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Abstract: Equipped with a 1-meter Cassegrain telescope with 6.2 meter focal length and an
electronically gated Intensified Charge-Coupled Device (ICCD), a multilayer Na imager is designed
and developed at Wuhan in China. This novel instrument has successfully achieved the first
preliminary 3-D image of the mesospheric Sodium (Na) layer when running alongside a Na lidar.
The vertical Na layer profile is measured by the lidar, while the horizontal structure of the layer
at different altitudes is measured by the ICCD imaging with a horizontal resolution of ~3.7 urad.
In this experiment, controlled by the delay and width of the ICCD gating signal, the images of the
layer are taken with three-second temporal resolution for every 5 km. The results show highly variable
structures in both the vertical and horizontal directions within the Na layer. Horizontal images of the
Na layer at different altitudes near both the permanent layer (80–100 km) and a sporadic Na layer at
117.5 km are obtained simultaneously for the first time. The Na number density profiles measured by
the lidar and those derived from this imaging technique show excellent agreement, demonstrating
the success of this observational technique and the first 3-D imaging of the mesospheric Na layer.

Keywords: 3-D imaging; mesospheric Na layer; small-scale dynamics

1. Introduction

The mesospheric Sodium (Na) layer in the mesosphere and lower thermosphere (MLT) at
an altitude of between ~80 km and 110 km is mainly generated through the combination of meteor
ablation and multibody chemical reactions involving several Na compounds and ion species in this
region [1]. Due to the high abundance and large scattering cross section of this metallic Na, the layer has
become an ideal target for laser guide star systems [2] and for Na lidars measuring the temperature and
wind field variations in the MLT [3,4]. Na lidar measurements over the past a few decades have significantly
advanced our understanding of the dynamics and chemistry in this region [5]. Recent progress on Na
lidar technology has greatly improved the sensitivity of the lidar system, and allowed unprecedented
investigations to be undertaken, such as of small-scale atmospheric dynamics revealing an overturning
structure in the layer due to gravity wave breaking-induced instability [6–8]. For example, Guo et al.
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studied the atmospheric turbulence mixing and vertical transport mechanisms using high resolution
Na lidar measurements [9].

However, as a single point observational technique, the Na lidar can conduct these valuable
high resolution measurements only in the vertical direction, while important horizontal information
across the layer altitude range, critical for studies of small-scale atmospheric dynamics, is inaccessible
by the lidar observation alone. On the other hand, passive airglow imaging instruments can measure
the horizontal variations within their field of view (FOV) around the peak altitudes of the layer of
hydroxyl (OH), Na and atomic oxygen (O) in the MLT [10]. Their receiving signals, however, have to be
averaged throughout the whole layer vertically due to relatively weak airglow signals, losing critical
information regarding vertical variations. Many attempts to overcome this restraint, such as looking
at different nightglow layers and tomographic reconstruction, have proven to be difficult and are
limited to a few cases [11–13]. In this paper, taking advantage of the much stronger laser-induced
fluorescent signals from Na atoms within the MLT, we demonstrate a new technique, the Multilayer
Na imager, which has the ability to image the horizontal structure of the layer at different altitudes,
achieving the first 3-D imaging of the mesospheric Na layer. The system, running alongside a high
power Na lidar, consists of a large aperture telescope and an electronically gated, high sensitivity
Intensified Charge-Coupled Device (ICCD). This new observation capability further advances our
understanding of some of the most fundamental small-scale atmospheric processes. The instruments
involved in this investigation are described in Section 2, followed by the new results obtained in the
campaign summer 2017 in Section 3. These results are discussed in detail in Section 4. Section 5
presents the summary of this new investigation.

