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Abstract: Precise and accurate prediction of solar photovoltaic (PV) generation plays a major role
in developing plans for the supply and demand of power grid systems. Most previous studies on
the prediction of solar PV generation employed only weather data composed of numerical text data.
The numerical text weather data can reflect temporal factors, however, they cannot consider the
movement features related to the wind direction of the spatial characteristics, which include the
amount of both clouds and particulate matter (PM) among other weather features. This study aims
developing a hybrid spatio-temporal prediction model by combining general weather data and data
extracted from satellite images having spatial characteristics. A model for hourly prediction of solar
PV generation is proposed using data collected from a solar PV power plant in Incheon, South Korea.
To evaluate the performance of the prediction model, we compared and performed ARIMAX analysis,
which is a traditional statistical time-series analysis method, and SVR, ANN, and DNN, which are
based on machine learning algorithms. The models that reflect the temporal and spatial characteristics
exhibited better performance than those using only the general weather numerical data or the satellite
image data.
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1. Introduction

The issue of climate change caused by carbon emission and the depletion of fossil fuels is emerging
worldwide. To address this problem, the Kyoto Protocol aimed at reducing greenhouse gas emissions
for the purpose of decarbonization. Furthermore, the Paris Agreement, which strengthened global
carbon regulations to suppress the global average temperature within 2 ◦C before industrialization,
was signed [1,2]. While the development of many renewable energies are being sought to replace fossil
fuels, South Korea announced its renewable energy generation by 2030 along with denuclearization in
line with global trends [3]. In addition, more than 95% of the new renewable energy facilities use clean
energy such as solar PV and wind power.

In the past decade, the unit price of solar panels and facilities for power generation systems was
decreased, and there is an increase in the number of large-scale solar PV farms worldwide. Typically,
the United States, Germany, and China have gigawatt-scale farms, and South Korea established a
467 MW solar PV farms in 2013 [4]. Compared to other renewable energy sources, the solar PV power
generation has the advantage of low installation, and maintenance costs and an expected life of more
than 20 years [5]. In addition, it is possible to minimize the damages to nature that occur when
installing power plants, which is one of the emerging environmental problems. However, solar PV
power generation requires a large installation area due to its low energy density, and the amount of

Remote Sens. 2020, 12, 3706; doi:10.3390/rs12223706 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-6257-5526
https://orcid.org/0000-0001-7201-0521
http://www.mdpi.com/2072-4292/12/22/3706?type=check_update&version=1
http://dx.doi.org/10.3390/rs12223706
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 3706 2 of 21

power generated fluctuates with meteorological factors such as a change in irradiance due to clouds or
particulate matter (PM) [6,7]. This phenomenon increases the complexity of the plan for stable supply
and demand of power systems, it mostly disrupts the schedule for power grid operations. In particular,
the solar PV generation technology, which is considered as one of the key components in smart grids,
a technology that integrates information and communication technology (ICT) into the power grid,
has the advantage of generating clean and unlimited energy, however, for stable systems, there is a
demand for accurate predicting technology [8]. Without establishing an accurate power supply and
demand plan, here could be huge financial and social losses. For this reason, there is a rapid increase
in the need for accurate prediction of the amount of solar PV power generated. Therefore, accurate
prediction of the power generation of renewable energy sources is very important in establishing an
efficient power supply and demand plan.

Most of the previous studies on the prediction of solar PV generation can be divided into two
categories. The first category involves the use of numerical text weather data such as the most common
irradiance, temperature, and precipitation [9–13]. This method increases the predictive accuracy of the
power generation by taking advantage of the continuity over various times in the data. The second
category uses motion vectors or indexes of irradiance and clouds in satellite images [14–18]. However,
this approach sometimes ignores the physical information of the solar PV generation system [19].
The most directly affected factor in predicting solar PV power generation is the irradiance, which is
greatly influenced by the cloud shadow. The cloud shadow can reflect the increase or decrease in
irradiance by detecting the cloud motion vector through the movement of the cloud shown in the
satellite image.

Recently, air pollution caused by PM has been another environmental issue in South Korea [20].
The increase in the concentration of PM in the atmosphere not only has a fatal effect on the human
body, such as the respiratory organs, but also reduces the irradiance reaching solar panels due to the
scattering of the solar radiation [21]. Most of the previous studies analyzed the effects of accumulation
various types of dust as well as PM on solar panels [22–26], however, this study aims at investigating
the effect of PM concentration distribution in the atmosphere on the solar PV generation. Both clouds
and PM vary with time and affect the atmosphere because of the spatial characteristics shifted from
the adjacent region to the measurement point in the wind direction. Therefore, using satellite images,
we investigated the influence on the spatial characteristics of the cloud and PM. To reflect the spatial
characteristics, the area where the solar PV power plant is located was designated as a region of interest
(ROI) and then the adjacent area in eight directions was set as the adjacent region of interest (ROIadj).
To investigate the effect of the movement of clouds and PM according to the direction of the wind
moving from ROIadj to ROI, the amounts of clouds and PM extracted from the satellite image were
first predicted and used as variables for the solar PV generation prediction model. We propose a
hybrid solar PV generation forecasting model, which combines the numerical weather data composed
of texts with spatial information extracted from satellite images. To develop the proposed model that
reflects the temporal and spatial characteristics, a comparative analysis was conducted by dividing the
experiments into three groups. The first group uses the numerical text weather data from the Korea
Meteorological Administration (KMA), the second group uses the data extracted from the satellite
images, and the third group combines the numerical weather data from the KMA and those from the
satellite images. The proposed model uses the power generation data from a solar PV power plant
located in Incheon, South Korea, to predict the amount of PV generation after one hour. The prediction
model employs the autoregressive moving average with exogenous input (ARIMAX), which combines
external factors in autoregressive moving average (ARIMA) considering the time-series among the
traditional statistical analysis methods. It also uses Support Vector Regression (SVR) and artificial
neural network (ANN), which employ machine learning algorithms that have been recently used
actively in various fields. In addition, the Deep Neural Network (DNN) with additional hidden layers
in ANN was analyzed.
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Research Framework

