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Abstract: Gully formation through water-induced soil erosion and related to devastating land
degradation is often a quasi-normal threat to human life, as it is responsible for huge loss of surface soil.
Therefore, gully erosion susceptibility (GES) mapping is necessary in order to reduce the adverse effect
of land degradation and diminishes this type of harmful consequences. The principle goal of the present
research study is to develop GES maps for the Garhbeta I Community Development (C.D.) Block;
West Bengal, India, by using a machine learning algorithm (MLA) of boosted regression tree (BRT),
bagging and the ensemble of BRT-bagging with K-fold cross validation (CV) resampling techniques.
The combination of the aforementioned MLAs with resampling approaches is state-of-the-art soft
computing, not often used in GES evaluation. In further progress of our research work, here we used
a total of 20 gully erosion conditioning factors (GECFs) and a total of 199 gully head cut points for
modelling GES. The variables’ importance, which is responsible for gully erosion, was determined
based on the random forest (RF) algorithm among the several GECFs used in this study. The output
result of the model’s performance was validated through a receiver operating characteristics-area under
curve (ROC-AUC), sensitivity, specificity, positive predictive value (PPV) and negative predictive
value (NPV) statistical analysis. The predicted result shows that the ensemble of BRT-bagging is
the most well fitted for GES where AUC value in K-3 fold is 0.972, whereas the value of AUC in
sensitivity, specificity, PPV and NPV is 0.94, 0.93, 0.96 and 0.93, respectively, in a training dataset,
and followed by the bagging and BRT model. Thus, from the predictive performance of this research
study it is concluded that the ensemble of BRT-Bagging can be applied as a new approach for further
studies in spatial prediction of GES. The outcome of this work can be helpful to policy makers in
implementing remedial measures to minimize damages caused by gully erosion.
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1. Introduction

Gully erosion is one of the major environmental problems throughout the world, especially in
subtropical areas where population pressure and induced activities are severe, and vegetation can
often be fairly limited and thus inadequate in protecting the soil surface from heavy rainfall due to
high rate of surface runoff [1]. It is an essential aspect of soil erosion and land erosion, as well as
a significant source of sediment transferred to streams that challenge the sustainable development
of the world [2]. A gully is generally described as an erosional deep stream feature formed by
running water with a cross-sectional area of >1 ft2, which is too wide to be damaged by traditional
tillage, and most often occurred in lateritic soils and comparatively in weak rocks of weathered
materials [3]. This process is regulated by a combination of several important factors, including
subsurface movement of water, pipe roof collapse, and overland flow [4]. While gully erosion is
a consequence of natural causes, human activity may increase the evolution and development of
gullies [5]. Therefore, negative consequences of gully erosion include crop damage due to sand
splay [6], inundation of low lying regions [7–9], increased badland topography due to severe soil
erosion [10]; [11–13], increased turbidity, lack of water storage capacity in reservoirs, food scarcity due
to gradually decreasing land fertility [5], loss of life and biodiversity, and damage to infrastructure
such as roads and rail [14]. As a result, several bivariate and multivariate statistical methods have
been used, with the collaboration of remotely sensed satellite data, and the processing and analysis of
them in a Geographic Information System (GIS) platform to determine the gully erosion susceptibility
(GES), such as logistic regression [15], frequency ratio [14], weights-of-evidence [16], and evidential
belief function [17]. Recently, several machine-learning algorithms (MLAs) have been widely used
for prediction of GES with high accuracy such as random forest [18], support vector machine [19],
artificial neural networks [20], maximum entropy approaches [21], general linear models [22], and deep
learning neural networks [23]. Several gully erosion control factors responsible for the occurrence
and development of gully erosion were also used in this research study for sustainable analysis
of gully susceptibility assessment [16]. Several research works have also been undertaken on soil
erosion assessment by applying the genetic programming method with the combination of MLAs
for the estimation of vegetation cover and associated phenomena on control of soil erosion and land
degradation [24–26]. The formation and gradual development of gully features and associated erosion
is a vulnerability for land surfaces, which are deeply influenced by existing geological, climatic,
hydrological, environmental and topographical factors [5,15,17,18,20]. However, several empirical
data models have been found to be inaccurate in assessing regions susceptible to gully erosion.
A drawback of such methods is that there are a lack of reliable data for the calculation of the collapse
of the gully [27]. Established literature suggests that numerous computational methods, such as
bivariate and multivariate statistical techniques, have been documented to be effective in modeling
GES utilizing relevant triggering parameters and the prevalent nature of gullies for assessment and
model validation [1,13,15,28]. Furthermore, considering the documented establishment and use of
these methods in GES prediction, there has been a controversy on the best approach for estimating
gully erosion according to its fundamentally dynamic existence. The machine-learning approach
was extensively used in research studies, relevant to ecological and environmental modelling. It has
been proposed that these approaches do better than other data-driven and statistical methods [29].
Literature shows that numerous research work has been carried out by using boosted regression tree
(BRT) and bagging MLA separately on GES assessment by Arabameri et al. [30,31], Zabihi et al. [32],
Nhu et al. [33]. In general, assessment and prediction of gully erosion with utmost accuracy is even
more difficult. Keeping in view the above fact here we used BRT, bagging and a novel ensemble
of BRT-bagging model for sustainable prediction of gully erosion. In this research study of GES
assessment, the reason behind the selection of the aforementioned MLAs is due to their unique
advantages in prediction analysis. BRT is a state-of-the-art MLA which has the capability of high
prediction evaluation with the importance of ranking of input variables accordingly by using boosting
techniques. On the other hand, the bagging ensemble has been used to create a classifier between
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multiple classifiers using a bootstrap aggregating training dataset within the model. The ensemble
of any statistical and MLA has always given better performance than any single models. Therefore,
in this study we also applied an ensemble of the BRT-bagging approach for better prediction of GES
assessment than the single BRT and bagging model. While statistical and machine-learning methods
both have their unique own benefits, studies related to GES modeling for machine-learning approaches
are new, emerging and popular in academia. Therefore, the aforementioned MLAs have the capacity
to fulfill a gap in this research to identify accurate gully locations in the Garhbeta- I community
development (CD) Block. Keeping this in mind, this study aimed at assessing susceptibility to gully
erosion and thus the relative importance of variable control using three recent ML methods i.e., BRT,
bagging and BRT-bagging, respectively, and employing k-fold cross validation resampling techniques.
The novelty in this research study is the ensemble approach of the BRT and bagging models. In general,
the performance of a single BRT and bagging approach has been improved by using ensemble of
aforementioned MLAs. Therefore, based on our knowledge and an intensive literature survey it is said
that there is no research work on GES assessment by using the ensemble of BRT-bagging. As a result,
the proposed ensemble approach has improved the prediction accuracy of GES and this is the novelty
of this research study. The inter comparison of these models was conducted in order to choose the
appropriate machine-learning algorithm (MLA) for the identification of gully locations as well as
the gully erosion sensitivity analyses. The objectives of this research were: (1) identification of gully
erosion contributing parameters and related multi-collinearity analysis; (2) to estimate the importance
value of each variables using MLAs; (3) to examine the implications of four resampling methods of
K-fold (1, 2, 3 and 4) cross validation (CV) on the efficiency of the machine learning models; (4) to
predict the GES maps with maximum possible accuracy using MLAs; (5) and finally model validation
using the receiver operating characteristics (ROC) curves and other statistical analysis. Consequently,
GES maps prepared based on this novel ensemble method can help the environmentalist and planners
to take appropriate measurements for mitigation of the fragile losses of soil and land degradation
within this study area.