2. Instruments and Methods

The multilayer Na imager needs to operate alongside a Na lidar to image the laser-induced
fluorescence signals from the Na layer at different altitudes. The lidar laser pulses “illuminate”
the atomic Na within the layer through laser-induced fluorescence processes, and the imager can take
pictures of the horizontal structure of the layer section at different altitudes “illuminated” by the laser
pulses. Figure 1 shows a diagram of the two systems running simultaneously. The critical parameters
of the lidar system and the Multilayer Na imager are listed in Table 1.Remote Sens. 2020, 12, x 3 of 13 

 

 
Figure 1. The system layout of the Multilayer Na imager: the Na imager (left of the orange lidar beam) 
alongside of a high power Na lidar (right of the orange lidar beam). 
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CCD image pixels 1024×1024 - 
Quantum efficiency ~45 % ~40 % 
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The Na lidar was developed and has been operating at Wuhan Institute of Physics and 
Mathematics in Wuhan, China (30.6 °N, 114 °E). The lidar transmitter is a pulsed dye laser (Sirah 
Cobra-Stretch by Sirah Lasertechnik in Grevenbroich, Germany) pumped by a 30-Hz Nd:YAG laser 
(Spectra-Physics Pro 290-30 by Spectra-Physics, Lnc. in Mountain View, CA, USA), emitting laser 
pulses at 589 nm, the resonate wavelength of the Na D2 line. The energy per laser pulse is ~40 mJ 
with a laser linewidth of ~1.2 pm and a pulse lifetime of less than 7 ns, i.e., considerably less than the 
Na lifetime in its 3P state (16 ns). The wavelength of the laser pulse is controlled by sending ~1% of 
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Table 1. Main technical specifications of the Na imager and the Na lidar.

Name Imaging Detection Profile Detection

Launch

Wavelength 589.158 nm

Line width 1.2 pm

Energy ~40 mJ

Beam Divergence ~0.2 × 0.6 mrad

Pulse Width 8~10 ns

Repetition Rate 30 Hz

Receiver

Telescope Cassegrain Newtonian

Aperture Φ1 m Φ1 m

Focal length 6.2 m 2.1 m

Field of view ~3.8 mrad ~0.7 mrad

Emitter − Receiver
distance 20 m 6 m

Detection

Filter bandwidth - 1 nm

Effective detection area 13 × 13 mm Φ5 mm

CCD image pixels 1024 × 1024 -

Quantum efficiency ~45% ~40%

2.1. The Na Lidar

The Na lidar was developed and has been operating at Wuhan Institute of Physics and Mathematics
in Wuhan, China (30.6 ◦N, 114 ◦E). The lidar transmitter is a pulsed dye laser (Sirah Cobra-Stretch by
Sirah Lasertechnik in Grevenbroich, Germany) pumped by a 30-Hz Nd:YAG laser (Spectra-Physics
Pro 290-30 by Spectra-Physics, Lnc. in Mountain View, CA, USA), emitting laser pulses at 589 nm,
the resonate wavelength of the Na D2 line. The energy per laser pulse is ~40 mJ with a laser linewidth
of ~1.2 pm and a pulse lifetime of less than 7 ns, i.e., considerably less than the Na lifetime in its 3P state
(16 ns). The wavelength of the laser pulse is controlled by sending ~1% of the 589 nm laser power into
a temperature controlled Na absorption cell to monitor the frequency in real time. This setup forms
a feedback loop by adjusting the angle of the grating inside the pulse dye laser and, thus, locking the
laser frequency at the Na D2 line (589.158 nm). Due to the rectangular shape of the dye cell in the
last stage of the Sirah dye laser, the output beam spot is elliptical in shape. To limit the divergence
of the output laser beam and increase the lidar receiving efficiency (without saturating the atomic
Na in the mesospheric Na layer), a five-time beam expander is placed after the dye laser, leading to
a ~0.2 mrad divergence angle in the short axis (¦Èshort) and a ~0.6 mrad divergence angle in the long
axis (¦Èlong). The laser generates laser-induced fluorescence signals from the Na atoms in MLT and
“illuminates” the mesospheric Na layer. The lidar receiver collecting these fluorescence signals is
a one-meter diameter Newtonian telescope with a focal length of 2.1 m, placed ~6 meters away from
the outgoing Na lidar laser beam. This off-axis setup can considerably decrease the scattering signals
from the lower atmosphere, which would easily saturate the lidar detector. A 1.5-mm diameter,
multimode filter is placed at the focal plane of the Newtonian telescope to collect the Na lidar signals.
This defines the lidar receiver FOV as ~0.71 mrad, i.e., slightly larger than the divergence angle of
the long axis of the laser beam. This lidar FOV design makes it highly efficient, receiving the lidar
signals while minimizing the sky background. The fiber then guides the lidar signals to a photo
multiplier tube (H7421-40 by Hamamatsu Photonics K.K. in Hamamatsu City, Japan) that converts
the photon signals to electronic pulses. These pulses are then counted by a fast digital counting card
(MCS-PCI by AMETEK Inc. in Berwyn, PA, USA) to generate the photon counting profiles saved in the
data taking computer.
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2.2. The Multilayer Na Imager

