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Abstract: Floodplains are valuable scenes of water management and nature conservation. A better
understanding of their geomorphological characteristic helps to understand the main processes
involved. We performed a classification of floodplain forms in a naturally developed area in Hungary
using a Digital Terrain Model (DTM) of aerial laser scanning. We derived 60 geomorphometric
variables from the DTM and prepared a geomorphological map of 265 forms (crevasse channels, point
bars, swales, levees). Random Forest classification was conducted with Recursive Feature Elimination
(RFE) on the objects (mean pixel values by forms) and on the pixels of the variables. We also evaluated
the classification probabilities (CP), the spatial uncertainties (SU), and the overfitting in the function
of the number of the variables. We found that the object-based method had a better performance
(95%) than the pixel-based method (78%). RFE helped to identify the most important 13–20 variables,
maintaining the high model performance and reducing the overfitting. However, CP and SU were
not efficient measures of classification accuracy as they were not in accordance with the class level
accuracy metric. Our results help to understand classification results and the specific limits of laser
scanned DTMs. This methodology can be useful in geomorphologic mapping.

Keywords: geomorphometry; terrain analysis; floodplain; random forest; F1; recursive
feature elimination

1. Introduction

Rivers, through erosion and accumulation processes generate various landforms in their
floodplains [1–3]. Among them, levees, located next to the active or abandoned channels, are the most
elevated forms; they can even be a couple of meters higher than the surrounding areas. Due to their
position, they may provide the most critical controls on floodplains, determining the distribution of
water and sediment [4,5]. The surface of levee’s can be dissected by crevasse channels, which operate
only during floods and have a crucial role in delivering water and sediment between the channel
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and its surrounding landforms [6,7]. Usually, within a meander loop, juxtaposed point bars and
swales are formed as a consequence of the lateral migration of a meandering river [8,9]. The ridges
are approximately on the same level as the middle height channel, while the swales are in between
with a concave shape [10,11]. Oxbow lakes, paleo river channels and backswamps belong to the
lowest elevation areas of floodplains; therefore, they serve as sediment traps and are often marshy
areas [12–14]. All these varied landforms make the surface of the floodplains a complex geomorphic
landscape [15–17].

Floodplains are important scenes of habitat protection as the conditions for intensive agriculture
are often poor. Although there are some ploughed lands, large areas remain undisturbed due to the
regular or seasonal water coverage. These areas can be a refuge for several endangered and/or valuable
species. The landforms of the floodplain can predetermine the species distribution with their water
retention and water supply through the terrain height and the groundwater level [18–20]. Furthermore,
they also define the ecological succession paths of the vegetation and create a mosaic structure of the
landscape [21,22]. The habitats of the floodplain only connect to the river during a flood, but this has
a huge ecological importance due to the different activities (shelter, reproduction, feeding) of living
organisms. When this hydrological connection does not exist, lentic water becomes isolated, and can
therefore provide specific habitat [23]. Furthermore, the vegetation gradually covers the variant
geomorphological landforms: the slowly replenishing lakes (e.g., oxbow lakes, backswamps) are
usually first covered by pondweed, then by water caltrop and finally by reed; the flooded grasslands of
the floodplains (e.g., point bars, swales) are enfolded by typha, sedge and other grasses. The unflooded
parts of the floodplain (e.g., levees) are naturally covered by soft-wood and hard-wood forests because
they avoid longlasting water coverage [21]. Consequently, floodplains function as stepping stones
and green corridors in the landscape, and are biodiversity hotspots [24]. Thus, the identification of
the fluvial forms of a floodplain can provide important information for nature protection, and for
landscape planners employed by water authorities.

Conventional topographic maps only delineate larger landforms, usually, for example, oxbow
lakes, paleo channels and deeper swales with water coverage, but do not include many of the landforms
that are also important determining factors of the habitats present on the floodplains. The development
of technology for data collection provides new dimensions in examining the land surface more precisely.
In recent years, LiDAR DTMs (Light Detection And Ranging based Digital Terrain Models) have
become indispensable tools in fluvial geomorphology [25]. We can find many examples of their
application: they have been used for hydraulic modelling [26,27], assessment of fluvial processes [28],
mapping of sedimentary environments [29], modelling the extent of inundation [30,31], and levee
profiling [32,33]. With the spread of computer-based terrain analysis tools, we can derive a large and
increasing number of quantitative descriptors or measures (called terrain attributes or morphometric
variables) of the land [34–36]. Computerized terrain analysis allows us to explore the geomorphometric
characteristics of land surfaces and forms, to identify and classify discrete hydrologic and geomorphic
units, and to have a better understanding of landscape processes [37–40]. Primary terrain attributes,
such as slope, aspect and curvature, are computed directly from DTMs, as they are significant in
determining runoff rate, geomorphology and soil water content [41,42]. Secondary attributes, such as
the topographic wetness index and the topographic position index, are derived from two or more
primary attributes, offering an opportunity to depict pattern as a function of process [41]. Both types
of terrain attributes are valuable tools of feature extraction in geomorphometry.
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Previously, several studies [43–46] have dealt with feature extraction in floodplains, but these
were usually not aimed directly at describing the fluvial forms. In our previous work [47], we aimed to
extract swales and point bars with primary terrain attributes and the Normalized Difference Vegetation
Index (NDVI), and we found that the overall accuracy (OA) of the classification of the forms was
71%. However, geomorphometric indices, including secondary attributes, may help to gain better
results; furthermore, misclassifications can also be reduced with the inclusion of more fluvial forms,
such as crevasse channels and levees. A large number of variables raises the issue of overfitting;
thus, an important step should be the variable selection, the identification of the most important
geomorphometric indices that make the largest contribution to gaining the best classification accuracy,
which can also be applicable in other areas, too.

In this study, our aim was to reveal the efficiency of terrain attributes in fluvial landform (point
bar, swale, levee, crevasse channel) classification. We hypothesized that (i) geomorphometric variables
can identify fluvial forms, (ii) a larger number of predictor variables improve the classification accuracy
and decrease the uncertainty, (iii) overfitting is the function of the number of variables, (iv) the number
of predictor variables can be reduced and, with a proper feature selection, 5–10 terrain attributes can
also reduce overfitting, and (v) an object-based method outperforms the pixel-based approach.