2. Materials and Methods

2.1. Description of the Study Area

The current research study was carried out in the Garhbeta I C.D. Block of Paschim Medinipur
district in West Bengal, India. The latitudinal extension of this study area is lying between 22◦45′48′′N
to 22◦56′46′′N latitude and 87◦13′17′′E to 87◦32′12′′E longitude with an aerial coverage of 357.78 sq.
km (Figure 1). This study area is an extended part of the Chhotanagpur plateau, and in West Bengal
this extended part is known as ‘Rarh Bengal’ region. The climate of this study area is tropical monsoon
type with hot-dry summer season and maximum precipitation occurring in the monsoon season i.e.,
in the months of July to September. The mean monthly temperature in the winter and summer season
are 8 ◦C and 43 ◦C respectively, and mean annual temperature is 28 ◦C, with 1450 mm mean annual
rainfall [34]. Therefore, this typical humid climatic region is very much prone to erosional activities
through gully formation and development [35]. The main river in this study area is Shilabati (locally
known as Shilai), which flows in the middle of this C.D. Block. The characteristics of land surface in
this area are barren lateritic surface, hard-rocky uplands with non-arable lands. Within this C.D. Block,
Garhbeta badland is the most rigorously affected by gully formation and associated land degradation
problems. This Garhbeta badland is locally known as Ganganir Danga i.e., the ‘land of fires’, which is
an active riverine process of gully erosion activities.
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Figure 1. Location of study area.

2.2. Methodology

In order to provide accurate and detailed locations of gully erosion, exhaustive field study was
performed in this area and the location of gullies was registered using the Global Positioning System
(GPS) instrument and verified by Google Earth satellite images. A total of 398 gully head-cut points
(199 head-cut points for each gully and non-gully respectively) were selected throughout the study
area. Apart from this, multi-collinearity measures through the methods of variance inflation factor
(VIF) and tolerance (TOL) were employed to identify GES factors accurately. A total of 20 conditioning
parameters i.e., slope, aspect, elevation, profile curvature, plan curvature, topographic wetness index
(TWI), stream power index (SPI), terrain ruggedness index (TRI), rainfall, drainage density, distance
to drainage, geomorphology, land use land cover (LULC), Normalized Vegetation Difference Index
(NDVI), ferrous minerals, iron oxide, soil texture, geology, lineament density and lithology were
chosen for predicting precise GES maps. In this study, we have chosen the non-parametric statistical
method of random forest (RF) algorithm for establishing the relationship between gully head cut
points and its relation with several conditioning factors. GES maps were first developed by using
a boosted regression tree (BRT) and then bagging approach. Eventually, the BRT-bagging ensemble
was used to develop the final GES maps. Methods of K4-fold cross validation (CV) resampling
techniques have been utilized for splitting the gully head cut points. While, unlike empirical sampling
distributions, they do not solve all inferential troubles, they will help generate new statistics and
bring robustness to other conventional ones [36]. Cross-validation is a method of resampling that is
sometimes used to determine the appropriateness of a mathematical model. The concept is to break
the data arbitrarily into one set to match the algorithm, and a different set to test the model’s precision
for prediction [36]. The maps of susceptibility to gully erosion are classified into five classes: very
low, low, medium, high and very high using Jenk’s natural-break classification method in the ArcGIS
platform. The detailed methodology flow chart of the present study area is shown in Figure 2.
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2.2.1. Gully Erosion Inventory Map (GEIM)

For the modelling of GES, a gully erosion inventory map (GEIM) is necessary to understand
the spatial pattern and geometrical form of gullies. In general, a GEIM is prepared based on the
historical gully points and randomly selected the same number of gully points throughout the study
area, for the purpose of validation of the model. GEIM also assess the relationship between the pattern
and distribution of gully head-cuts and several casual factors for occurrences of gullies. In this study,
a rigorous field survey was conducted to identify areas prone to gully erosion. Here, the position
of each gully was measured using the Garmin (76 CSX Garmin) GPS and verified by Google Earth
images. The polygon shape of the gully erosion sites was eventually converted into gully points and
was used to develop a GES model. Here, we used 199 registered gully points and 199 non-gully points,
and splitting them into four K-fold CV. Each fold consists of 25% of data. In this study, each time 75%
data were used for training and the remaining 25% data were used for validation of GES models. In the
present study area of Garhbeta I C.D. Block, GEIMs were prepared by using four K-fold CV i.e., Fold-1,
Fold-2, Fold-3 and Fold-4, which is shown in Figure 3.



Remote Sens. 2020, 12, 3675 6 of 25
Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 26 

 

 
Figure 3. Training and validation dataset of gully and non-gully head-cuts (a). Fold-1; (b). Fold-2; (c). 
Fold-3; (d). Fold-4. 