In this study, the numerical text weather data from KMA and the data extracted from satellite
images were used together to develop a hybrid spatio-temporal model that not only considers
the temporal characteristics of the input parameter over the time flow but also reflect the spatial
characteristics. The research framework is shown in Figure 1. The first step in the framework is the
collection and preprocessing of the data provided by KMA and the Korea National Meteorological
Satellite Center (NMSC). The second step involves the extraction of the necessary data from each of
the four satellite images collected. The wind direction and wind speed in the Atmospheric Motion
Vector (AMV) image, the amount and thickness of the cloud in the cloud optical thickness image,
the amount and concentration of PM in the aerosol optical depth image, and the irradiance from the
insolation image were extracted. The third step involves setting the ROI of the desired region in the
image and then designating the ROIadj of the same size for the 8 directions adjacent to each edge
and vertex. A solar PV power plant located in Incheon, South Korea, was analyzed and set as the
ROI. Then, based on the wind direction information of the ROI, the effect of cloud and PM movement
from the ROIadj to the ROI was analyzed, and the amount of cloud, cloud thickness, amount and
concentration of PM in the ROI were predicted. In the fourth step, the data extracted from satellite
images were analyzed together with numerical text weather data collected from KMA to perform
the preprocessing process for the development of hybrid spatio-temporal models. In the last step,
to develop solar PV generation forecasting analysis models that are based on the ARIMAX, SVR, ANN,
and DNN methods, the prediction performance of the model was optimized by choosing optimal
parameters for each technique.
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2. Methodology

2.1. Numerical Text Data

To predict one hour ahead solar PV generation, the numerical text data used in the experiment
are classified into three categories: meteorological data, air pollution data (such as PM) and solar
PV generation. The numerical text weather data were provided by Incheon meteorological station,
located at 37.47772 lat. and 126.6249 long. in KMA [27]. KMA provides public data on more
than 15 types of time-based weather data, including temperature, precipitation and wind speed,
for 103 stations across the country. In this study, temperature, precipitation, wind speed and direction,
humidity, amount of sunshine, irradiance, cloudiness, and visibility were used as the input parameters
to predict the amount of solar PV generated in Incheon. The air pollution data were provided at an Air
Korea air pollutant station located within 3 km from the test location [28]. The rapid increase in the use
of fossil fuels has raised the issue of air pollution, and the recent increase in the level of air pollutions
has great environmental and economic effects in Korea. As the concentration of PM, such as PM10 and
PM2.5, in the atmosphere increases, the solar radiation reaching the Earth from the Sun is scattered in
the atmosphere, reducing the visibility and irradiance reaching the Earth surface. To analyze the air
pollutants expected to affect the performance of solar PV generation, pollutants such as SO2, CO, O3,
NO2, PM10, and PM2.5 were considered together with the meteorological data. Lastly, the solar PV
generation data was provided by the Open Data Portal [29]. The analyzed solar PV power plant is
located in Incheon, and the data on the amount of solar PV power generation were collected on an
hourly basis from 0:00 on 1 January to 23:00 on 31 December 2015. K-NN algorithm was used for the
interpolation of missing data for all parameters. This algorithm selects the nearest value and does not
consider the values of other neighboring points, a constant interpolation can be generated. Therefore,
interpolation was performed using 36 h of data before and after the data point at the time of missing.
As mentioned above, solar PV generation is highly affected by the irradiance, so only the data from
9:00 to 17:00, which is the daylight time, were used. Table 1 shows the numerical text data samples.
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Table 1. The sample of the numerical dataset.

Date Temperature
[◦C]

Precipitation
[mm]

Wind Speed
[m/s]

Wind
Direction

[0–360 degree]

Humidity
[%]

Amount
of

Sunshine
[hr]

Irradiance
[MJ/m]

Cloudiness
[0–10 level]

Visibility
[10m]

SO2
[ppm]

CO
[µg/m2]

O3
[ppm]

NO2
[ppm]

PM10
[µg/m2]

PM2.5
[µg/m2]

PV
[kW]