2. Materials and Methods

2.1. Study Site

Our study area is located in northeast Hungary, in the floodplain of the Tisza River below the
confluence of the Bodrog River (Figure 1). The Tisza River becomes a typical plain-tract river here [48].
The study site extends over approximately 10 km2 and is very rich in fluvial landforms. Extensive
farming activity is present here, which helps maintain the land close to its natural condition. The most
typical landforms of the floodplain are scroll patterned landforms formed of point bars and swales
left by the lateral migration of the Tisza River. They roll off the floodplain and make its surface wavy.
Some of them are still very conspicuous, while others are rusty or filled in, making the differences
between the forms faint. Some deeper and wider swales contain wet and marshy parts and dense
aquatic vegetation, while others do not. The point bars are mostly without water and dense vegetation,
expect in rare cases in which they are situated in a relatively low part of the floodplain. Solitary trees
and groups of trees are present in both forms. An extensive levee lies next to the Tisza River, its
surface dissected by natural crevasse channels at many points. This levee is used as arable land.
A less conspicuous levee is situated next to a paleo river channel. Two backswamps and an oxbow
lake can be also found on the study site. There are artificial crevasse channels between some forms
to help the movement of water. Some forms had been already delineated and labelled (e.g., oxbow
lake: Sulymos-Lake, paleo channel: Kis-Morotva-Lake, swale: Nagy-Zátony-Lake) in the Hungarian
national 1:10,000 scale topographic maps.
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Figure 1. The location of the study site and the fluvial forms.

2.2. Data Set and DTM Generation

The aerial survey of the study area was carried out by a Riegl LMS-Q680i aerial laser scanner in
the framework of the SH/2/6 program in August 2012 [49] by Envirosense Ltd. The predetermined
point density was 4 point/m2, and the accuracy was ±15 cm both vertically and horizontally. Our base
dataset was the point cloud provided by the Trans Tisza Water Directorate. We conducted noise
reduction with the neighbourhood distance based method and ground point classification with Cloth
Simulation Filters (CSF) [50]. The DTM was generated from the ground points with the Natural
Neighbour interpolation method at a resolution of 1 m with 0.18 m RMSE (Root-mean-square error) in
the ESRI ArcGIS 10.3.1 software environment [51].

2.3. Terrain Analysis

We conducted a geospatial analysis with two open access software programmes, SAGA GIS
(System for Automated Geoscientific Analyses Geographic Information System) 6.3.0 [52] and Whitebox
GAT (Geospatial Analysis Tools) 3.4.0 [53] and we determined 60 terrain attributes from the DTM
including basic parameters such as aspect, slope, gradient, curvatures, and secondary attributes such
as the wetness index, the multiresolution index of valley bottom/ridge top flatness, mass balance and
the convergence index (Table 1). Furthermore, there was an opportunity to use algorithms to determine
the flood order for each of the cells within the DTM and to carry out elevation residuals analysis [53].
Some terrain attributes had tuning parameters; thus, in these cases, we repeated the calculations with
different settings (e.g., difference from the mean elevation tool with 8, 16, 32 search neighbourhood
sizes) to find the most suitable one for the characterisation.
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Table 1. The terrain attributes derived from the DTM.

ID1 Terrain Attributes * Description Abbreviations Settings References

1 Flood Order It creates the flood order of grid cells, which are encountered during a search, starting from the raster
edges and the lowest cell, moving inward at increasing elevations. FlodO - [53,54]

2 Elevation Relative To Min and Max It expresses the elevation of a grid cell in the DTM as a percentage of the relief between the DTM
minimum and maximum values. ElRel - [53]

3–5 Deviation from Mean Elevation
The difference between the elevation of each cells and the mean elevation of the centering local
neighborhood, normalized by standard deviation.

DevME1 Search Neighborhood
Size: 8 [41,53]

DevME2 Search Neighborhood
Size: 16

DevME3 Search Neighborhood
Size: 32

6–8 Difference from Mean Elevation
The difference between the elevation of each grid cell and the mean elevation in its local neighborhood (a
user-specified rectangular area).

DifME1 Search Neighborhood
Size: 8 [41,55]

DifME2 Search Neighborhood
Size: 16

DifME3 Search Neighborhood
Size: 32

9–10
Maximum Elevation Deviation (Multiscale)

Scale
Magnitude

It calculates the maximum value of deviation from mean elevation across a range of spatial scales. One of
the two output rasters is a raster containing the scale at which the maximum occurred (scale). The other
output is a raster containing this maximum deviation value (magnitude).

MxEMs Defaults [55]
MxEMm Maximum Neighborhood

Radius (cell): 1498
11 Depth in sink A depression depth for each depression cell. DpthS - [53,56]

12 Downslope Index (radius) A measure of the slope gradient, within a specified radius, between a cell and the nearest downslope
location that represents a specified vertical drop. DwnsIR Head potential drop (d): 2 [53,57]

13–15 Elevation Percentile It calculates the elevation percentile based on an image histogram in a user-specified window.
ElevP1 Search Neighborhood

Size: 8 [53]
ElevP2 Search Neighborhood

Size: 16

ElevP3 Search Neighborhood
Size: 32

16 Map Gully Depth

It calculates using the difference from the mean elevation and accounts for the fact that gullies are
differentiated from ravines or larger valleys because they have widths and maximum cross-sectional
depths that are less than the specified parameters (the maximum gully width, the minimum and
maximum gully depths, a threshold in difference from the mean elevation, a plan curvature threshold, and
a smoothing parameter).

MapGI - [53]

17 Multiscale Elevation Residual Index It uses a range of spatial scales to describe the relative landscape position of a location. For each grid cell,
it calculates the difference from the mean elevation. MltERI - [55]

18 Maximum Downslope Elevation Change The maximum elevation drop between each grid cell and its neighbor cells in a 3 × 3 window. MxDwEC - [53]
19 Minimum Downslope Elevation Change The minimum elevation drop between each grid cell and its neighbor cells in a 3 × 3 window. MnDwEC - [53]

20 Sediment Transport Index The transport capacity index. It combines the upslope contributing area, in accordance with the
assumption that the contributing area is directly related to discharge and slope. SedTI - [58,59]

21 Wetness Index The TOPMODEL index. It describes the spatial distribution of zones of saturates. WetnsI Defaults [59,60]
22 Aspect The direction in which the steepest slope of the plane tangent faces (slope azimuth). Asp Defaults [61]
23 Slope The angle made by the plane and the horizontal surface (slope gradient). Slope Defaults [61]

24–27

SAGA Wetness Index
Catchment Area
Catchment Slope

Modified Catchment Area
Topographic Wetness Index

The wetness index describes the tendency of a location to accumulate water. The catchment area is the
area that drains into the catchment outlet. The catchment slope is the average slope over the catchment.
The modified catchment area is based on a calculation, which does not assume that the flow is a very
thin film.