2.2.2. Dataset Preparation 

For preparation of GES mapping it is indeed necessary to select suitable conditioning factors, 
which is responsible for their formation and development [37]. Therefore, several conditioning 
factors were selected based on local topographical, hydrological, climatological and 
geomorphological conditions within this study area. Based on the aforementioned four conditions 
here we selected 20 gully erosion conditioning factors (GECFs) for evaluation of GES mapping. 
These factors were slope, aspect, elevation, profile curvature, plan curvature, TWI, SPI, TRI, rainfall, 
drainage density, distance to drainage, geomorphology, LULC, NDVI, ferrous minerals, iron oxide, 
soil texture, geology, lineament density and lithology (Figure 4a–t). An Advanced land observing 
satellite (ALOS) Phased array L-band synthetic aperture radar (PALSAR) digital elevation model 
(DEM) with a spatial resolution of 12.5 m was also downloaded from the Alaska Satellite Facility 
(asf.alaska.edu) website to examine the position of each gully erosion prone areas in this study 
region. Several topographical indices such as slope, plan curvature, profile curvature, elevation, 
aspect, distance to drainage etc. were prepared by using DEM data. The soil samples were obtained 
randomly from the field, in order to examine the percentage wise distribution of sand, silt and clay 
in the study region using digital sieve shaker and digital balance machine and verified it through 
National Bureau of Soil Survey and Land Use Planning (NBSS&LUP) soil report. Here, the land use 
map was developed on the basis of the maximum likelihood method in the ERDAS imagine 
software based on Landsat 8 Operational land imager (OLI) satellite imagery obtained on 
28/01/2020. The NDVI derived from Sentinel 2A satellite data. Geology and lithology map were 
obtained from the Geological Survey of India (GSI). Rainfall data of peak monsoon season (July to 
September) was collected from the India Meteorological Department (IMD). In fact, all of these 

Figure 3. Training and validation dataset of gully and non-gully head-cuts (a) Fold-1; (b) Fold-2;
(c) Fold-3; (d) Fold-4.

2.2.2. Dataset Preparation

For preparation of GES mapping it is indeed necessary to select suitable conditioning factors,
which is responsible for their formation and development [37]. Therefore, several conditioning
factors were selected based on local topographical, hydrological, climatological and geomorphological
conditions within this study area. Based on the aforementioned four conditions here we selected
20 gully erosion conditioning factors (GECFs) for evaluation of GES mapping. These factors were slope,
aspect, elevation, profile curvature, plan curvature, TWI, SPI, TRI, rainfall, drainage density, distance to
drainage, geomorphology, LULC, NDVI, ferrous minerals, iron oxide, soil texture, geology, lineament
density and lithology (Figure 4a–t). An Advanced land observing satellite (ALOS) Phased array L-band
synthetic aperture radar (PALSAR) digital elevation model (DEM) with a spatial resolution of 12.5 m
was also downloaded from the Alaska Satellite Facility (asf.alaska.edu) website to examine the position
of each gully erosion prone areas in this study region. Several topographical indices such as slope, plan
curvature, profile curvature, elevation, aspect, distance to drainage etc. were prepared by using DEM
data. The soil samples were obtained randomly from the field, in order to examine the percentage wise
distribution of sand, silt and clay in the study region using digital sieve shaker and digital balance
machine and verified it through National Bureau of Soil Survey and Land Use Planning (NBSS&LUP)
soil report. Here, the land use map was developed on the basis of the maximum likelihood method
in the ERDAS imagine software based on Landsat 8 Operational land imager (OLI) satellite imagery
obtained on 28/01/2020. The NDVI derived from Sentinel 2A satellite data. Geology and lithology map
were obtained from the Geological Survey of India (GSI). Rainfall data of peak monsoon season (July
to September) was collected from the India Meteorological Department (IMD). In fact, all of these
layers and maps have been processing and annotated on the ArcGIS platform. The details of several
geo-environmental factors used in this study area were categorized into following factors.
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Topographical Factors

Different topographical features have a direct impact on the hydrological response of excessive
runoff and these phenomena focus on the formation and development of gullies [38,39]. Alongside
this, topographic features largely control the drainage network, water flow velocity and associated
erosive power. In this study, six types of topographical factors were used for GES assessment and these
were slope, aspect, elevation, profile curvature, plan curvature and TRI. The following equation has
been used for calculating TRI values.

TRI =
√
|X|(max2 −min2) (1)

where, X indicates altitude of every neighbor cell to a definite cell, and max and min are the highest and
smallest altitude among various neighboring cell.

Hydrological Factors

The amount of surface runoff, its relation to the drainage network and erosional activities have
been largely determined by hydrological influenced various conditioning factors [40]. Here, we have
used five hydrological factors, namely TWI, SPI, rainfall, drainage density and distance to drainage.
The following equation has been widely used for calculating TWI and SPI.

TWI = loge

(
As

tanβ

)
(2)

SPI = As ∗ tanβ (3)

where, As represents the catchment area in m2 and β is the gradient of the slope in radians.

Soil-Related Factors

Water-induced soil erosion is the main cause of the formation and enlargement of gullies. Therefore,
several soil characteristics are very much responsible for occurrences of gullies and land degradation.
In this study, we have used soil texture, ferrous minerals and iron oxide as soil-related factors for
assessment of GES mapping. Landsat 8 OLI satellite images have been used for estimation of ferrous
minerals (FMI) and iron oxide by using the following equations.

FMI =
SWIR
NIR

(4)

Iron oxide =
Red band
Blue band

(5)

Lithological Factors

The initiation of gully erosion is very much dependent on the types of rock formation of respective
rock units [20]. Here, we have used four lithological factors namely geomorphology, lithology, geology
and lineament density for mapping and evaluation of gully erosion. Lineament density map was
prepared on Geometica software by using Landsat 8 OLI satellite image.

Environmental Factors

The type and pattern of gully erosion is significantly determined by environmental factors. In this
study, LULC and NDVI were chosen as environmental factors for GES assessment. The following
equation has been used for calculating NDVI values.