1 January 2015
09:00:00 −8.4 0 6.7 340 56 0.8 0.21 0 2000 0.006 0.5 0.017 0.012 145 33 60

1 January 2015
10:00:00 −8.1 0 6.1 226 54 0.0 0.67 1 2000 0.006 0.5 0.019 0.01 117 34 374

1 January 2015
11:00:00 −7.6 0 6.1 340 53 0.0 1.1 1 2000 0.006 0.6 0.019 0.01 98 33 638

1 January 2015
12:00:00 −6.9 0 6.4 340 52 0.0 1.41 1 2000 0.006 0.6 0.021 0.01 90 30 784

1 January 2015
12:00:00 −6.1 0 6.4 340 53 0.0 1.53 1 2000 0.006 0.6 0.023 0.01 85 27 842

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .
31 December 2015

13:00:00 2.9 0.0 3.3 360 74 1.0 1.38 4 800 0.011 1.2 0.013 0.042 78 66 230

31 December 2015
14:00:00 3.3 0.0 3.1 360 75 1.0 1.24 3 800 0.011 1.2 0.023 0.032 100 72 310

31 December 2015
15:00:00 3.1 0.0 3.4 340 77 1.0 0.93 3 800 0.011 1.2 0.024 0.034 87 67 439

31 December 2015
16:00:00 3.3 0.0 3.2 340 77 1.0 0.67 2 900 0.009 1.2 0.024 0.035 90 68 303

31 December 2015
17:00:00 2.9 0.0 2.1 320 78 1.0 0.26 0 700 0.009 1.2 0.017 0.047 83 65 95



Remote Sens. 2020, 12, 3706 7 of 21

2.2. Satellite Image Data

In this study, satellite images provided by the NMSC were used [30]. The satellite images were
provided by the Communication, Ocean, and Meteorological Satellite (COMS), which was launched
on 27 June 2010. It is the first geostationary combined satellite in Korea that performs ocean and
meteorological observations and communication service mission. Detailed sensor information of the
COMS is summarized in Table 2. The COMS provides more than 16 types of image data, including
raw images, basic images, and processed images, every 15 min for North-East Asia and the Korean
Peninsula. Image data of AMV, including cloud optical thickness image, aerosol optical depth image,
and insolation image, were used in this study [31–34]. Each image shows the Korea Peninsula in a size
of 1024 × 1024 and has a ground resolution of 1720.8 m per pixel. Figure 2 shows four types of images
used in this experiment, which were provided at 15:00 on 18 April 2015. Detailed information and the
data extraction method for each image are described in the subsequent subsections.

Table 2. Basic performance data of COMS.

Channel Center Wavelength (µm) Wavelength Band (µm) Spatial Resolution (km)

Visible 0.67 0.55~0.8 1
Shortwave Infrared 3.7 3.5~4.0 4

Water vapor 6.7 6.5~7.0 4
Infrared 1 10.8 10.3~11.3 4
Infrared 2 12.0 11.5~12.5 4
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2.2.1. Atmospheric Motion Vector (AMV) Image

Figure 2a shows the AMV image, which depicts the information about the movement of the
atmosphere, including the information on wind direction and wind speed. The ROI has to be set
before extracting the information of the wind direction and speed from the image. The numerous wind
direction arrows shown in the AMV image have fixed starting point of the arrow and are referred
to as center point in this paper. In order to set the ROI, the center point that exists at the Incheon,
South Korea as the target point is selected. As the wind direction changes over time, the angle of the
arrow indicating the wind direction in the next time step image is changed, but the coordinates of
the center point are fixed because the arrow is rotated based on the center point. Therefore, the ROI
was set at 50 × 50, a size that does not interfere with the rotation radius of the arrow when the arrow
rotates 360◦ to the center point. Figure 3 shows the set ROI in magenta.
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The wind direction vector information is not provided in the AMV image. Thus, to extract the
wind direction information, other previous studies have extracted wind direction vector information
from images [14]. In this study, the wind direction arrows are extracted from images and calculated as
described in the following sequence. To obtain information on the wind direction, first, the coordinates
of the tail point is found using the value of the pixel located farthest from the center point among the
pixels that constitute the arrow. Next, the farthest pixel from the center point and tail point at the
same time among the pixels that constitute the arrow is designated as the endpoint. Then, the wind
direction can be acquired by calculating the angle with respect to the north direction of the straight
line connecting the obtained center point and the endpoint. Figure 4 shows a single AMV vector,
which includes the information on the wind direction, wind speed, center point, endpoint, and tail
point. The process of extracting information on the wind speed is as follows: first, a straight line is
drawn parallel to the arrow body in about the distance of the endpoint in the direction of the tail point;
secondly, the wind speed is calculated primarily by counting the number of pixels that overlap between
the newly drawn straight line and the existing wind direction arrow; thirdly, another new straight line
is drawn in the middle of the distance between the arrow body and the tail point; lastly, by calculating
the number of overlapping pixels in the same way as in the second step, it is determined whether there
is a tail segment of 2 m/s, and the wind speed is finally determined by calculating whether there is a
triangle representing 25 m/s.
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Figure 4. A standard station model for wind direction and speed with the location of each point.

2.2.2. Cloud Optical Thickness, Aerosol Optical Depth, and Insolation Image

Figure 2b shows the Cloud Optical Thickness Image, which presents the cloud thickness in a
color index. Various studies are being conducted to analyze the movement and amount of clouds
on satellite images through cloud motion vector [35]. However, in this study, the color index of the
image was used to predict the amount of clouds. To get information on the amount and thickness of
the cloud, the index from 0 to 100 was divided into four levels: clear, partly cloudy, mostly cloudy,
and cloudy. Before extracting the data to analyze the spatial characteristics, ROIadj that is of the same
size as the ROI was designated for 8 directions of the areas adjacent to the ROI adjacent in the AMV
image. The ROIadj were denoted as S1-8 in order from the top left. To extract the amount and thickness
of clouds present in the ROIadj and ROI, the pixels in each region are divided into four color indexes,
and the number of pixels per index was recorded. Figure 5 shows the set ROIadj in cyan.
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Figure 5. An exemplary satellite image of the Cloud Optical Thickness with sub ROI.

