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Abstract: Understanding the spatial distribution of populations at a finer spatial scale has important
value for many applications, such as disaster risk rescue operations, business decision-making,
and regional planning. In this study, a random forest (RF)-based population density mapping method
was proposed in order to generate high-precision population density data with a 100 m × 100 m
grid in mainland China in 2015 (hereafter referred to as ‘Popi’). Besides the commonly used
elevation, slope, Normalized Vegetation Index (NDVI), land use/land cover, roads, and National Polar
Orbiting Partnership/Visible Infrared Imaging Radiometer Suite (NPP/VIIRS), 16,101,762 records of
points of interest (POIs) and 2867 county-level censuses were used in order to develop the model.
Furthermore, 28,505 township-level censuses (74% of the total number of townships) were collected
in order to evaluate the accuracy of the Popi product. The results showed that the utilization of
multi-source data (especially the combination of POIs and NPP/VIIRS data) can effectively improve
the accuracy of population mapping at a finer scale. The feature importances of the POIs and
NPP/VIIRS are 0.49 and 0.14, respectively, which are higher values than those obtained for other
natural factors. Compared with the Worldpop population dataset, the Popi data exhibited a higher
accuracy. The number of accurately-estimated townships was 19,300 (67.7%) in the Popi product and
16,237 (56.9%) in the Worldpop product. The Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE) were 14,839 and 7218, respectively, for Popi, and 18,014 and 8572, respectively, for
Worldpop. The research method in this paper could provide a reference for the spatialization of other
socioeconomic data (such as GDP).

Keywords: population density; NPP/VIIRS; POI; random forest; China

1. Introduction

Population density data, presenting a realistic description of the spatial distribution of a population,
is of great significance for mapping human settlements [1], quantifying the number of populations
threatened by infectious diseases [2], calculating the birth rate and mortality [3], quantifying the spatial
distribution of poverty and hunger [4], and evaluating Sustainable Development Goals (SDGs) [5].
According to data from the National Bureau of Statistics of China (http://www.stats.gov.cn/tjsj/pcsj/),
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at present, China is one of the most populous countries in the world, with a population of over
1.4 billion. Due to its complex natural conditions and large range, fine scale population density
mapping is facing challenges, including the way in which to obtain accurate data as a modeling factor,
and how to build models to simulate complex nonlinear relationships between the population and
heterogeneous geographic covariates. Therefore, the way in which to generate accurate population
density data is a concern for scholars [6].

Census data are supported by rigorous statistical theories and methods; however, there are some
problems that arise in its application. For example, census data represents the number of populations
within the administrative division, which cannot reflect the spatial distribution and heterogeneity
of the population within the administrative unit. Next, a finer scale is required for actual research.
However, the differences between the census statistical caliber and the research units may cause the
Modifiable Areal Unit Problem [7]. Finally, census data are generally difficult to obtain in the amount
of time required. It is difficult to obtain statistics in many countries. For example, in China, there is
a census every ten years, and it is hard to obtain such data in sparsely populated areas in western
China [8]. Therefore, scholars utilize population density data as a supplement to and replacement for
census data, as population density data can easily and flexibly be integrated with other spatial data [9].

Although population density data can express spatial details more clearly, the current population
density products still have several deficiencies. For example, the Gridded Population of the World
(GPW) dataset uses the weighted-average method to estimate the population density [10]. This method
makes use of census data divided by the corresponding administrative division area, which is prone to
errors when administrative boundaries change. The Global Rural-Urban Mapping Project (GRUMP)
dataset is also based on the weighted-average method [11]. Although it is better than the GPW dataset
in terms of the estimation of the urban population density, it still does not solve the limitations of the
method itself. Landscan products extract relevant information from remote sensing and GIS data to
build a population spatialization model [12]. However, Landscan applies provincial-level population
data modeling in China, and the population data resolution is coarse. The China 1 km Gridded
Population (CnPop) dataset utilizes the least-squares method [13], and the accuracy almost depends on
land cover data, due to the lower number of types of modeling factors included. Worldpop employs a
random forest (RF) model to calculate the population density [14]. Bai et al. [9] used the relative error
(RE) and the 2000 township population data obtained from mainland China to evaluate the accuracy of
the above dataset. The results show that, although the accuracy of Worldpop data are better than GPW,
GRUMP, and CnPop data, 42.6% of the population still have an absolute RE value that exceeds 0.25.
Therefore, it is still challenging to produce population density data.