NDVI =
ρNIR − ρR

ρNIR + ρR
(6)
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Ruggedness Index (TRI), (i) Rainfall, (j) Drainage density, (k) Distance to Drainage, (l) Geomorphology,
(m) land use land cover (LULC), (n) Normalized Vegetation Difference Index (NDVI), (o) Ferrous
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2.2.3. Multicollinearity Analysis

The multi-collinearity problem among the gully erosion conditioning variables is essential to
recognize their susceptibility prediction power and can be displayed explicitly using the two most
popular statistical techniques i.e., TOL and VIF rather than the traditional one. In this regard, the result
of traditional pair correlation is ambiguity as it is not handling a big data size, is also very much
affected by extreme values and result is misinterpreted when data are homogeneous. Therefore,
keeping in view the above, the variance inflation factor (VIF) is taken into account as the second
function of multi-collinearity analysis resulting from the Tolerance (reciprocal VIF) since that is the
main measure [18]. The advantages of using VIF techniques over the traditional pair correlation is
that VIF has the capacity to analysis more data and significantly reduced the standard errors, reduced
correlation through recode the predictors and give a better result as predictors are less correlated
among the other variables. Taking into consideration that VIF is less than 10 (less than 5 considered for
weaker models) and TOL is less than 0.1 does not suggest a multi-collinearity issue and is suitable for
further application in terms of analysis [17,41,42].Tolerance and VIF formulas are as follows:

TOL = 1−R2
j (7)

VIF =
1

TOL
(8)

where, R2
j represents the regression coefficient of determination of explanatory variable J on all the

other explanatory variables.

2.2.4. Measuring the Variables’ Importance

In this research work, the importance of variables was determined by using the RF algorithm.
Identification of variables importance is a significant task and measures of these variables through
normal statistical techniques is not suitable due to huge data size. Therefore, in this study, we have
used machine learning algorithm of RF for accurate identification of several variables importance.
RF is an ensemble-based machine-learning classifier method proposed by Breiman [43]. The function
of RF is based on decision trees in its initial stage of the model with the collective action of bagging
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approach. To identification of variables importance here we used mean decrease accuracy (MDA)
index in the RF algorithm. The MDA index was calculated by using the following equation [44].

VI j =
1

ntree

ntree∑
t=1

EPt j − Et j (9)

where, VI is the variables importance, Et j represents the OOB error on tree t before permuting the
values of X j and EPt j indicates the OOB error on tree t after permuting the values of X j.

2.2.5. Machine-Learning Methods

Boosted Regression Tree (BRT)

The BRT is an ensemble approach for the application of statistical methods. This MLA is based
on the integration of regression tree and the boosting of statistical methods [45]. The core features
of the BRT model are the handling of observational variables of different types, the processing of
incomplete data, the managing of outliers and data distribution insensitiveness, the handling of
complex non-linear relationships and the adjusting for correlation with exploratory variables [45,46].
The BRT is comparable to a random forest algorithm since the two algorithms are built from a huge
number of trees and resolve the shortcomings of a single tree model. There are two parameters that
need to be set for the ‘learning rate’ in order to decide the role of each tree in the increasing model and
the ‘tree complexity’ in order to monitor when the interactions are made [29,46]. Such parameters have
been configured using the cross-validation tool. In addition, the impact of multiple predictors on the
frequency of disasters was explored using BRTs. While doing so, the relative effect of each predictor
is evaluated on the basis of the degree of predictor selection and pattern enhancement collection.
The mathematical background used in the BRT model can be expressed in the following way: BRT is
based on prediction variables of X = {x1, . . . . . . xn} and variable of response by y. Whereas training
sample represent by

{
yi, Xi

}
, i = 1, . . .N of known y and X values. By analysis this, a function of F ∗ (X)

is determined that basically maps X to y. According to Friedman [47], of all the values of (y, X), the
loss function may be minimize by using following equation:

F∗(X) = ψ(y, F(X)) (10)

In this model, the Gradient boosting approximates F(X) has calculated by using following equation:

F(X) =
M∑

m=0

Fm(X) =
M∑

m=0

βmg(X;αm) (11)

where, g(X;αm) is the regression tree of a particular node, αm is the tree parameters, i.e., different
splitting variables and split points, and βm is the coefficients.

Finally, the BRT model can be run using the following equation:

F
(
X; [βmαm]

m0
)
=

m∑
m=0

βmh(X; am) (12)

where, h(x; m) is the function of a classification with α parameters along with x variables, m is the
several stages of the model of variables and βm is the coefficient in the stage of m.

Bagging

Bagging was first developed by Breiman [48], and is one of the early ensemble methods. To run
individual classifiers, it requires bootstrap samples. Next, the latest sub-training sets are generated by
basic random sampling from substitute learning sets. Such sub-training groups are used to prepare
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the simple classifiers. Consequently, popular vote (weighted popular vote) is used to aggregate base
classifier outcomes [48]. Bagging provides higher precision, because it can carry out more autonomous
research. It is also the fact that the bagging approach is not only used for increasing the generalization
capacity but also minimizes the variance of classification system within the model [49]. The output
result of the bagging algorithm has more accuracy as it is based on independent learning performance.
In the bagging algorithm the optimal classification of the result has been presented as follows:

β(x) =
argmax

∑
δ

y ∈ {−1, 1} b
sgn

(
Cb(x)

)
, y (13)

where, δi. j indicates the symbol of Kronecker, Cb(x) is the constructed classifiers and y ∈ {−1, 1}
indicates labels of gully and non-gully points.

Ensemble of BRT and Bagging

In machine learning, the ensemble model merges the final decision from multiple single models to
develop the overall performance. The main advantage of the ensemble model is that it has the capability
to improve the constancy and prediction accuracy of single MLA. Therefore, several ensemble models
have been widely used for comprehensive analysis of hazard-related susceptibility mapping [21].
Previous research studies have shown that several ensemble approaches is used to get maximum
accuracy in GES studies. Thus, in this research study we have also used a novel ensemble approach
of BRT and Bagging model, as this newly developed ensemble approach has not been used in GES
studies [15,28,50]. The ensemble of these two single MLAs i.e., BRT and bagging, was performed and
analysed in freely available statistical programming language using ‘R’ software. The ensemble of BRT
and bagging is more optimal in regards of GES assessment.