CatchA
CatchS
ModCA

TWI

Defaults
Defaults
Defaults
Defaults

[36,41]
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Table 1. Cont.

ID1 Terrain Attributes * Description Abbreviations Settings References

28 Convergence Index
It calculates an index of convergence (negative value)/divergence (positive value) regarding the overland
flow, using the aspect or gradient of the surrounding cells. It is similar to the plan curvature, but does not
depend on absolute height differences. This version uses a filter of 2 × 2 or 3 × 3 cells.

ConvI Defaults [62,63]

29 Convergence Index (Search Radius) This version of the convergence index uses a search radius. ConvISR Defaults [62,63]

30–31
Downslope Distance Gradient

Gradient
Gradient Difference

It measures downslope controls on local drainage. There are two output layers: one is the gradient, the
other is the difference from the local gradient.

Grad
GradDif

Defaults
Defaults [57,64]

32 Plan Curvature The curvature in the horizontal plane (contour or horizontal curvature). PlanCurv Defaults [61]

33 Profile Curvature The slope variation in the vertical plane (slope profile curvature). The importance of this is that it reveals
the character of the surface (convex, concave, horizontal). ProfCurv Defaults [61,65]

34 Tangential Curvature The plan curvature multiplied by the sine of the slope. TangCurv Defaults [41,65]

35 Cross-Sectional Curvature The tangential curvature intersecting with the plane defined by the normal surface and a tangent to the
contour. CrSCurv Defaults [52,66]

36 Longitudinal Curvature The profile curvature intersecting with the plane defined by the normal surface and maximum gradient
direction. LongCurv Defaults [52,66]

37 General Curvature The second derivative value of a surface; a general measure of the land convexity. GenCurv Defaults [59,65]
38 Maximum Cuvature The maximum convexity in any plane. MaxCurv Defaults [66,67]
39 Minimum Curvature The minimum convexity in any plane. MinCurv Defaults [66,67]
40 Total Curvature Used as a measure of surface curvature. TotCurv Defaults [41]

41–45

Upslope and downslope curvature
Local Curvature

Upslope Curvature
Downslope Curvature

Local Upslope Curvature
Local Downslope Curvature

It calculates the local curvature of a cell as the sum of the gradients to its neighbor cells.

LocCurv
UpSlCurv
DwSlCur

LUpSCurv
LDWSCurv

Defaults
Defaults
Defaults
Defaults
Defaults

[52,68]

46–49

Multiresolution Index of Valley Bottom Flatness
Multiresolution Index of Valley Bottom

Flatness
Multiresolution Ridge Top Flatness Index

Multiresolution index of valley bottom flatness identifies valley bottoms using their flatness and lowness
characteristics. Lowness is measured by a ranking of the elevation in a circular area, and flatness by the
inverse of the slope. The multiresolution ridge top flatness index identifies ridge tops. It uses a very similar
method to MRVBF, only the upper parts of the landscape are identified from the elevation percentile.

MRVBF1 Defaults

[69]MRVBF2 Initial threshold for slope:
8

MRRTF1 Defaults

MRRTF2 Initial threshold for slope:
8

50 Topographic Position Index
It compares a cell value to the mean value of its neighbors in a user-specified window. Positive values are
features, which are typically higher than surrounding ones, negative values represent lower features, and
values near to zero are either flat or areas of constant slope.

TPI Defaults [70]

51–52 Multi-Scale Topographic Position Index
The topographic Position Index (TPI) compares the elevation of each cell to the mean elevation of what
surrounds that cell. Multi-Scale-TPI calculates the TPI for different scales and integrates these into one
single layer. Positive values are higher (ridges); negative values are lower (valley) than their surroundings.

MS-TPI1 Defaults [41,70,71]
MS-TPI2 Min Scale: 8

Max Scale: 8
53 Generalized Surface The smoothed input DTM. GenSurf Defaults [52,66]
54 Morphometric Protection Index It analyses the surroundings of each cell up to a given distance and indicates how the relief protects it. ProtInd Defaults [72]

55–56
Valley Depth

Valley Depth
Ridge Level

Ridge level is calculated by the vertical distance to a channel network base level. Valley depth is calculated
as the difference between the elevation and the ridge level.

Valdpth
RidgLvl

Defaults
Defaults [40,73]

57 Diurnal Anisotropic Heating It uses slope and aspect and addresses diurnal heat balance as influenced by topography. DiurnAH Defaults [34,74]

58 Morphometric features A multi-scale approach. It classifies morphometric features (peaks, ridges, passes, channels, pits and
planes) on the DTM using the slope, aspect and curvature of the surface. MorfFeat Defaults [66]

59 Terrain Ruggedness Index It measures the terrain ruggedness by using the sum of changes in elevation within an area. TRI Defaults [75]

60 Vector Ruggedness Measure It combines the aspect and slope to quantify terrain ruggedness by measuring the dispersion of vectors
orthogonal to the terrain surface. VRM Defaults [75]

* (IDs of 1–21 were computed in WhiteGATBox software environment and 22–60 were computed in SAGA GIS.). The Italics mean the category name of that morphometric variables, which
are in below mentioned.
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2.4. Preprocessing of Input Data for Model Building

The first step was to develop a geomorphology map of the fluvial forms of the area; such a map
was generated in our previous work [47] by visual interpretation of available aerial photos and the
DTM combined with field mapping. The map was edited in the GIS environment and was the input
database of all analyses with 265 geomorphological features (105 point bars, 127 swales, 20 crevasse
channels, 13 levees; the 2 levees of the study site were divided into subsections to ensure more features
were included in the analysis).

