE, it is based on a regularly spaced grid of seeds.
In this regard, a possible improvement could be the use of seeds generated identifying the local
minimum or maximum of variance [61]. As shown in this application, testing the outputs of various
seed spacing could be very useful in finding the more effective cluster size also considering the size
of the landscape patches. Compared to previous studies, the proposed approach combined SNIC
with GLCM to analyze the textural features of the input datasets. This is a widely used algorithm in
image-processing which has shown, also in GEE, a very good performance in characterizing the objects’
textures through a wide range of textural indices. In the code, a subsequent application of a PCA on
the seven most important GLCM metrics allows the user to include in the OO classification a single
band that synthesizes the majority of the available textural information. If necessary, considering the
relative variance expressed by the PCs calculated by the code, more PCs could be selected and used for
the classification. This step resulted very useful since it relieves the user from the selection of the more
effective GLCM metrics to be used in the classification.

As indicated, all of the object identification and subsequent textural characterization were
developed in the raster domain on which GEE performs very well. Such an approach, even though
associated with quicker code execution, does not allow considering the object size and shape,
which could be very important for regular objects at higher resolutions. The vectorization of objects
could overcome this limitation, as proposed by Firigato [32], however, considering the raster oriented
GEE environment, the few attempts in this direction are characterized by a very slow code execution
or by a block in processing due to a too large number of geometries.

GLCM information, even with the 10 m S2 resolution, improved both the classification of very
heterogeneous and complex LULC classes, such as the built-up areas (due to their high internal
entropy [62]) and the identification of those patches characterized by a regular texture, such as the
permanent crops. This LULC class, including mainly olive- and vine-yards with a tree spacing lower
than the S2 (and even than the PS resolution), was included as a challenge to explore the OO potentiality
in GEE. The very good accuracy obtained for this class, together with that achieved for the built-up
areas, clearly demonstrated a great potentiality of the proposed OO methodology even with S2 data.
Differently, the application of this method on L8 data, using SNIC, or SNIC and GLCM did not
improve the PB output. This is probably due to the impossibility with the L8 spatial resolution of
reading relevant textures of landscape patches within the study area. Unexpectedly, the PlanetScope
dataset, despite its more than triple spatial resolution, produced inferior overall results compared to
S2, even adopting an OO approach. This result is probably related to the lower temporal and spectral
resolution of this dataset, and to the rather few training points used which, together, provided scarce
information to properly differentiate the various agricultural classes. Therefore, even though the
permanent crops are well recognized both in the PB and OO approach (with a similar UA of the S2
OO), the poor classification of annual crops and grasslands generated a considerable commission in all
the three agricultural classes. This may suggest that the 3 m spatial resolution did not provide enough
textural information for effective separation of the three agricultural classes and that the S2 higher
temporal and spectral resolution, summarized by the median bands and the spectral index statistics
resulted, in this regard, more effective. Using a timely more extended initial PS dataset could help in
improving the LULC accuracy produced using this data source.
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5. Conclusions

GEE showed, once again, considerable versatility and adaptability due to its cloud architecture,
its user-friendly interface, and its efficient scripting language. Within the GEE environment, this work
developed and tested an OO classification approach combining the SNIC algorithm to identify
spatial clusters, the GLCM to calculate cluster textural indices and two broadly used ML algorithms
(RF and SVM) to perform the final classification. The approach was implemented in a user-friendly
code useful to compare the OO and PB classification approaches, tuning various settings and input
parameters. In the study area, the OO approach produced a sensible accuracy improvement for S2
and the PS datasets. Despite the lower spatial resolution, S2 achieved better results than PS thanks
to the higher temporal and spectral resolution. Due to the lower spatial resolution and considering
the study area features, the OO method did not produce better results than the PB approach on L8
data. Our application demonstrated the reliability of the whole methodology, even though the OO
classification, due to its higher complexity, results more computationally demanding, and tends to
slow down (and sometimes block) the GEE code execution, especially using higher-resolution data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/22/3776/s1,
Table S1: PB and OO confusion matrices for L8, Table S2: PB and OO confusion matrices for S2, Table S3: PB and
OO confusion matrices for PS. The GEE codes processing S2 data, developed in this research, are freely available
on line at https://code.earthengine.google.com/?accept_repo=users/mvizzari/Tassi_Vizzari_RS2020.
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