Figure 2c shows the Aerosol Optical Depth Image, which represents the aerosol components,
such as yellow dust and PM, in a color index. As in the Cloud Optical Thickness image, the color index
is divided into good, moderate, unhealthy, and very unhealthy, and the number of pixels was recorded.

Figure 2d shows the Insolation Image, which represents the irradiance reaching the ground surface
in a color index. To extract the irradiance in the ROI, the amount of insolation in the range of 0–1000,
which is the size of the color index, was readjusted to the range of 0–488, which is the pixel size of the
color index in the insolation image. After that the average value of the numerical index in the ROI
was recorded.

The satellite images taken at the NMSC are provided every 15 min, which involves the time-series
continuity. However, to combine with the numerical text weather data from KMA, an image of the same
time-scale of 1 h was extracted and used. As with the numerical text weather data, the data extracted
from the satellite images had temporal continuity, as shown in Figure 6. Finally, the values of wind
direction, wind speed, cloud thickness, concentration of PM, and irradiance, which are parameters
every hour extracted from each satellite image, were added to the numerical text weather data set.
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2.3. Correlation Analysis with the Wind Direction of the Cloud and PM

Clouds and PM in the atmosphere have spatial characteristics that move in the wind direction [36].
Therefore, in order to demonstrate the reflection of spatial characteristics in the prediction of solar
PV generation, the mobility of the clouds and PM according to the wind direction from the ROIadj

to ROIadj was numerically verified and expressed as Algorithm 1. The sample datasets used for the
Algorithm 1 are shown in Tables 3 and 4, and the composition of Algorithm 1 follows the following
sequence: the wind direction of the ROI at time t is identified; the amount of cloud and PM at time t of
each ROIadj and ROI are compared and analyzed; the increase or decrease of clouds and PM due to the
movement of clouds and PM at time t + 1 of the ROI according to the wind is determined. For example,
assuming that the wind direction at the ROI at time t is northwest and the amount of clear cloud in S1

is greater than that in the ROI (ROIIncheon), then, the amount of clear cloud of ROI increases at time t + 1,
it is determined as true about movement of clouds and the opposite case as false. Then, the accuracy is
derived by calculating the number of true and false for the entire time. PM also uses the same method
as Algorithm 1. Tables 5 and 6 list the results of the determined mobilities of both clouds and PM with
respect to the wind direction. PM has high accuracy in all the cases, but clouds have high accuracy
only in the mostly cloudy and cloudy levels. In the case of partly cloudy and cloudy, the accuracy is
considered inferior because there is a possibility of natural extinction over time. Therefore, it can be
determined that clouds and PM, which have a great influence on the fluctuations in irradiance and
solar PV generation, have mobility according to the movement of the wind.

Algorithm 1. Algorithm of discriminant for movement of clouds and PM by wind direction.

Denotes WD = Wind Direction; SROI = ROIIncheon; Si = ROIadj; N = number o f samples; c1 = number o f 1 in conditional f or.
1: Determination of i by identification of WDi in the SROI
2: WD = {NW, N, NE, W, E, SW, S, SE}
3: Determination of the Si through i
4: S = {S1, S2, S3, S4, S5, S6, S7, S8}

5: Initialize the time step t = 1
6: Comparison of the amount of cloud in Si,t at t and the amount of cloud in the SROI,t
7: Comparison of the amount of cloud in SROI,t and SROI,t+1
8: For n = 1 to N
9: If Si,t ≥ SROI,t
10: If SROI,t+1 ≥ SROI,t
11: True
12: Else
13: False
14: Else
15: If SROI,t+1 ≤ SROI,t
16: True
17: Else
18: False
19: Accuracy (%) = c1

N × 100
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Table 3. The example of the cloud data sets.

Date Wind
Direction Clear Partly Cloudy Mostly Cloudy Cloudy

18 January 2015
11:00:00 W 0 0 0 0

18 January 2015
12:00:00 W 1608 114 6 0

18 January 2015
13:00:00 SW 1147 935 31 0

18 January 2015
14:00:00 W 0 0 0 0

2015-08-02
08:00:00 SW 0 0 0 0

2015-08-02
09:00:00 W 175 636 165 6

2015-08-02
10:00:00 W 238 332 222 35

2015-08-02
11:00:00 W 52 591 364 0

Table 4. The example of the PM data sets.

Date Wind
Direction Good Moderate Unhealthy Very Unhealthy

18 January 2015
11:00:00 W 27 131 119 57

18 January 2015
12:00:00 W 0 88 204 78

18 January 2015
13:00:00 SW 0 4 30 20

18 January 2015
14:00:00 W 0 6 0 0

2 August 2015
08:00:00 SW 6 144 12 18

2 August 2015
09:00:00 W 0 12 12 9

2 August 2015
10:00:00 W 0 9 62 39

2 August 2015
11:00:00 W 0 0 0 18

Table 5. The result of the discriminant for movement of clouds by wind direction.