2.5. Model Building

2.5.1. Variable Selection

As 61 (the DTM and its 60 derived attributes) variables cause serious issues regarding overfitting,
we intended to reduce the number of predictors; accordingly, we applied the Recursive Feature
Elimination (RFE) technique. RFE was used directly with the classification algorithm (in our case with
the Random Forest) based on the following theory: variables with the least contribution to overall
accuracy are omitted from the set of predictors through iterations. Thus, the initial model considers all
predictors and after removing one variable the model is rebuilt and run again. This process lasts until
only one variable (with the largest contribution) remains in the model. Finally, the result is the rank
of predictors based on their importance in making a contribution to obtaining greater classification
accuracy [76]. We applied the RFE with a 10-fold cross-validation with 3 repetitions in R 4.03 with the
caret package [77].

2.5.2. Supervised Classification Procedure

Random Forest (RF) is a robust and popular classifier in the remote sensing community because it
does not make assumptions on normal distribution and variance homogeneity but its classification
performance is high [78,79]. RF, as a classifier, has proved its efficiency in satellite imagery based land use
studies [80–82], in urban studies based on aerial photography [83] and even in geomorphological object
identification using DTMs [84,85]. Accordingly, we also chose RF as a supervised classification method.

Having the rank of predictor variables derived from RFE, i.e., knowing the predictor-set of the
optimal predictor variable number that ensures the highest overall accuracy, we conducted model
runs involving a decreasing number of variables with the RF classification. We removed one variable
at a time with the lowest contribution until only one variable remained. We applied 500 trees, as
earlier studies reported that errors stabilize before 500 trees are achieved [86]. Furthermore, the mtry
parameter (the optimal number of variables for splitting at nodes) had been optimized to obtain the
greatest accuracy: models were run with increasing mtry values from 2 to 30, and the best model was
chosen based on the highest Overall Accuracy. All models were run with a 10-fold cross validation
with 3 repetitions. This may seem redundant with the RFE; however, the result was an optimized
model that can also be used for prediction, which was applied in the uncertainty analysis.

We aimed to identify swales, point bars, levees, and crevasse channels as the most frequent forms
of the study area. Classification was performed with both (1) pixel-based (PB) and (2) object-oriented
(OO) approaches (Figure 2).
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1. We used the vector layer as reference data of the fluvial forms: stratified random sampling was
carried out and we chose 5000 pixels for training and 5000 pixels for testing.

2. Polygons of the reference vector layer were used as objects; thus, the object-oriented term did not
mean automatic segmentation, but real fluvial objects interpreted in a visual way. We determined
the mean values of the DTM and the 60 derived raster layers by geomorphological features.

Both pixel sampling and mean value extraction were performed in ESRI ArcGIS 10.3.1 [51].
Classifications were performed in R 3.6.3 (R Core Team, 2020) with the rpart [87] and caret packages [77],
and in EnMAP-Box (Environmental Mapping and Analysis Program) 2.1.1 software [88].

2.6. Model Evaluation and Uncertainty Analysis

We used the geomorphological map (see Section 2.4) as the reference dataset: in the OO-approach,
the dataset was randomly split into training and testing, in a 50–50 ratio; in the PB-approach, we
generated a stratified random sampling with 10,000 points within the polygons of the forms, split
randomly into 5000 training and 5000 testing datasets.

We determined the Overall Accuracy (OA) as a general index of classification performance
(Equation (1), [89]), and the F1 [90] for each class (Equation (2)).

OA = (TP + TN)/(TP + TN + FP + FN) (1)

F1 = (2TP)/(2TP + FP + FN) (2)

where TP: true positive, TN: true negative, FP: false positive, FN: false negative number of classifications.
While the OA provides a general evaluation of classifications and makes it possible to compare

different model performances, the F1 is the harmonic mean of the Producers’ and Users’ Accuracy (UA
and PA) [91], and evaluates the class level performance.

For the evaluation of model performances, we applied a 10-fold cross-validation with 3 repetitions
(RKCV): the training dataset was divided into 10 subsets of which 9 were used to train a model and one
to test it; in the next step, another 9 subsets were used to train another model and the remaining subset
for testing. The process finished when all subsets had been used for testing; finally, the whole procedure
was repeated with another two randomly selected subsets, resulting in 30 models. We reported the
medians of the OAs of the 30 models, and each OA was calculated on the test data (i.e., independently
of the training dataset).

Next, we calculated the OAs and F1s using the test dataset, and also the “out-of-the-box”
accuracies using the training dataset for testing, which was important to determine the level of
overfitting (see Section 2.8).
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Beside the thematic accuracy, we also evaluated the probabilities: RF classifications rely on the
highest probability assigned to the classes (in our case fluvial forms); thus, to explore the variation in
the maximal probability, the values per form provide important information [92].

The RF algorithm uses random selection of input data for the numerous (in our case 500) decision
trees in different model runs, thus, theoretically, models cannot be repeated, i.e., all models are different.
However, R (and Python) software provides the possibility of a repetition with the same result (random
sets should be defined). We performed the predictions with the optimized model with 10 different
random sets. While repeated cross-validation produced 30 models, providing a thorough analysis
using the mean, median, standard deviation, and interquartile range of each model, it only used the
reference dataset.

A spatial analysis was performed with the predictions: we used the whole data of the study area
and we calculated the uncertainty. We repeated the predictions with 10 different RF models with the
models of different numbers of input variables (20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2). Then, we determined the
mean values of the 10 predictions, and we expected the following coded landforms: 1 (as crevasse
channels), 2 (as point bars), 3 (as swales) and 4 (as levees). If all predictions of the repetitions resulted
in the same code, numbers would be whole and identical with the expected classes’ number, but if
the prediction resulted in different morphological forms (i.e., classes), the mean would be a number
with fractions. Thus, if we count the number of whole numbers where the results are fractions, we can
visualize and express the level of uncertainty in the predictions.

Furthermore, beside the classifications, we also calculated the probabilities associated with the
given pixels. R software provides the probabilities for each class and we combined the chosen class
and the related probability to the reference pixels. Thus, we were able to evaluate the interaction of the
class level probabilities and the effect of the number of variables.

2.7. Predictor Stability Analysis

Predictors, i.e., geomorphometric variables, were selected by the RFE variable selection method,
but the selection is a function of the input data. Accordingly, we also studied the selected variables of
the RFE. We had set 11 different random samples with 1000 pixels from the 5000 training pixels and,
using the RFE with 10-fold cross-validation with 3 repetitions, we determined the rank orders of the 11
realizations and we then evaluated and summarized the rank orders by their frequency.