Because the laser “illuminated” section of the mesospheric Na layer occupies only a small
horizontal part of the layer, the high resolution imaging of this section requires a high quality lens
system with high-magnification zoom capability and a telescope with long focal length (FOV control to
minimize the noise outside of this “illuminating” section). Thus, a 1-meter diameter parabolic curved
Cassegrain telescope (Nanjing Institute of Astronomical Optics & Technology, National Academy of
Science, Nanjing, China) with a focal length of ~6.2 m is chosen and installed ~20 m from the lidar
outgoing laser beam. This off-axis setup allows images of the Na layer at different altitudes to form at
different locations on the ICCD detection area, which will be discussed later. A Canon EF-S 18-200 lens
is placed right after the field stop to image the telescope focal plane onto the high sensitivity ICCD
(EMICCD, model PI-MAX4-1024EMB, by Princeton Instruments, Inc. in Trenton NJ, USA) that has
an effective detection area of 13 × 13 mm and 1024 × 1024 pixels. Triggered by the lidar, the imaging
at different altitudes is achieved by precisely adjusting the gate delay time (relative to the Na lidar
trigger signal), while the vertical resolution can be set by the gate width (round trip photo traveling
time within the vertical resolution). Because the photons are laser-induced fluorescence, the gate delay
time needs to be set as the photon arriving time. For example, photons coming from 100 km altitude
have a round trip traveling time of 667 µs. The data collecting software is provided by Princeton
Instruments, and images are saved in the .tif (.fit) format. As shown in Figure 1, the ICCD is triggered
by the Q-Switch signal of the Nd:YAG laser. Once the imaging altitude is chosen (delay time of the
electronic gate), the ICCD exposure time, decided by gate width, can be set to decide the vertical
resolution. For example, the ~ 33¦Ìs exposure time determines a vertical resolution of 5 km (round-trip
traveling time of photons within this range). Because the signal to noise ratio (S/N) is low through
single exposure, we set the ICCD to keep taking pictures for 3 s (~100 laser pulses), and then integrate
these pictures into one data file, leading to a vertical resolution of 5 km and temporal resolution of 3
s. The system then turns to another altitude and repeats this process. The ICCD software package is
provided by Princeton Instruments Inc., LightField Software, which can be integrated into National
Instruments’ LabVIEW interface. Overall, the instrument can capture images from an altitude range
between 20 km and 120 km (the upper limit depends on the upward Na layer extension). The images
below ~50 km are generated by Rayleigh scattering, while those between ~80 km and 120 km are the
laser-induced fluorescence signals. It is worth noting that between ~50 km and 80 km, the dramatically
decreasing atmospheric density makes the Rayleigh scattering too weak for the ICCD to generate any
image with a decent signal-to-noise ratio.

To project the image on the telescope focal plane onto the ICCD active area, a Canon zoom length
with 200 zoom capability is adapted here to match the telescope FOV. By utilizing its maximum zoom
capability, we projected a Thorlabs steel ruler that is placed on the telescope’s focal plane onto the ICCD
active area (Figure 2) to quantify the resolution of this Na imager. The two dots are parts of a symbol
on the ruler. As the figure shows, the ICCD covers an area of 23.5 mm × 23.5 mm in the telescope’s
focal plane, corresponding to 3.8 mrad FOV. Based on this, considering that the ICCD active area has
1024 × 1024 pixels (13 mm × 13 mm), the instrumental horizontal resolution is ~3.7 µrad per pixel.
However, it is worth noting that the astronomical measurements above an astronomy observatory are
mostly about 4.8 µrad, i.e., larger than this instrumental resolution. Since the Cassegrain telescope
used for this experiment does not have an adaptive optics system, the actual horizontal resolution is
worse than the calculated results above.
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The basic optical principle of the Na imager is illustrated in Figure 3, where L is the object distance
and l′ is the image distance, H is height of object and h′ represents height of the image. The focal
length of the telescope is 6.2 m. Based on the Gaussian lens formula of geometric optics under paraxial
approximation, 1