Cloud Clear Partly Cloudy Mostly Cloudy Cloudy

Accuracy (%) 75.068 75.793 84.044 91.296

Table 6. The result of discriminant for movement of PM by wind direction.

PM Good Moderate Unhealthy Very Unhealthy

Accuracy (%) 87.489 85.585 89.665 93.382

3. Forecasting Method of Solar PV Generation

3.1. Prediction of Cloud and PM in ROI

Before directly predicting solar PV generation, the concentration of cloud and PM were first
predicted from the image data to reflect the temporal and spatial effects of clouds and PM. There are
four variables in both clouds and PM (cloud: clear, partly cloudy, mostly cloudy, cloudy; PM: good,
moderate, unhealthy, very unhealthy). Next, the data for predicting the amount of cloud and PM in
units of an hour about ROI using the above variables. To predict the amount of the clouds and PM,
the SVR using the linear kernel was employed, and the data from January to December 2015, which is
the entire experimental period, were randomly sampled and trained 60% of each month and predicted
40% of each month to reflect seasonal characteristics.
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3.2. Proposed Models for the Prediction of Solar PV Generation in ROI

The solar PV generation was predicted using ARIMAX, which is a time-series analysis method,
and SVR, ANN, and DNN, which are machine learning algorithms widely used in various fields.
Each method is described in detail as the subsequent subsections.

3.2.1. Autoregressive Moving Integrated Average Exogenous input (ARIMAX)

The ARIMAX is developed by Newsham and Birt [37], and is a method in which external factors act
as additional variables in the ARMIA, which is a traditional statistical time-series analysis method [38].
The ARMIA is a method that satisfies both the autocorrelation model (AR) and the moving average
model (MA) at the same time. The AR determines whether the past data affect the future data, and the
MA identifies the tendency for the average value of any random variable to increase or decrease
continuously over time. The ARIMA is a technique in which differences (I) are added in ARMA, and it
can eliminate abnormalities by applying the initial differencing step. The ARIMAX is mainly employed
when the variables to be predicted have a time series or a periodicity, and is mainly used for short-term
solar PV generation forecasting [39,40]. Since the meteorological and air pollutant variables, including
solar PV generation, provide as an hour data that satisfies the time-series characteristic. The ARIMAX
has the order of p, d, and q, which represent the autoregressive order, difference order, and moving
average order, respectively. In this study, the ARIMAX with and order (1, 0, 1) was used.

3.2.2. Support Vector Regression (SVR)

The SVR is an extended method for regression prediction in the Support Vector Machine (SVM)
proposed by Vapnik in 1995 [41]. The key algorithm of SVR is to learn the training data and then find
the optimal regression function f(x) in which all the predicted values exist within ε, a specific deviation
called the support vector, and the error values of the predicted result are minimized. In general,
the datasets used for the actual prediction cannot be solved with only linear problems of one dimension.
To this end, vectors existing in high dimensions can be calculated linearly using kernel functions
such as RBF, linear and polynomial kernels. The regression function f(x) can be calculated by the
Lagrangian method using the value of the calculated dot product. Compared to other techniques,
the SVR is more generalization ability and is widely used to solve regression problems. Also, due to
the global minimum value, it has remarkable performance in time-series analysis, so it is widely used
in solar PV generation prediction research [42,43]. In this study, a linear kernel was used for both the
prior prediction model for predicting the cloud and PM and the prediction model for predicting solar
PV generation.

3.2.3. Artificial Neural Network (ANN)

ANN, which is actively used for classification and prediction in various fields, is an artificial neural
network that mimics the structure of the human brain. It is composed of input, hidden, and output
layers [44,45]. Like the human brain has numerous neurons connected to collect and process data,
ANN has interconnected nodes in each layer. The output value for input is predicted by the activation
function included in each layer. In the prediction process, the activation function of each layer mainly
calculates the function value and the first-order derivative, and the learning time depends on the
corresponding calculation process. Herein, the proposed model has one hidden layer, and the Relu
function was used as the activation function for the solar PV generation prediction model.

3.2.4. Deep Neural Network (DNN)

DNN is used to expand the number of hidden layers in ANN, as shown in Figure 7 [46,47].
The ANN contains a single hidden layer between input and output layers whereas the basic form of the
DNN can have one or more hidden layers. As the number of hidden layers increases, the computational
complexity also increases, but a combination of nonlinear transformation techniques can lead to high
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prediction accuracy. As in ANN, d nodes X = (1, x1, x2, . . . , xd)T, excluding the bias nodes, are inputs
and O = (O1, O2, . . . , Oc)T with c nodes are outputs. Then, the number of nodes on the hlth layer is
denoted as nj [48].
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The weight W that connects the (L − 1)th layer to the Lth layer is given by (nhl−1 + 1)∗nl, and it
is represented by the matrix Whl, as expressed in Equation (1). As mentioned earlier, the number
of added hidden layers in ANN can be expressed as Equation (2), and input parameter vector X is
represented as an internal parameter Z0, as expressed in Equation (3), when applied in DNN.

In the operation of DNN, the sum of the product of the edge weights connected to the Z vector
and jth node is first obtained and then stored in the S variables. The values of S and Z variables are
stored independently because they are used in the later applied backpropagation algorithm. In this
case, the computation of the jth node of the hlth layer is represented by Equation (4), where nhl − 1 is
the number of nodes in the (hl − 1)th layer. Equation (4) is only for the calculation of a single node,
but Equation (5) allows all operations of the hlth layer to be performed simultaneously. The activation
function τ1 − τL−1 included in each layer mainly uses such functions as logistic, sigmoid, and ReLu
functions, and the softmax function is mainly used in the output layer.