2.2.6. Resampling

Techniques of resampling are used to repeatedly drawing samples from a dataset and refitting
a given configuration on each sample in order to understand more about the data configuration.
Resampling approaches may be costly because they often allow similar statistical techniques to be
applied to various subsets of the results. To acquire further knowledge about the configured model,
resampling procedures refit a model of interest to samples generated from the training collection.
We include details of the test-set estimation loss, for example, and the standard deviation and prejudice
of our predictions for parameters. The test error is the mean error arising from utilizing a system of
mathematical learning to forecast the answer of a new experiment, one that has not been used to practice
the process. By comparison, the error in testing can be accurately determined by applying the process
of predictive learning to the measurement used in its preparation. Various resampling algorithms are
available including K-fold cross validation, cross validation (LOOCV), bootstrap and leave-one-out.

K-Fold Cross Validation

K-fold cross-validation is done by arbitrarily splitting the collection of results into K classes or
folds of about the same scale. Related to leave-one-out cross validation, one of the K folds is used as
the validation collection, while the other K-1 folds are used as the checking collection to produce the
check error estimates for K. The predicted check error for K-fold cross validation arises from the sum of
all results. In this study, we have chosen K-fold CV for splitting the dataset into training and validation
purposes and the advantages of these resampling techniques are reduced bias through computational
times being reduced, each data point has been tested exactly once for better performance and, finally,
the variance of estimated result is reduced and increases the performance result.

Typical values for K are 4, 5 or 10 since they need fewer calculations than when K is equal to n.
Cross-validation can be used both to determine how well a specific statistical learning process will
do on recent data and to determine the lowest point in the calculated test mean square error curve,
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which can be helpful while contrasting statistical learning methods or whenever contrasting various
degrees of versatility for a single statistical learning model.

2.2.7. Validation and Accuracy Assessment

Four statistical methods like responsiveness (TPR), specificity (TNR), positive predictive value
(PPV) and negative predictive value (NPV) were used to test the performance of the machine-learning
models used in the present research. The rationale behind the selection of the aforementioned
validation techniques in this study is that the sensitivity of identifying the test of a correct measure of
the true positive result was affected by problems, whereas the specificity test of correctly measuring
the true negative result was not affected by problems. The positive and negative predictive values
(PPV and NPV respectively) are the amounts of positive and negative outcomes, respectively, in data
and experimental measures which are true positive and true negative findings. On the other hand,
a common tool for verified the model’s output result is the ROC curve. The advantage of using the
ROC curve in validation of the model’s performance is that ROC has been analysed through simple
graphical representation and easily comparison between true and false positive relation. Alongside,
ROC, AUC (area under the curve) is a non-parametric measurement, and therefore it is unaffected by
abnormal distribution of variables. ROC is plotted on the x and y-axis, depending on the intensity
and specificity. ROC’s AUC projects a model’s efficiency. The statistical principle and equation of
that method are presented in depth in the previous studies [18]. Sensitivity (i.e., likelihood detection)
raises the issue in the portion of the gully erosion observed is correctly labeled and its optimum value
is 1. The precision (i.e., negative predictive meaning) raises the issue in the part of the non-gully
erosion is accurately defined and its optimal meaning is 1 [42]. The AUC values of below 0.6, 0.6–0.7,
07–0.8, 0.8–0.9 and above 0.9 suggest that the model is poor, fair, average, outstanding and really high
consistency, respectively. The ROC collection of training data generates the model’s performance
rate, and tests the model’s suitability. ROC from the evaluation data collection indicates the model’s
predictive importance and how strong or poor a predictive model is. Greater values of these predictive
measures suggest the models’ higher performance [17]. The following equations have been used to
calculate the aforementioned statistical analysis for validation.

TPR =
TP

(TP + FN)
(14)

TNR =
TN

(TN + FP)
(15)

PPV =
Number o f positive

(Number o f positive + Number o f f alse positive)
(16)

NPV =
Number o f true negatives

(Number o f true negatives + Number o f f alse negative)
(17)

AUC =

∑
TP +

∑
TN

P + N
(18)

3. Results

3.1. Multi-Collinearity Analysis

Multi-collinearity analysis is one of the widely used factor selection methods for evaluating the
“non-independence” of gully erosion-inducing factors owing to strong correlations among variables,
resulting in incorrect tests and unreliable predictions. Multi-collinearity is known in a dataset as
a linear relationship between two or more gully-erosion conditioning variables [18,28]. The tolerance
(TOL) and variance inflation factors (VIF) values are ≤ 0.1 and ≥ 10 respectively, which indicating
good multi-collinearity among the variables in a dataset [17,51]. The multi-collinearity result (Table 1)
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shows that all variables are maintained threshold values of TOL and VIF for K4-fold training dataset
i.e., Fold-1, Fold-2, Fold-3 and Fold-4, and are suitable for GES modelling and assessment.

Table 1. Multi-collinearity values for several gully erosion conditioning factors (GECFs).

Factors

Collinearity Statistics

Fold 1 Fold 2 Fold 3 Fold 4

TOL VIF TOL VIF TOL VIF TOL VIF

SPI 0.231 4.330 0.233 4.288 0.236 4.237 0.251 3.981
Soil texture 0.225 4.450 0.268 3.736 0.255 3.924 0.854 1.171
Iron oxide 0.255 3.920 0.842 1.188 0.337 2.969 0.604 1.655

Lineament density 0.845 1.183 0.592 1.690 0.731 1.368 0.262 3.813
Geomorphology 0.716 1.397 0.749 1.335 0.458 2.183 0.728 1.374

Slope 0.321 3.113 0.339 2.953 0.819 1.221 0.380 2.630
Geology 0.244 4.104 0.950 1.053 0.251 3.982 0.310 3.228
Rainfall 0.278 3.599 0.779 1.283 0.271 3.692 0.328 3.051

Ferrous minerals 0.291 3.434 0.258 3.870 0.343 2.911 0.467 2.143
Profile curvature 0.602 1.662 0.515 1.942 0.575 1.738 0.695 1.439