2.8. Analysis of Overfitting

As a measure of overfitting, we determined the OA, both with the training dataset (i.e., dependent
on the model, OAtrain) and the testing dataset (independent of the model, OAtest). The difference
between the two types of accuracies revealed whether the classification performance was the function
of a large number of variables (Equation (3)).

Overfitting = OAtrain - OAtest (3)

where OA is the Overall Accuracy.

2.9. Statistical Evaluation

We determined the Pearson correlation coefficients among the geomorphometric variables and
visualized the results in a correlation plot grouped by hierarchical clustering with the Ward method.
Nominal variables had been omitted. The correlation structure’s internal consistency was quantified
with Cronbach’s α. If all variables correlate, α = 1, and when variables do not have any correlation
with the other, α = 0 [93]. We also determined α-values per variable, which helped to find the metrics
that deteriorate the internal consistency.
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We applied General Linear Modelling (GLM) to reveal the relationship among the class
level accuracy measure, the F1, the type of fluvial forms (as factor) and the number of variables
(as covariate) [94]. Assumptions were checked with the Shapiro–Wilk test (normality) and the Levene
test (variance homogeneity). Partial contributions of the independent variables were reported with
the effect size (ω2) [95]. Statistical analysis was performed in R 4.03 with the gamlj and corrplot
packages [96,97].

3. Results

3.1. Results of Data Preprocessing

First, we conducted PCA (Principal Component Analysis) on the variables of the pixels extracted
from the raster layers (PB-approach), which indicated a good fit (Root Mean Square Residual -
RMSR = 0.05); however, the first five PCs explained only 73% of the total variance and several
variables had poor (<0.5) community values. After excluding 11 variables (MnDwEC, Aspect, CatchA,
DiurnAH, ValDpth, ModCA, MRRTF1, MRRTF2, PlanCurv, TotCurv, ConvI), the model fit was the
same (RMSR = 0.05), but the explained total variance changed to 78% (Table 2).

Table 2. Principal components (PC1-5) of the PCA conducted on all variables of pixels extracted from
fluvial forms.

Statistic PC1 PC2 PC3 PC4 PC5

SS loadings 10.31 8.69 8.58 4.18 2.55
Proportion variance 0.23 0.20 0.20 0.09 0.06
Cumulative variance 0.23 0.43 0.63 0.72 0.78

Next, we repeated the PCA with the OO-approach (i.e., pixel means of the visually interpreted
segments of fluvial forms). In this case, we also had to exclude variables due to low communality,
although only three of them were excluded (MxEMs, DiurnAH, PlanCurv), and the explained total
variance was 86% with good fit (RMSR = 0.04) (Table 3).

Table 3. Principal components (PC1-5) of the PCA conducted on all variables of the segments (mean
pixel values of fluvial forms).

Statistic PC1 PC2 PC3 PC4 PC5

SS loadings 20.29 19.02 7.38 4.44 2.35
Proportion variance 0.33 0.31 0.12 0.07 0.04
Cumulative variance 0.33 0.63 0.75 0.82 0.86

The correlation plot (Figure 3) also showed that geomorphometric variables formed highly
correlating groups, but these groups usually contained 6–7 variables (i.e., corresponding to PCs of
PCA). Cronbach’s alpha indicated poor reliability (<0.001), but the omission of FlodO, MxEMs, Aspct,
CatchA, ConvI, ModCA and ValDpth resulted in a better outcome of 0.690. This value is still low;
it should usually be above 0.8.
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Figure 3. Correlation plot of geomorphometric variables.

RFE revealed the most important variables, and according to the different numbers of data, and
the different types of data collection (large number of cases vs. fewer aggregated data), the ranks
were different:

1. PB-approach: maximum OA had been reached with 20 variables (Figure 4)
GenSurf>DTM>ElRel>FlodO>TPI>MRVBF1>DevME3>DifME3>ValDpth>RidgLvl>ConvISR>

ElevP3>MxEMg>DifME2>ElevP2>DevME2>MRRTF1>VRM>MRRTF2>SedTI.
2. OO-approach: maximum OA had been reached with 13 variables (Figure 5)

MRVBF1>MorfFeat>MS_TPI2>ConvISR>DifME1>DevME1>FlodO>ConvI>MS_TPI1>ElRel>
LocCurv>DTM >GenSurf.
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Figure 5. The variables that contributed to reaching the maximum OA in the object-oriented-approach.

A stability analysis of the variables of the PB-approach according to the RFE showed that the
number of optimal variables (i.e., ensuring the largest OA) varied between 11 and 20, and the OAs
varied between 78.5% and 81.1% (Figure 6). GenSurf was the first in the rank order in eight cases out
of the 11 repetitions, ElRel was the second in eight cases, DTM was the third in seven cases, FlodO
was the fourth in eight cases and TPI was the fifth in five cases; all other rank places were mixed with
different indices. Regarding the first ten variables, GenSurf, ElRel, DTM, FlodO, TPI, DevMe3, DifME3
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and ValDpth were stable elements of the ranking, MRVBF1 was in the list in nine cases, and the rest of
the places consisted of other morphometric indices.
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Figure 6. Overall accuracy and number of variables according to the Recursive Feature Elimination
variable selection method in pixel-based (a) and object-oriented (b) methods (10-fold cross-validation
with 3 repetitions, i.e., 30 models; •: highest OA).

The rank order of the variables was different for the OO-approach: the optimal number of
variables varied between 10 and 60, with almost the same OAs between 95.2% and 95.7%. The most
important variable was MRVBF1, which was the first in the rank order in 11 cases of the 11 repetitions.
The second in the list was MorfFeat in 11 cases, the third was ConvISR in 5 cases, the fifth was MS_TPI2
in 8 cases and the sixth was DevME1 in 11 cases. From the seventh place in the rank, there was no
dominant variable.