In this study, the tanh, Relu, and sigmoid functions were applied to the hidden layer and the
sigmoid function was applied to the final output layer. Detailed information about each hidden layer
is presented in Table 7. In addition, to avoid overfitting, a dropout layer was added, which omits and
calculates some of the nodes. Nodes omitted from the dropout do not affect learning, thus, the problem
of overfitting can be avoided.
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Table 7. The structure of the DNN.

Number of Hidden Layer 1 2 3 4 5 6 7

Number of Nodes 180 0.4 100 0.4 100 0.4 1
Activation Function tanh Drop out Relu Drop Out Sigmoid Drop out Sigmoid

3.3. Analytic Process for Predicting Solar PV Generation

To predict the solar PV generation, an experiment was conducted by considering three groups
for the same period from January to December 2015 with respect to the solar PV power plant located
at Incheon as described above. In the entire experiment, after predicting the amount of the clouds
and PM of 60% per each month to reflect spatial characteristics in the prediction model. After that,
remained sample data of 40% per each month was randomly chosen, and then 70% were used for
training and 30% for testing. Group 1 used only numerical text data of the commonly used weather
and air pollutants, and forecasting was performed hourly. Group 2 used only satellite image data
to identify spatial characteristics. Thereafter, the predicted amounts of clouds and PM were used
together with the data extracted from the satellite images, including the wind direction and speed,
as the input parameters to predict the solar PV generation. Finally, Group 3 performed prediction by
combining the numerical text data and the data extracted from the satellite images to develop a hybrid
spatio-temporal prediction model. Group 3 conducted an experiment by first predicting the amount of
cloud and PM in the same way as in Group 2, and then combining with numerical text data of the
same period.

For all groups, the parameters for the month, day, and time, representing time, were added to
reflect the temporal characteristics, and one hour previous solar PV generation data was added as
the input parameters for the generation model to reflect the presentity of the prediction model. Also,
to understand the effect of each group on the cloud and PM for all the groups, three cases were adopted:
case 1, where only the cloud is applied as a parameter; case 2, where only PM is applied as a parameter;
case 3 that applies the cloud and PM at the same time. All the groups with the cases are shown in
Table 8.

Table 8. Input parameters by each group and case.

Group 1
(Numerical Text
Weather Data)

Group 2
(Satellite Images)

Group 3
(Mixed, G1 + G2)

Common
Parameters Month, Day, Time, PV (previous data)

Case 1 (Cloud)

Temperature,
Precipitation, Wind

Speed, Wind Direction,
Humidity, Amount of
Sunshine, Irradiance,
Cloudiness, Visibility

Wind Speed, Wind
Direction, Clear, Partly
cloudy, Mostly cloudy,

Cloudy, Irradiance

Temperature,
Precipitation, Wind

Speed, Wind Direction,
Humidity, Amount of
Sunshine, Irradiance,
Clear, Partly cloudy,

Mostly cloudy, Cloudy,
Visibility

Case 2 (PM)

Temperature,
Precipitation, Wind

Speed, Wind Direction,
Humidity, Amount of
Sunshine, Irradiance,

SO2, CO, O3, NO2, PM10,
PM2.5, Visibility

Wind Speed, Wind
Direction, PM_Good,

PM_Moderate,
PM_Unhealthy, PM_Very

Unhealthy, Irradiance

Temperature,
Precipitation, Wind

Speed, Wind Direction,
Humidity, Amount of
Sunshine, Irradiance,

PM_Good,
PM_Moderate,

PM_Unhealthy, PM_Very
Unhealthy, Visibility
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Table 8. Cont.

Group 1
(Numerical Text
Weather Data)

Group 2
(Satellite Images)

Group 3
(Mixed, G1 + G2)

Common
Parameters Month, Day, Time, PV (previous data)

Case 3 (Cloud + PM)

Temperature,
Precipitation, Wind

Speed, Wind Direction,
Humidity, Amount of
Sunshine, Irradiance,

SO2, CO, O3, NO2, PM10,
PM2.5, Cloudiness,

Visibility

Wind Speed, Wind
Direction, Clear, Partly
cloudy, Mostly cloudy,

Cloudy, PM_Good,
PM_Moderate,

PM_Unhealthy, PM_Very
Unhealthy, Irradiance

Temperature,
Precipitation, Wind

Speed, Wind Direction,
Humidity, Amount of
Sunshine, Irradiance,
Clear, Partly cloudy,

Mostly cloudy, Cloudy,
PM_Good,

PM_Moderate,
PM_Unhealthy, PM_Very

Unhealthy, Visibility

Output Parameter PV (One hour ahead)

4. Results and Discussion

To predict solar PV generation, experiments were conducted using five models in three groups,
including ARIMAX, SVR_RBF, SVR_Linear, SVR_Poly, ANN, and DNN. The following error analysis
methods were employed to evaluate the performance of each model:

MAE =
1
n

n∑
i=1

∣∣∣yi
′
− yi

∣∣∣ (6)

RMSE =

√√
1
n

n∑
i=1

(yi′ − yi)
2 (7)