Elevation 0.661 1.513 0.642 1.559 0.613 1.631 0.653 1.531
Plan curvature 0.428 2.339 0.374 2.675 0.412 2.425 0.482 2.074

Drainage density 0.412 2.425 0.421 2.376 0.376 2.658 0.378 2.644
NDVI 0.739 1.353 0.784 1.275 0.721 1.387 0.741 1.350

Distance to drainage 0.521 1.921 0.512 1.955 0.491 2.038 0.505 1.981
LULC 0.760 1.316 0.820 1.219 0.819 1.220 0.784 1.275
TWI 0.375 2.666 0.383 2.614 0.327 3.056 0.358 2.790

Aspect 0.477 2.097 0.776 1.288 0.321 3.113 0.225 4.447
Lithology 0.504 1.985 0.682 1.466 0.283 3.536 0.332 3.013

TRI 0.263 3.806 0.762 1.312 0.214 4.671 0.261 3.833

3.2. Determine Best Parameters

The tune parameters of the BRT model suggest that the K-4 fold CV of the resampling algorithm
has a higher interaction depth (3) than the other re-sampling methods (Table 2), whereas the bagging
tune parameters suggest that the K-4 fold CV of the resampling method has a maximum cost (64) with
a sigma value of 0.0483 in comparison with the other resampling approaches (Table 3). In the case of
BRT-bagging tune parameters, the m try value of the K-4 fold CV has the best output relative to the
other resampling methods, which implies an equal number of trees (Table 4).

Table 2. Tune parameters of boosted regression tree (BRT) model based on resampling algorithms.

Resampling Number of Trees Interaction Depth Shrinkage Number of Minobsin Node

1 fold CV 50 2 0.1 10
2 fold CV 50 2 0.1 10
3 fold CV 50 2 0.1 10
4 fold CV 150 3 0.1 10

Table 3. Tune parameters of bagging model based on resampling algorithms.

Resampling Sigma Cost

1 fold CV 0.0507 0.5
2 fold CV 0.0478 0.5
3 fold CV 0.0671 0.25
4 fold CV 0.0483 64
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Table 4. Tune parameters of BRT-bagging model based on resampling algorithms.

Resampling Number of Tree m Try

1 fold CV 200 8
2 fold CV 200 7
3 fold CV 200 8
4 fold CV 200 17

3.3. Relative Variables Importance of Gully Erosion Conditioning Factors (GECFs)

When evaluating susceptibility, it is crucial to choose the right modeling variables, as chosen
factors largely depend on each other in the training dataset. Therefore, it is necessary to calculate the
predictive capacity and multi-collinearity of the 20 chosen conditioning parameters while modeling
GES. Therefore, the values for each conditioning parameter have been calculated by using the RF
algorithm. The assessment of important variables of gully erosion was done through the mean decrease
accuracy (MDA) index, using the RF model, as shown in Table 5. The findings suggest that the
slope, drainage density, profile curvature, geomorphology and soil texture with their values of 76.85
(K2-Fold), 66.71 (K4-Fold), 55.44 (K2-Fold), 52.48 (K4-Fold) and 25.34 (K3-Fold) respectively, are of the
greater importance in gully development and their formation, while the rest of the other variables, iron
oxide, stream power index (SPI), distance to drainage and lineament density with their value of 0.64
(K4-Fold), 2.21 (K3-Fold), 4.21 (K3-Fold) and 6.41 (K1-Fold) respectively, are of less importance in the
occurrence of gullies and their expansion. From the variables importance analysis, it was stated that
the conditioning factors of slope, drainage density, profile curvature, soil texture are highly positively
related with the formation of gullies and their development in this particular study area.

Table 5. Relative importance of gully causative factors.

Factors
Relative Importance Value

Fold 1 Fold 2 Fold 3 Fold 4

SPI 2.74 2.91 2.21 2.54
Soil Texture 23.47 24.51 25.34 24.84
Iron Oxide 0.75 0.78 0.81 0.64

Lineament Density 6.41 7.21 6.84 7.91
Geomorphology 48.75 47.21 50.28 52.48

Slope 72.41 76.85 74.61 75.51
Geology 15.24 16.28 17.21 16.24
Rainfall 10.28 12.54 13.08 11.45

Ferrous Minerals 27.54 24.58 27.14 25.41
Profile Curvature 54.27 55.44 52.47 53.47

Elevation 42.84 44.74 41.75 40.81
Plan Curvature 5.85 6.41 5.78 5.5

Drainage Density 65.74 65.86 64.79 66.71
NDVI 9.82 8.75 9.14 8.92

Distance To Drainage 4.65 5.52 4.21 5.71
LULC 68.41 65.82 66.78 70.21
TWI 30.28 32.28 31.42 34.72

Aspect 28.51 27.63 29.45 26.58
Lithology 27.68 27.45 26.94 27.12

TRI 14.56 14.92 15.71 15.52

3.4. Modeling of Gully Erosion Susceptibility (GES) Mapping

It is essential to choose several appropriate parameters for modeling and evaluating natural
hazards susceptibility assessment, as chosen factors in the training dataset depend on each other to
produce uncertainty in the experiments. Moreover, when predicting GES, it is important to quantify
the predictive efficiency and multi-collinearity of the 20 selected conditioning variables, so that the



Remote Sens. 2020, 12, 3675 17 of 25

importance of variables is calculated in an accurate way. MLA such as BRT, bagging, BRT-bagging and
four resampling approaches (Fold-1 CV, Fold-2 CV, Fold-3 CV and Fold-4) have been used to assess
the position of gully erosion in the GES maps. The output of the ensemble machine learning models
was determined by testing the efficiency of standalone machine-learning models (BRT, bagging) in
order to obtain the precision the erosion susceptibility of Garhbeta-I C.D. Block (Figure 5). In the
case of the BRT model, a GES map using the four fold CV (Figure 5a,d,g,j) have demonstrates the
slight variation among the very high susceptibility zones (Table 6) and these values were 9.32%, 9.48%,
11.10% and 9.18% for the fold-1, fold-2, fold-3 and fold-4 respectively. In the BRT model, the maximum
percentage (23.55%) of very low susceptibility zone was found in fold-3 followed by fold-2 (18.61%),
fold-4 (18.50%) and fold-1 (14.55%). The maximum gullies and their erosional activities were found
along two sides of the river and some isolated patches throughout the study area.