3.2. Overall Accuracies of RF Classifications

3.2.1. Pixel-Based Classification

As a first step, we involved all of the 61 variables and determined its overall accuracy: its 80.7%
median OA indicated an efficient outcome (Figure 7a). Reducing the number of variables caused a
slight decrease in OAs, but the rank order by OAs did not follow the number of variables. Differences
in the OA-medians were slight and ranged between 79.7% (25 variables) and 76.1% (four variables).
The model with four geomorphometric indices, GenSurf, ElRel, DTM and FlodO, was only 4.6% worse
in the prediction than when 61 variables were used (Figures 7a and 8b). Furthermore, 11 variables
resulted in the fourth best result (78.3%), and the optimal 20 variables according to the RFE produced
an OA of 79.5%, which is only 1.1% worse than the model run with 61 variables. Finally, we tested the
efficiency of the PCA-model, which was the fourth worst model (with a median of 74.2%), and worse
than using four variables. However, there was a threshold in the decrease in OAs at three variables:
the decreases in the OAs changed from <1% to 15%.
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pixel-based approach.

Visualizing the classifications revealed that the 2-variable solution relevantly underestimated the
swales and had a high proportion of salt-and-pepper errors (Figure 8a). The appearance of the 4- and
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20-variable versions showed clarified maps with only a small proportion of salt-and-pepper errors.
Both versions had errors in the southern part of the study area; swales had been over-represented.
However, this area consisted of lakes (Kis-Morotva Lake, Kis-Pap Lake and Nagy-Pap Lake) and a
floodplain depression of an irregular shape. Further sources of misclassifications were also outside
the areas of interest; these were oxbow lakes at the northern part (Sulymos Lake) and on the eastern
border (Nagy-Morotva Lake). Generally, the 20-variable solution reflected the geomorphology in an
acceptable way and all larger errors were any of the forms we intended to identify.

3.2.2. Object-Oriented Classification

We applied the same procedure in OO-based classifications, too, and the result was different: the
best OA belonged to the model of 10-variables (95.4%) (Figure 7b), which is almost 15% better than in
the PB-approach. Another difference is that the optimal number of variables was 13 according to the
RFE variable selection, but it was only the seventh best model in the list. We can discriminate three
groups by the OAs: in the first group, the OAs were between 95.4% and 95.0%, in the second group
between 91.3% and 90.9%, and third group consisted of only one model (with one variable) with an
OA of 45.2%. The first three variables, MRVBF1>MorfFeat>MS_TPI2, ensured a relatively high (95.0%)
accuracy. Although the interquartile ranges were larger than in the PB-approach, even the minimums
were ~10% higher in the OO-models.

Maps of the OO-approach, i.e., the classified polygons, did not have large differences regarding
the number of involved variables (Figure 9). Related to the 13-variable model, the 2-variable model
had only some misclassifications, the two models were very similar, and most of the differences were
of swales wrongly classified as crevasse channels. Furthermore, we found swales classified as point
bars, and a point bar classified as a levee, but the geomorphic characteristics had been well represented
in spite of the model errors.
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Figure 9. Landform map of the floodplain using 2 (a) and 13 (b) variables based on the
object-oriented approach.

3.3. Class Level Probabilities of Classifications

The highest probabilities usually belonged to crevasse channels and point bars, while the lowest
belonged to swales (Figure 10). However, this result is misleading, because F1-values indicated that
the lowest accuracies were experienced in crevasse channels (<20%), and the swales and point bars
had the greatest accuracy (60–70%; Figure 11). Regarding the number of variables, using 20 variables
should have resulted in the most efficient model with the PB-approach according to the RFE, and this
was true for the OA values (25 variables was only 0.2% better; Figure 6), but in the case of class level
probabilities, the highest numbers were experienced with the 8–10-variable models, which were also
efficient with the F1-values (Figure 11).
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Visualized maximum probability values (Figure 12) correspondent with the maps, but this was a
natural phenomenon as the result of the classification, and the probability had been calculated with
the same algorithm and settings. However, combining this information with the mean values of the
landform classes (Figure 10), we were able to justify that the spatial distribution of the different values
of probability provided the landform map itself.
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Figure 12. Maximum probability values of landforms calculated by the Random Forest classifier (i.e.,
these values belonged to the classified pixels; (a): 2-variable, (b): 4-variable, (c): 20-variable solutions).
We used a composite to visualize the results (red band: levees; green band: point bar; blue band: swale;
and the black color was the crevasse channel).

In the OO-approach, probabilities were higher, usually above 80%, and the levees had the lowest
and the point bars the highest values (Figure 13). Although the 13-variable model did not result in
better classification probabilities for the fluvial forms, the F1-values showed that the best class level
performance belonged to this model (Figure 14). We also have to note that the performance of models
conducted with 10–11–12–13 variables was almost the same according to the F1.
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3.4. Spatial Uncertainty Issues

Spatial uncertainty analysis, as reflected in different realizations of classifications, also pointed to
the fact that even a high classification performance showed different results, i.e., repetitions resulted
in different spatial outcomes (Figure 15). According to the 10 repetitions, the lowest proportion of
differing realizations was associated with the levees (mean: 2.8%), and the point bars and swales had
the largest proportion with almost the same values (mean: 6.9 and 6.5%, respectively). The uncertainty
was the highest with the 2-variable models, and became stable when more than 10 variables were
involved, but this did not mean lower values: point bars and swales had 1% more uncertainty with
10 variables (increasing from 6.1 to 7.1%).
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3.5. Result of Overfitting Analysis

Overfitting, i.e., the effect of the number of variables on the OA values, was not obvious: the
overfit difference was usually more than 12% above four variables for the PB-approach and 7% with
the OO-approach (Figure 16). However, the peak of the PB-approach at 48 variables (26.6% difference)
belonged to the model using the PCs of PCA, and as we pointed out, the explained variance of the
PCA was not high (only 78%). In the OO-approach, the explained variance of the PCA of 52 variables
was higher (86%) with a better model fit, and the difference was one of the smallest. The analysis
revealed that using all variables did not cause a larger difference between the OAs of training and
testing datasets than using only five variables. In the OO-approach, the difference was the smallest
with the 1-variable and the 13-variable models.
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Figure 16. Change in overfitting and the number of variables in object-based (OO) and pixel-based
(PB) approaches.

GLM models also indicated that F1 values were determined by the fluvial forms and the role of
the number of variables was not significant, and also had a low effect size (Tables 4 and 5). Accordingly,
fluvial forms had characteristically higher or lower F1 values, i.e., the number of variables did not
improve the class level indices in a relevant way.

Table 4. Result of GLM, based on the PB-approach (dependent variable: F1).