SMAPE(%) =
1
n

n∑
i=1

∣∣∣yi − y′i
∣∣∣∣∣∣yi

∣∣∣+ ∣∣∣y′i∣∣∣ (8)

MBE(%) =

∑n
i=1(yi

′
− yi)∑n

i=1 yi
(9)

CV(%) =
RMSE

1
n
∑n

i=1 yi
(10)

where * y′ : Predicted value, y : Observed value, n : Number of samples.
In general, the methods of analyzing errors in prediction models can be divided into two:

the relative error analysis methods, such as Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE); absolute error analysis method, which uses percentages, such as Mean Absolute Error (MAPE).
In most cases, these error analysis methods are used, but MAPE has the disadvantage of producing
distorted results when the actual value is zero or when there are many extreme anomalies. For solar PV
generation, MAPE cannot be used for a time other than the daylight time because the power generation
converges to zero. To compensate for this problem, the Symmetric Mean Absolute Percentage Error
(SMAPE) was employed. The SMAPE can compensate for the above shortcoming because it produces
the same values even if the actual and the predicted values change.

In addition, the Mean Bias Error (MBE) and Coefficient of Variation (Cv) were employed according
to the criteria of ASHRAE Guideline 14 [49]. These have absolute values like SMAPE, and more
objective evaluation is possible because there is a clear standard of ASHRAE Guideline 14. According to
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the standard, as shown in Table 9, the hourly prediction is specified within MBE of ±10% and Cv of
30%. The MBE has better performance as it goes closer to zero regardless of the sign. However, in this
study, the absolute value was taken for the MBE value for intuitiveness and convenience.

Table 9. Acceptable range of ASHRAE Guideline 14.

Calibration Type Index Acceptable Value

Monthly MBE month ± 5%
Cv (RMSE) month 15%

Hourly MBE hour ±10%
Cv (RMSE) hour 30%

Tables 10–12 summarize the error analysis results for each case. In each group, the model with the
best performance for each error analysis method is shown in bold. From the analyses of the three cases,
the prediction performance of Case 2, in which only PM parameters were used, was the lowest and that
of Case 3, in which parameters for both the cloud and PM were used, was the best. The analysis of the
prediction results of the three groups in each case showed that Group 3, which combined the other two
groups to reflect the temporal and spatial characteristics, exhibited the best performance compared
with Group 1 and Group 2. In Case 1 and Case 3, the models of Group 2 had better performance than
the models of Group 1. Besides, we found that the cloud information extracted from the satellite images
has more influence on solar PV generation prediction than the numerical weather information. On the
other hand, in the case of the PM, numerical weather text data has a significant impact on solar PV
generation prediction compare to satellite images. Among the SVR models for each kernel, the linear
kernel model showed the best performance, and overall, the performance was improved in the order of
ANN, ARIMAX, SVR_Linear, and DNN. The performance of the DNN model of Group 3 in Case 3 has
the best performance in the entire experiments. The DNN and SVR_Linear models satisfied the criteria
of the ASHRAE Guideline 14 in all cases and groups. However, all ANN models except for Group 2 in
Case 2, Group 1 and 2 in Case 3, and ARIMAX model of Group 1 in Case 3 did not satisfy the criteria.

Table 10. Solar PV generation prediction result of case 1.

Group Error ARIMIX SVR_RBF SVR_Linear SVR_Poly ANN DNN

Group 1
(Numerical
Text Data)

MAE 81.261 90.686 81.112 102.638 122.285 72.554
RMSE 101.768 111.289 101.63 128.766 149.354 98.519

SMAPE 17.845 17.114 17.91 21.16 19.706 14.197
MBE 0.017 0.394 0.526 0.504 23.958 0.956
Cv 22.593 24.706 22.562 28.587 33.157 21.872

Group 2
(Satellite
Images)

MAE 79.186 101.178 81.147 180.107 92.738 73.496
RMSE 101.712 124.462 103.107 232.476 117.635 95.934

SMAPE 15.635 18.178 16.51 28.447 16.786 14.484
MBE 0.093 0.052 0.455 12.666 13.171 3.142
Cv 22.58 27.631 22.89 51.61 26.115 21.298

Group 3
(Mixed,

G1 + G2)

MAE 78.143 88.868 78.884 85.339 92.323 67.531
RMSE 101.496 109.402 100.88 116.526 114.274 93.642

SMAPE 17.792 16.841 17.613 16.58 17.857 15.039
MBE 0.06 0.592 0.14 3.89 12.21 6.013
Cv 22.532 24.288 22.396 25.869 25.369 20.789
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Table 11. Solar PV generation prediction result of case 2.

Group Error ARIMIX SVR_RBF SVR_Linear SVR_Poly ANN DNN

Group 1
(Numerical
Text Data)

MAE 79.753 94.812 83.152 76.808 86.44 75.432
RMSE 100.344 115.05 104.319 97.71 106.326 95.944

SMAPE 17.377 17.417 18 16.241 19.124 14.439
MBE 0.265 1.8 1.301 1.585 10.807 3.661
Cv 22.277 25.541 23.159 21.692 23.605 21.3

Group 2
(Satellite
Images)

MAE 78.33 96.5 78.103 190.973 82.34 75.727
RMSE 102.158 118.679 99.672 255.323 105.741 103.094

SMAPE 16.683 17.757 17.017 28.403 15.489 15.202
MBE 0.106 1.665 0.009 18.586 3.51 0.303
Cv 22.679 26.347 22.127 56.682 23.475 22.887

Group 3
(Mixed,

G1 + G2)

MAE 78.895 90.663 80.282 77.882 93.974 71.295
RMSE 102.432 110.424 102.413 104.554 115.703 96.355

SMAPE 17.631 16.957 18.229 15.217 17.829 14.257
MBE 0.195 0.493 0.482 1.207 12.481 2.156
Cv 22.74 24.514 22.736 23.211 25.686 21.391

Table 12. Solar PV generation prediction result of case 3.