In the case of the bagging approach, very high erosion zone is noticed in fold-1 (Figure 5b)
with an aerial coverage of 16.98% followed by fold-4 (13.04%), fold-2 (11.84%) and fold-3 (10.68%),
and their respective GES maps shown in Figure 5k,e,h. On the other side, very low susceptibility
zones are found in fold-4 (27.03%) followed by fold-3 (24.57%), fold-2 (24.34%) and fold-1 (22.94%).
In the ensemble of BRT-Bagging model, it is found that there is little bit variation in the very high
susceptibility zones among the four folds i.e., fold-1: 21.73% (Figure 5c), fold-2: 18.82% (Figure 5f),
fold-3: 19.12% (Figure 5i) and fold-4: 29.41% (Figure 5l) than the other two models used in GES
mapping. In a similar way, maximum coverage of very low susceptibility zone is found in fold-4
(26.20%) followed by fold-1 (17.62%), fold-3 (16.37%) and fold-2 (14.40%). The graphical representation
of four folds CV’s percentage area shows in Figure 6.

Table 6. Distribution of GES classes.

Susceptibility Class BRT Bagging BRT-Bagging

Fold 1 (Value in %)
Very Low 14.55 22.94 17.62

Low 29.46 19.77 26.43
Moderate 26.56 17.60 19.52

High 20.11 22.72 14.69
Very High 9.32 16.98 21.73

Fold 2 (Value in %)
Very Low 18.61 24.34 14.40

Low 27.21 24.06 26.72
Moderate 29.31 22.00 20.81

High 15.39 17.76 19.24
Very High 9.48 11.84 18.82

Fold 3 (Value in %)
Very Low 23.55 24.57 16.37

Low 29.02 22.57 24.72
Moderate 24.03 21.30 20.25

High 12.28 20.87 19.54
Very High 11.10 10.68 19.12

Fold 4 (Value in %)
Very Low 18.50 27.03 26.20

Low 29.47 23.48 15.11
Moderate 26.69 19.33 13.83

High 16.16 17.15 15.46
Very High 9.18 13.01 29.41
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Figure 5. Gully erosion susceptibility (GES) maps prepared by using Fold-1 (a). BRT, (b). Bagging, 
(c). BRT-Bagging; Fold-2 (d). BRT, (e). Bagging, (f). BRT-Bagging; Fold-3 (g). BRT, (h). Bagging, (i). 
BRT-Bagging and Fold-4 (j). BRT, (k). Bagging, (l). BRT-Bagging. 

Figure 5. Gully erosion susceptibility (GES) maps prepared by using Fold-1 (a) BRT, (b) Bagging,
(c) BRT-Bagging; Fold-2 (d) BRT, (e) Bagging, (f) BRT-Bagging; Fold-3 (g) BRT, (h) Bagging,
(i) BRT-Bagging and Fold-4 (j) BRT, (k) Bagging, (l) BRT-Bagging.
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Figure 6. Graphical percentage distributions of each GES class generated by using the GES models of
(a) Fold-1, (b) Fold-2, (c) Fold-3 and (d) Fold-4.

3.5. Validation of GES Models

The accuracy of all the maps obtained from four K-folds of BRT, bagging and BRT-bagging models
were tested by the sensitivity, specificity, NPV, PPV and ROC curves analysis. The validation results
show precisely that the K-4 fold BRT, K-4 fold bagging and K-4 fold BRT-bagging models with ROC
values for the training dataset are 0.915, 0.922, 0.981 and for the tested dataset are 0.876, 0.884 and
0.942, respectively, and had an excellent level of accuracy (Table 7). Among the three models used in
this research analysis, BRT-bagging is the best fit model as its AUC value is 0.972 in K-3 fold and also
high in sensitivity (0.94), specificity (0.93), NPV (0.96) and PPV (0.93) in the training dataset. The other
two models i.e., bagging and BRT with their AUC value of 0.953 in K-2 fold and 0.915 in K-4 fold rank
second and third respectively for GES assessment in this research study. The validation of graphical
representation of ROC-AUC curve analysis maps for training and tested dataset is shown in Figure 7.
Several previous gully erosion susceptibility (GES) studies have been carried out by using BRT and
bagging models separately. In this study we have used a novel ensemble of the BRT-bagging approach
and which is also shown that this ensemble approach is more robustness for GES assessment. Previous
research work on GES assessment by using BRT model in the Bayazeh Watershed, Iran [30] and in the
Valasht Watershed, Iran [32] have shows that AUC value in single BRT model is much lower i.e., 0.834
and 0.894 respectively than the ensemble of BRT-bagging. Another research work on GES evaluation
by using the ensemble of complex proportional assessment of alternatives (COPRAS)-frequency ratio
(FR)-BRT in the Najafabad watershed, Iran [31] has shows that AUC value is 0.972, which is also lower
than the AUC value (0.981) of the BRT-bagging approach used in this study. Similarly, another research
study on GES assessment in Rabat Turk watershed, Iran [33] based on the ensemble of bagging and
reduced error pruning tree (REPtree) have shown AUC value is 0.871, which is also lower than the
present ensemble approach of BRT-Bagging. Thus, in view of the result of accuracy assessment it is
concluded that the proposal of novel ensemble approach of BRT-bagging is more accurate for gully
erosion as well as any kind of natural hazards susceptibility assessment.
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Table 7. Predictive capability of head gully erosion models using train and test dataset.