Parameters SS df F p ω2

Model 3.3757 4 122.18 <0.001 0.869
Fluvial form 3.3436 3 161.36 <0.001 0.863

Number of variables 0.023 1 3.33 0.072 0.004
Residuals 0.4697 68

Total 3.8454 72

Table 5. Result of GLM, based on the OO-approach.

Parameters SS df F p ω2

Model 0.7663 4 15.86 <0.001 0.515
Fluvial form 0.7394 3 20.41 <0.001 0.504

Number of variables 0.027 1 2.23 0.141 0.011
Residuals 0.6159 51

Total 1.3823 55

4. Discussion

3D point clouds of LiDAR are considered to be the most efficient and powerful surveying
method, which provides accurate data about the ground and objects’ surface height, even in vegetated
areas. However, this data type can have issues in areas where the terrain is flat, but the relative
differences cause important changes in the environment. These areas include wetlands, floodplains,
and salt-affected steppes where 0.1–0.2 m relative differences cause changes in the water supply, soil
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moisture or salt content. A better understanding of the geomorphology and the fluvial processes can
help sustainable planning in these areas, and the LiDAR technology can be a promising tool for this.

4.1. Object-Oriented and Pixel-Based Classifications

The OO-approach provided ~15–17% better model performance for fluvial form identification
than the PB-approach. The object-based and pixel-based comparisons usually proved that segments
ensure better input data than pixels. The authors of [98] came to the same conclusion; they applied
object-based “geons”, i.e., homogenous regions, and pixels in the landslide susceptibility mapping and
the approach using segments—the geons—provided the highest accuracy. Several other authors found
the same results: [99] with hyperspectral data, [100] with Sentinel-2 images, [101,102] with ASTER
images, and [103] with visible aerial imagery. We emphasized that our OO-based approach was not a
classic segmentation of object-based image analysis (OBIA); our objects were fluvial forms interpreted
by visual characteristics and field observations. Thus, in our case, one object meant a given fluvial
form, with the sole exception of levees (there were too few forms: we divided up the existing ones to
increase the cases). Similarly to the studies where OBIA was successful, our objects of fluvial forms
were good basic units of the landscape, but the main difference from the OBIA lies in the interpretation:
it needs expertise (the capability to identify the forms in aerial images, in digital terrain models and
in the field); furthermore, it is time-consuming (depending on the extent), i.e., all objects in the area
should be identified correctly; however, when it is completed, the geomorphological aspect is ready,
too. Unlike segments that varied in shape as the pixel values changed, our objects covered all of the
pixels that are characteristic of the classes. Accordingly, the mean pixel values of the raster layers of
geomorphometric variables can regarded as the quantified measure of the separability of the forms.
If classifications produce only a weak performance, we cannot expect a high degree of accuracy in
the PB-approach. As our OO-based classifications provided about 95% OA, this was the theoretical
maximum for the PB-approach, too. The 78–80% OA for the PB-approach was higher than using only
the slope, aspect, terrain height and NDVI with two fluvial forms (71% OA; [47]).

4.2. Variable Selection, Number of Variables and the Issue of Overfit

Variable selection is a key step to reduce the number of variables in order to decrease the chance
of overfitting while preserving high classification accuracy. We ran several models with different
variable sets and the number of variables, and the results showed that in the OO-approach, the OAs
were ~95%, and in the PB-approach, ~78%. The highest OAs were obtained with the highest number
of variables for the PB-approach, but in the OO-approach this was not entirely true: involving all
variables only resulted in the fourth place (although it is also important that the difference among
first three models was <0.2%). Accuracy assessment using the RKCV was 7% worse than testing
with the training data, indicating serious overfitting. With the OO-approach, the smallest overfit was
experienced with the 1-, 12- and 13-variables models (1%, 1.2% and 0.8%, respectively). The overfitting
was 6–7% in all other models, regardless of the number of variables, and even when using 2–9 variables.
In the PB-approach, the overfitting was higher, at 11–12%, and the lowest values were observed with
1–3 variables. However, 1–3 variables produced a poor model performance, too; thus the lowest overfit
values were not useful in selecting the best model.

An uncommon phenomenon was experienced with the PCA: application of PCs usually results
in higher model performance, as has been proven in different studies [104–107]. However, in this
case, the PCA was not a successful alternative. According to the analysis of correlation structure,
several potentially useful metrics should be omitted based on the communality and the item-related
Cronbach’s α. For example, FlodO, ConvI and ValDpth were important predictors in the classification,
but if we insist on the correlation-related dimension reduction, we have to miss them. The reason
was that the correlation structure was not optimal, and the variables were geomorphometric indices
and not bands of a hyperspectral sensor, where there is a high level of correlation between the bands.
The authors of [108] used PCA with geomorphometric variables in watershed prioritization, but they
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used watershed parameters, which resulted in a better correlation structure. The authors of [109] used
PCA to reduce 230 terrain attributes to 67, and they concluded that five metrics were enough to explain
51% of the total variance. In our case, we were not able to delineate this reduction, but the RFE as a
feature selection method was appropriate to find the most important variables.

RFE provided a list of 13–20 variables from the possible 61, but the structure, i.e., the variables
that make the list, varied. RFE was run with the RF algorithm, which uses several decision trees
of bootstrapped samples, and all model runs can provide different results. Our experiment with 11
randomly selected datasets from the 5000 pixels and 265 forms showed that the OO and PB-approaches
had different variables that contribute to the highest OAs. Furthermore, there were important variables,
with relevant contributions in all repetitions. Our third observation was that although the variable sets
could differ in the repetitions, the OAs obtained were the same in 1–2% variations. Accordingly, if
there are many variables, there are different variable sets, which ensure more or less the same result.
The most important geomorphometric indices were GenSurf, ElRel, DTM, FlodO, and TPI for the
PB-approach, and MRVBF1, MorfFeat, ConvISR, MS_TPI2, and DevME1 for the OO-approach. In the
first most important ten variables we find overlaps, but with different settings, i.e.,: with DevME
and DifME, although MRVBF was the same regarding the ranks. Differences in the importance were
normal, because the number of the data (1000 vs. 265) and the characteristics of the data (pixel values
vs. pixel means by forms) were also different. The authors of [110] pointed out that RFE is useful
in reducing predictor numbers; thus, machine and deep learning algorithms can be faster without
variables that make a small contribution. We also experienced that RF models were trained in a shorter
time, and the model accuracy was only slightly (1–2%) lower; moreover, in the OO-approach, omitting
irrelevant predictors, and with only 10–13 variables, the model became ~1% better.