l′ +
1
L = 1

F , the image distance, l′, for the Rayleigh signal at 30 km altitude and Na
fluorescent signal at 100 km altitude are 6201.3 mm and 6200.4 mm, respectively, leading to a distance
of 0.9 mm between the two images, i.e., much less than the focal length, F. Thus, to simplify, we can
treat l′ = F = 6.2 m . Because of the laser beam divergence, the sizes of the beam spots (section of Na
layer “illuminated” by laser) at different altitudes are different. Since the dimension of the beam spot
at far field, for example, at an altitude of 100 km, is much larger than that at near field (right out of
the beam expander the beam spot diameter along the short axis is H0 = 0.05 m), we can ignore the
contribution from the dimension of the near field, and calculate the size of the image of the far field
beam spot on the telescope focal plane as:

h′ =
H·l′

L
=

(H0 + θ·L)·l′

L
≈ θshort·l′ = 1.24 mm (along the short axis), (1)

for the direction along the short axis. Therefore, the size of the layer image on the Cassegrain telescope
focal plane becomes almost independent of the altitude, and is mostly decided by the product of the
laser divergence angle and the telescope focal length. The same applies to the far field dimension
along the long axis; the length of the far field beam spot along the long axis is also a constant, 3.72 mm,
on the telescope focal plane.Remote Sens. 2020, 12, x 6 of 13 
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As we mentioned earlier, since the Cassegrain telescope for the horizontal layer observation is
~ 20 m away from the lidar laser beam, the laser beam spots at different altitudes form at different
locations on the ICCD active area. Our calculation shows that the distances between the center locations
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of the beam spots at altitudes of 20 km, 80 km, 100 km and 120 km are 112 pixels, 14 pixels and 9 pixels,
respectively, as shown in Table 2. During the data analysis process, when comparing different images,
this information can be easily accounted for.

Table 2. Image deviation on the ICCD active area at different altitudes.