Models Resampling Stage
Evaluate Parameters

Sensitivity Specificity NPV PPV AUC

BRT

Fold 1
Train 0.84 0.87 0.84 0.86 0.874
Test 0.79 0.83 0.77 0.84 0.843

Fold 2
Train 0.89 0.9 0.92 0.93 0.894
Test 0.83 0.75 0.74 0.77 0.854

Fold 3
Train 0.86 0.82 0.81 0.89 0.902
Test 0.81 0.75 0.71 0.75 0.863

Fold 4
Train 0.85 0.87 0.88 0.83 0.915
Test 0.83 0.84 0.77 0.8 0.876

Bagging

Fold 1
Train 0.89 0.92 0.9 0.89 0.937
Test 0.74 0.74 0.71 0.81 0.851

Fold 2
Train 0.85 0.91 0.89 0.87 0.953
Test 0.82 0.69 0.71 0.76 0.861

Fold 3
Train 0.92 0.89 0.91 0.88 0.916
Test 0.72 0.82 0.67 0.84 0.856

Fold 4
Train 0.86 0.89 0.82 0.91 0.922
Test 0.79 0.85 0.75 0.71 0.884

BRT-Bagging

Fold 1
Train 0.94 0.92 0.96 0.93 0.967
Test 0.91 0.89 0.91 0.89 0.923

Fold 2
Train 0.91 0.94 0.91 0.95 0.954
Test 0.83 0.85 0.89 0.91 0.935

Fold 3
Train 0.94 0.93 0.96 0.93 0.972
Test 0.76 0.86 0.86 0.9 0.938

Fold 4
Train 0.94 0.96 0.91 0.92 0.981
Test 0.83 0.87 0.8 0.9 0.942

1 
 

 

Figure 7. Cont.



Remote Sens. 2020, 12, 3675 21 of 25

1 
 

 
Figure 7. Validation of results using area under the curve of the receiver operating characteristic: using
training datasets of (a) Fold-1, (b) Fold-2, (c) Fold-3 and (d) Fold-4; and using testing datasets of (e)
Fold-1, (f) Fold-2, (g) Fold-3 and (h). Fold-4.

4. Discussion

Throughout this research, the scientific field-based approach was investigated through the
application of ensemble machine-learning models of K-4 folds CV with BRT, bagging and BRT-bagging
for the creation of gully development susceptibility maps, taking into consideration observed gully
locations. Methods with resampling have been utilized for this research study, as resampling is
a method that may support all of the analysis employed. While, unlike resampling, empirical sampling
distributions do not solve all inferential problems, they will help to generate new statistics and
bring robustness to other conventional ones [36]. Since modeling gully erosion sensitivity, it is
important to quantify the predictive potential and multi-collinearity of the 20 chosen conditioning
parameters, therefore the values of each conditioning variable have been determined [20,27]. In contrast,
few experiments have mainly focused on gully erosion in order to establish and forecast a relation
between gully and its absence, keeping in mind a number of variables incorporating within machine
learning models used here [14,17,52]. Therefore, we have measured the importance value of every
causal parameter behind the presence of gully locations in the study area of Garhbeta I C.D. Block.
The results are correlated with the assumption that the frequency of gully erosion depends on the
volume of the runoff area above the gully and in many other variables such as slope, elevation, drainage
density, soil texture, percentage of clay, NDVI and land use.

Numerous ensemble models are applicable, but new and updated techniques and approaches
for spatial modeling of GES are necessary. Therefore, three machine-learning algorithms namely BRT,
Bagging and BRT-Bagging with four resampling approaches (K-1 fold CV, K-2 fold CV, K-3 fold CV and
K-4 fold CV) were used to assess the efficiency of machine-learning models and to determine the precise
GES maps and gully locations based on the determined 20 significant parameters. Modeling efficiency
evaluation reveals that the ideal approach is a set of models K-4 BRT-bagging, K-4 bagging and K-4
BRT machine learning approaches with excellent precision of 0.981, 0.922 and 0.915, respectively, in the
corresponding susceptibility categories of the gully positions relative to the majority of the ensemble
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machine learning methods. In fact, the ensemble of K-4 fold BRT, K-4 fold bagging and K-4 fold
BRT-bagging improves the generalization of base predictors for gully positions. It is obvious from the
field photos (Figure 1) that there are more gully development sites in and around the study region
than others division of land use. Therefore, this phenomenon demonstrates that the effect of land
use on gully development is very much effective. Unscientific management strategies and land use
modification have been observed to play a crucial role in a regional scale of gully development, as
subsurface piping and gully headcut experiences have led to the creation and development of gullies.
Our results are comparable with those in which gully erosion is largely triggered by precipitation,
land use, clay percentage and elevation [17,18,27]. In addition, the resampling-based ensemble
machine-learning models (K-4 fold BRT, K-4 fold Bagging and K-4 fold BRT-Bagging) established that
gully erosion sites are depend more accurately on a regional scale than the global perspective. Gully
erosion is one of the most important causes of severe soil erosion in the study region and is a main
source of sediment supply in the lower region. These negative consequences have caused considerable
damage to the economy in the region. Therefore appropriate management measures should have to be
introduced, taking into consideration of the local environment of the present study area.

5. Conclusions

Stronger knowledge of the conditioning factors impacting the frequency of gully erosion is
important for the sustainability of areas prone to soil erosion. Throughout this study, the use of two
single machine-learning algorithm i.e., BRT, bagging and an ensemble of BRT-bagging, as well as a four
K-folds CV, rendered it possible to analyze the results of factors impacting the frequency of these
gully erosion characteristics in the study area of Garhbeta I C. D. Block. A multi-collinearity study
was used to identify 20 gully erosion susceptibility (GES) causal parameters and their function in
gully development. In addition, the importance of these causal parameters was also evaluated, where
seven variables, including slope, LULC, drainage density, profile curvature, geomorphology, ferrous
minerals and soil texture, had the strongest impact on gully erosion in the study region. For modeling
of gully erosion, 75% of the gully erosion sites were used for training and the remaining 25% for
model validation. Validation of the models was made using the ROC-AUC curve and other statistical
analyses. The results validation mainly demonstrated that the K-4 fold BRT, K-4 fold bagging and K-4
fold BRT-bagging models with ROC values of 0.981, 0.922 and 0.915, respectively, had an excellent
accuracy level based on selected relevant parameters. The susceptibility map of gully erosion obtained
in this study region can be used to manage land and water conversations, land use planning and,
eventually, sustainable development throughout the region.
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