DTM (absolute terrain height) should have been efficient alone, but as the terrain had a slight
change from the river to the dyke, and from the North to South, thus, swales and point bars can have
the same height in the area. Accordingly, the most efficient metrics were able to reflect the specific
characteristics of fluvial forms, i.e., the shapes, convexity–concavity, and relative situation of the
forms. Efficient variables considered the relative differences (based on minimums and maximums)
of the neighboring areas; furthermore, the convergence–divergence, GenSurf, Elrel, FlodO, MRVBF1
and ConvISR were important both for PB and OO-approaches, while DevME and DifME were also
important but with different settings: the larger kernel window (with 16 and 32 neighboring pixels)
were efficient for the PB-approach and the smaller kernel (8 neighbors) had large importance for the
OO-approach. Finding the right class of a single pixel requires larger neighboring area, while with the
OO-approach values belonging to objects are means of the given polygon; therefore, larger kernels
mean double averaging and do not help the classification.

4.3. Uncertainty

We measured the uncertainty in different ways, and the results were contradictory. The highest
probability was associated with the classification, and highest values indicated that the decision
regarding the classification was made in a straight or an ambiguous way, e.g., if the given probabilities
varied, for example 0.90, 0.05, 0.05, 0.00, this meant that the classification identified the first class as
90%, but if this occurred for another form the values were 0.40, 0.35, 0.25, 0.10, which meant that there
was only a 5% difference between the first and second classes. Based on this, we expected that higher
probabilities would cause better classification accuracy on a class level, but there was no connection
between the mean probabilities of fluvial forms and the F1s. Moreover, there were contradictions in
the PB-approach; the correlation was 0.14 with the highest probabilities associated with the crevasse
channels, whilst the F1s were the lowest (even <10%). Although the results were more similar with the
OO-approach, the correlation was 0.74, and contradictions were also found (crevasse channels also had
high values in some cases with low F1 values). Nevertheless, probability values reflected the spatial
distribution of the landforms: all forms can be delineated based on the maximum probability of the
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pixels. This means that the maximum values differed by class, and these values were characteristic for
all pixels of a given class. However, this value did not correspond with accuracy.

Spatial uncertainty analysis also produced similar results: the proportion of uncertain pixels was
the highest for swales and point bars, and the lowest values occurred with the levees; meanwhile,
the class level F1s showed the opposite result: swales and point bars had the highest class level
accuracy. Considering the dominance of these two forms in the area, there is also a higher chance of
misclassifying them. Point bars and swales have similar shapes and the main difference between them
is that swales are concave while point bars are convex forms [47]. Swales are shallow and elongated
depressions with varying water cover or at least higher soil moisture, the vegetation is denser, and
tussocks (Carex species) form a naturally uneven surface. Thus, considering that the terrain height has
a tendency to increase from the river to the dykes, all swales differ in extent, water cover, vegetation
cover, and absolute height above sea level. Point bars can have the same terrain height as swales and in
certain locations (i.e., lower point bars between higher point bars) and at certain time can be covered by
water; thus, they can also have denser vegetation related to those in a higher terrain position [50,111].
Although these forms can be discriminated easily with visual interpretation, and can be identified
in the field by geomorphologists, due to the large number of forms combined with the similarities,
semi-automatic misclassification between these two forms can be regarded as normal.

All classifications have errors, and similar features are hard to discriminate. The fluvial forms
of a floodplain have similar geomorphometric properties; thus, even with the most accurate aerial
LiDAR-based DTMs, classifications cannot be accurate. Using the objects’ outlines and calculating the
mean pixel values by raster layers (i.e., the OO-approach), very accurate 95% models can be obtained,
but this supposes that there is a properly interpreted map of the morphological forms. However,
the accuracy of the PB-approach was also acceptable, with an OA of 78%, considering that these
investigated forms were similar from many perspectives. This research highlighted the importance of
variable selection, and the specific characteristics of the models. We hypothesized that a larger number
of variables increases the OA and decreases the uncertainty of the classifications, but the results were
ambiguous: both the classification probabilities calculated by the RF algorithm, and the uncertainties
calculated from the 10 repetitions of the classification maps, showed contradictory outcomes compared
to the F1 as a class level accuracy metric.

5. Conclusions

We aimed to reveal the most important morphometric variables of fluvial form identification and
to quantify the level of uncertainty and overfitting as a function of the number of variables. We found
the following results:

1. A large number of morphometric variables can be used efficiently in the identification of levees,
crevasse channels, point bars and swales. However, a larger number of variables did not ensure a
relevantly better model performance.

2. RFE, as a variable selection technique, helped to find the fewest variables making the largest
contribution to obtain the grates’ accuracy. Our main finding was that the selected variable set
can change by model runs; the maximum OAs were almost the same. Although the variables
were not the same in the repeatedly conducted models, we were able to identify the most frequent
ones. Involving four variables in the case of the PB-approach and two variables in the case of
the OO-approach provided sufficient accuracy, and the errors did not differ relevantly from the
maximum number of geomorphometric indices.

3. OO and PB-approaches performed differently: the object-oriented approach was more successful
with 95% OA, while the 78% OA of the pixel-based approach was a weaker performance;
nevertheless, all the forms were identifiable despite the misclassifications.

4. The probability of the classifications and the pixel-based spatial uncertainty (as different
classification outcomes for the same pixels) was not an appropriate tool to evaluate the classification
efficiency, because the values were not in accordance with the class level accuracy metric (F1s).
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5. Overfitting was in accordance with the optimal number of variables: the lowest level of overfitting
coincided with the high OAs of the optimal number of variables.

6. We emphasize that the most important variables (GenSurf, Elrel, FlodO, MRVBF1, ConvISR,
DevME, DifME) ensured accurate models for fluvial forms, but the selection methodology was
more important. Different aims and target geomorphological forms can also be identified with
the help of geomorphometry after a careful variable selection.

The 78% accuracy of the PB-approach can be regarded as acceptable, as the fluvial forms studied
had similar characteristics. These results, including the methodological findings, can help the water
management directorates to evaluate the floodplain from a flood-management perspective and to find
common points with nature conservation planners, to preserve the most valuable habitats.
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