Altitude (km) 20 80 100 120

Image deviation to the
optical axis (pixel) 270 68 54 45

Relative deviation (pixel) 212 14 9

3. Results

3.1. Horizontal Variations of the Na Layer at Different Altitudes Across the Layer

Figure 4 demonstrates the multilayer imaging of the mesospheric Na layer conducted at two
different local times on the night of 7 June, 2017. The figure shows 10 images of the Na layer illuminated
by the laser from 77.5 km to 122.5 km every 5 km for each local time. It should be pointed out that
these altitudes reflect the center altitude of the 5-km window. The climatological Na number density
profile in the MLT is close to a Gaussian shape, peaking near 90 km altitude [14]. However, short-term
variability can lead to highly variable Na number density variation across the layer altitudes. Since the
laser-induced Na fluorescence is directly proportional to Na number density, images near the peak
of the layer, i.e., at 87.5 km and 92.5 km around the peak altitude of the layer, have the strongest
intensities and the best S/N. The near elliptical shape reflects the laser beam power distribution across
the layer, because the laser beam profile coming out of the dye laser is almost elliptical (see Section 2.1).
A secondary sporadic Na layer between 107.5 km and 117.5 km can be clearly seen in both plots,
although the intensity is much weaker than that at 92.5 km due to the lower Na number density.
Such secondary high altitude metal layers have been observed and reported around the globe by
several lidar systems [15–19], and provide great opportunities to study the dynamic coupling processes
between the neutral atmosphere and the ionosphere. The S/N across the image is not uniform due
to laser intensity distribution. Thus, the uncertainty also varies across the image. The factional
uncertainties of the image, i.e., the inverse of S/N, are mostly below 10 % within the permanent Na layer,
but can be as large as 50% near 100 km and near the edge of the laser spot. The uncertainties of the
secondary Na layer varies considerably, depending on the Na number density.Remote Sens. 2020, 12, x 7 of 13 
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Figure 5 demonstrates simultaneous images at 20 km (Rayleigh) which were averaged through
the 80–120 km altitude range. Due to the off-axis setup, these two images from different altitude
ranges formed at different locations on the ICCD active area. The solid orange line represent the
signal intensity distribution across the image. Each point in the lidar is the sum of all the intensities
of the pixels across the horizontal line. The shape of the laser beam spot (laser power distribution)
can be clearly shown in the Rayleigh signal image, which is close to a Gaussian distribution along both
axes. The zoomed-in image of a star in the FOV is also shown in the plot to the right, which occupies
5 × 6 pixels, corresponding to 15 urad. Since most of the atmospheric distortions during the imaging
process are generated in the troposphere and lower stratosphere, the Rayleigh image of the laser
spot, such as that at 30 km altitude, could serve as the normalization factor, which would remove
the effect on the Na images due to nonuniform laser power distribution. However, the current
S/N of the Rayleigh image is still relatively low due to background noise, especially in the area
outside the full-width-half-maximum (FWHM) region. To specifically measure the horizontal Na layer
disturbances due to atmospheric dynamics, such as turbulence, it would be ideal to have an advanced
adaptive optics system [20,21] added to this Na layer imager to account for imaging distortion due to
troposphere variations. Increasing the lidar laser power, and thereby enhancing the Na fluorescence
signals, could increase the S/N of the Na imaging as well, because both the laser-induced fluorescence
intensity and the Rayleigh scattering intensity are linearly proportional to the laser power while the
sky background is almost constant. With the current resource and instrument limitation, to confidently
reveal the small-scale dynamic structure at each altitude, further data processing techniques (3-D image
smoothing) and noise reduction algorithms are needed, including for the sharp noise induced by stars
moving within the FOV of the imager during observations.Remote Sens. 2020, 12, x 8 of 13 
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3.2. Na Density Profile

In addition to the ability to reveal the horizontal structure of the layer, these Na layer imaging data,
including the Rayleigh imaging, can also be utilized to calculate the Na density vertical distribution
through traditional Rayleigh power normalization, because the brightness of the image (intensity of
laser-induced Na fluorescence) is linearly proportional to the Na number density at each altitude,
as we described earlier. A similar technique has also been utilized to derive the Na density profile from
lidar observations using a continuous high power laser system [22,23]. The potential capability of the
multilayer Na imager is demonstrated in Figure 6, where the Na fluorescence intensity measurements
from the Multilayer Na imager at two different local time are compared with the photon counting profiles
from simultaneous Na lidar observations, showing good agreement between the two instruments.
It has to be pointed out that the imager intensity is scaled by a factor of 3.6 × 10−5 after the background
subtraction, to match the order of magnitude of the lidar photon profile. Thus, when running alongside
of high power adaptive optics system operating at Na D2 line hosted in a large astronomical observatory,
this Na imager could simultaneously measure the Na number density profile, providing important
information regarding the Na beacon altitude [24].Remote Sens. 2020, 12, x 9 of 13 
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4. Discussion

Imaging of the mesospheric Na nightglow, averaged over the whole Na layer, has been conducted
over the past several decades, revealing various small-scale dynamic structures [7]. Compared with
standard nightglow imagers with a typical horizontal resolutions of a few km and no vertical profile
capability, this new instrument is capable of imaging horizontal variations in the Na layer at different
altitudes with resolutions of tens of meters and temporal resolutions of several seconds, achieved near
the layer peak altitude. Utilizing this unique multilayer technique, the imaging of the horizontal
structure of the secondary Na layer in the lower thermosphere between 100 km and 120 km becomes
possible and could potentially provide an unprecedented opportunity to study the much needed
small-scale atmospheric waves and the associated neutral dynamic features in this altitude range,
which was previously impossible to achieve. A secondary Na layer was first reported by Gong et al. [25]
in 2003, mostly between ~105 km and 120 km. This prominent dynamic feature has been frequently
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observed by the Na lidars around the globe in the lower thermosphere [26,27]. Recent studies have
shown that the secondary Na layer appears more frequently in summer months and seems to have
quite high Na density during early evening [28,29]. Although the mechanism of its formation is still
unclear [30–32], it provides a new opportunity to study important ion-neutral coupling processes in the
upper atmosphere. Figure 7 demonstrates the Na density variations measured by the lidar throughout
the night of 7 June, 2017, which indicates a typical secondary Na layer near 110 km lasting for most of
the night. It had high Na number density during the early evening hours, i.e., between ~20:00 LT and
21:00 LT, and then faded into the background in the early morning, when some dramatic disturbance
occurred near 100 km after ~01:30 LT and became stronger near 03:00 LT, similar to turbulence structures
due to atmospheric instabilities. Our new multilayer imaging technique provides the first picture of
the horizontal structure of these intriguing features.Remote Sens. 2020, 12, x 10 of 13 
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Figure 7. Simultaneous Na density measurements by the co-located Na lidar on 7 June, 2017. The two
vertical lines in each plot mark the local time of the Na layer images in Figure 4.