Group Error ARIMIX SVR_RBF SVR_Linear SVR_Poly ANN DNN

Group 1
(Numerical
Text Data)

MAE 196.129 90.096 81.154 79.128 95.97 79
RMSE 235.048 111.22 102.268 100.929 119.607 104.059

SMAPE 31.626 17.041 17.596 16.49 20.808 15.123
MBE 11.816 2.076 0.171 1.219 6.619 8.376
Cv 52.181 24.691 22.704 22.406 26.553 23.101

Group 2
(Satellite
Images)

MAE 78.444 93.155 81.448 126.299 82.911 77.713
RMSE 100.831 115.8223 102.696 169.343 107.843 102.005

SMAPE 15.783 17.539 17.04 21.657 16.08 14.815
MBE 0.146 0.883 0.744 4.915 8.321 5.343
Cv 22.385 25.713 22.799 37.604 23.941 22.646

Group 3
(Mixed,

G1 + G2)

MAE 77.554 87.587 80.123 83.163 101.233 71.532
RMSE 101.943 108.229 102.889 107.278 122.508 92.938

SMAPE 17.669 16.66 17.91 17.373 18.776 14.107
MBE 0.342 0.498 0.039 0.134 16.572 4.986
Cv 22.632 24.027 22.842 23.816 27.197 20.633

Table 13 lists the prediction results of the SVR_Linear model, which have the best performance
among the SVR models, and those of the ARIMAX, ANN, and DNN models. These graphs are
represented by extracting 30 h from the entire test periods. All the nine experimental group models
yielded similar observed values, and the DNN models had the best performance.

To further improve the performance of the proposed models, it is necessary to identify and
improve the factors that affect the prediction performance. As an impediment factor, the temporal
continuity of the temporal characteristics may be interrupted during the removal of the missing values
to satisfy the same conditions between each group. Also, there are cases where the clouds disappear
naturally and the wind direction is not observed for a long time due to the weakness of the wind.
Therefore, there is a need for more precise data interpolation methodologies to complement this.
Moreover, the performance of the proposed model could be improved by collecting more data for
analysis and optimizing the machine learning techniques used in this study.
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Table 13. Solar PV generation prediction result of each group.

Case 1 (Cloud Only) Case 2 (PM Only) Case 3 (Using Together)

Group 1
(KMA)
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5. Conclusions

In this study, a hybrid spatio-temporal prediction model, which combines numerical weather text
data and satellite image data, is proposed to develop an accurate solar PV generation prediction model,
which is the most popular model in the field of renewable energies. Conventional meteorological data
are composed of numerical text data and have a continuity of time, but it is difficult to reflect the
effects of spatial characteristics, such as the movement of clouds and PM moving by the wind direction,
as raw data in the prediction model. Therefore, numerical weather text data, satellite images, and time
series-based solar PV generation data were employed to develop the prediction model. Data from a
solar PV power plant located in Incheon, South Korea, was used as the test target, and the entire test
was conducted on an hourly basis from January to December 2015. To develop the optimal prediction
model, machine learning algorithms and statistical time-series analysis methods were employed,
including ARIMAX, SVR_RBF, SVR_Linear, SVR_Poly, ANN, and DNN.

To reflect spatial characteristics in the proposed prediction model, ROI was designated in the
satellite image, and then, ROIadj was designated for eight adjacent directions around the ROI. After that,
the data extracted from ROIadj and ROI were used to predict the amount of cloud and PM parameters
to be used in the prediction model for solar PV generation in the ROI. In addition to the amount of
cloud and PM predicted in the ROI, other numerical weather text data and an hour previous solar PV
generation data were combined to predict the solar PV generation. The experiment was conducted in
three cases and three groups to determine the impact of clouds and PM on the prediction of solar PV
generation. Among the different cases, the DNN model of Group 3 in Case 3, one of the hybrid models,
yielded MAE of 71.532, RMSE of 92.938, SMAPE of 14.107%, MBE of 4.986%, Cv of 20.633%, indicating
the best performance among all the models.

We propose a hybrid spatio-temporal DNN model that reflects the movement of clouds and PM
using numerical weather text data and satellite images. From nine different experiments, we found that
the spatial characteristics of clouds and PM affect the solar PV generation. Through the deepen data
analysis, we confirmed that a proposed prediction model based on both satellite image data of clouds
and numerical weather text data of PM improves the performance of solar PV generation prediction.
In this study, a hybrid spatio-temporal prediction model supporting a notable performance was
developed by utilizing satellite images and numerical weather data in predicting solar PV generation
with time-series characteristics. This would be a useful guideline for the development of precise
solar PV generation prediction models required to improve the efficient and stable power supply of
renewable energy generation systems.
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