One of the most important discoveries from these preliminary observations is that the horizontal
structure of the secondary Na layer appears to be much more dramatic than that in the permanent
mesospheric Na layer between ~80 and 95 km. As we mentioned earlier, the Rayleigh image of the laser
spot (Figure 5) could be treated as the laser horizontal power distribution before entering into the Na
layer, and can be utilized to calculate the absolute magnitude of the horizontal Na density perturbations
in the future. Figure 8 shows the layout of the images of the Na layer horizontal structure covered by
the laser spot at different altitudes. The tiny bright spots in the images of 100–105 km and 115–120 km
are due to stars that happened to move into the FOV of the Na imager during the observation, and thus,
should not be counted as Na signals. Compared with those in the lower altitudes, the images of
105–110 km and 110–115 km show much stronger horizontal disturbances. Keep in mind that the
laser beam spot near 100 km is about 60 meters along its long axis. Therefore, without any power
normalization, these pictures reveal potential horizontal modulation with a scale of ~20 m within the
secondary Na layer that does not appear in either the Rayleigh image in Figure 5 or that at 30 km
altitude (not shown), indicating that these horizontal irregularities are most likely due to the small-scale
dynamics in the upper atmosphere. Because this paper is focusing on reporting the instrumental
design and demonstrating some preliminary observations, this atmospheric dynamic topic is beyond
the scope of current investigation. Furthermore, by setting up a few more identical Na layer imaging
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systems surrounding the Na lidar, the signal level of the images at different altitudes within the layer
could be significantly improved, providing more robust data for this field of atmospheric science.Remote Sens. 2020, 12, x 11 of 13 
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and 115–120 km (i), conducted on 7 June 2017.

5. Conclusions

In this paper, we present a new instrument, a Multilayer Na imager operating alongside a Na
lidar, which can contribute to various upper atmospheric science investigations. This technology takes
advantage of strong laser-induced fluorescence signals from the Na atoms within the mesospheric Na
layer in the MLT region, when they are excited by laser pulses from a high power Na lidar system.
This novel Na imager provides 3-D high resolution images of the mesospheric Na layer that can reveal
horizontal dynamic variation as small as ~20 m or less within the permanent layer (~80 km to 100 km).
The key components include a 1-meter Cassegrain telescope with 6.2 m focal length and a highly
sensitive electronic gated ICCD, which is triggered by the Nd:YAG laser of the Na lidar. The flexibility
of the delay time and width of the ICCD gating signal adjustment allows the imager to take pictures of
the horizontal structure of the Na layer at different altitudes with specific vertical resolution. Currently,
with ~40 mJ per laser pulse, each image has a vertical resolution of 5 km (controlled by the gate width)
and requires ~100 laser pulses (~3 s) to gain obtain a good S/N ration. Note that these resolutions can
be modified for different scientific investigations.

During the initial observation, this Na imager system took pictures of the mesospheric Na layer at
different altitudes within the layer. It successfully revealed the horizontal structure of the secondary
Na layer near 110 km for the first time, showing different characteristics compared to those in the
permanent layer below 100 km. The success of this Na layer imaging system shows great potential for
its future contributions to various important upper atmosphere scientific topics, such as small-scale
dynamics, turbulence mixing mechanisms, disturbances induced by meteor injection, etc.
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