Modeling factors and models are the two most important aspects of building population
density models. On the one hand, common modeling factors include land cover data, the slope,
the Digital Elevation Model (DEM), precipitation, and the Normalized Vegetation Index (NDVI),
etc. [6]. In addition to the above natural factors, socioeconomic factors are also utilized as modeling
factors. Scholars have proved that the shape and brightness contained in the nighttime light (NTL)
data can provide reliable information for population density modeling [15], since NTL is highly
related to human activities [16]. Commonly-used NTL data include the Defense Meteorological
Satellite Program/Operational Linescan System (DMSP/OLS) and National Polar-orbiting Operational
Environmental Satellite System Preparatory Project/Visible Infrared Imaging Radiometer (NPP/VIIIRS)
data, which are normally applied to estimate the spatial distribution of CO2 [17], GDP [18], and the
population density [19]. Since the DMSP/OLS image is not calibrated by the onboard radiation,
the digital number (DN) value is the relative brightness radiation value, with the problem of pixel
saturation and discontinuity [20]. NPP/VIIRS data has been used for radiometric calibration, and can
identify weak light. The resolution of NPP/VIIRS is 15 arc-seconds; thus, is better than the DMSP/OLS
data resolution (30 arc-second). Yu et al. [21] estimated the population density in Shanghai, China,
via NPP/VIIRS data, proving the feasibility of NPP/VIIRS data in estimating the population density.
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Additionally, WeChat, Twitter, points of interest (POIs), and other data provide new sources of
socioeconomic factors for population spatialization. Among them, POI is a type of social perception
data, with attribute information including the location (latitude and longitude) and type (such as food,
company, etc.). If each POI record is regarded as a functional unit, the higher the POI density, the more
concentrated the urban function [22]. The urban function directly affects the spatial distribution of the
population to a certain extent [23]. For example, Li et al. [24] used POI data to estimate the population
density, confirming that POI data can be used as a population spatialization modeling factor. As typical
geospatial big data, POI data also has the following advantages. POIs have the characteristics of easy
access, rich data volume, high positioning accuracy, and more reflective micro details, making up
for the shortcomings of traditional data, such as long update periods and coarse resolutions [25].
Moreover, POI data can be converted into raster layers with different scales, which can be combined
with geospatial data and remote sensing data, etc.

However, there will also be an overestimation, underestimation, or distribution to inappropriate
locations when a socioeconomic factor is used alone. For example, Yu et al. [21] found that the population
was overestimated in a commercial district and transportation hub where the NPP/VIIRS intensity
was too high. Similarly, when the POIs are used as the only variable, many people may be allocated
to undeveloped areas due to the default assumption that each POI has the same attractiveness [26].
Therefore, the combination of multiple natural factors and social-economic factors has become a new
trend. Since NPP/VIIRS and POI data have their own advantages, the combination of these two data
types can provide a new approach for the estimation of large-scale and high-precision population
densities, which is not implemented at present.

On the other hand, the accuracy of population density estimations is still limited by the
algorithm. Common methods include spatial regression models (e.g., the gravity model, the spatial
autocorrelation model, and geographically weighted regression (GWR)), and the linear regression
model (e.g., logistic regression). However, spatial regression models need to be based on a specific
assumption. For example, Sutton et al. [27] utilized the distance weighting method, which is based on
the attenuation law between population and distance. This is reasonable, to a certain extent, but the
modeling results will produce greater numbers of errors in more complicated situations. Wang et al. [28]
used GWR in China from 1990 to 2010. Although this method can solve spatial heterogeneity, the GWR
model may lead to a meaningless negative population density in rural areas. The linear model needs
to assume that there is a linear relationship between the population and the modeling factors, which is
contrary to reality in large-scale research areas. It is difficult for the regression model to reflect the
spatial heterogeneity of the population distribution [29].

In recent years, some scholars have used machine learning to estimate the population density [14].
Machine learning algorithms include support vector regression, random forest (RF), and neural
networks, etc. Among them, the RF model uses multiple decision trees in order to achieve data
classification or regression [30] and is a non-parametric method that can simulate complex nonlinear
relationships. The RF model introduces double random processes (sample randomness and feature
randomness), making the model less prone to overfitting. Furthermore, Gaughan et al. [6] calculated
the population density through the RF model, which proved the feasibility of the RF model in realizing
population spatialization.

In summary, large-scale population density mapping needs to consider many natural and
social-economic factors. The combination of multiple modeling factors may improve the model’s
accuracy. The remarkable advancement of machine learning can provide a toolkit for demographers,
which is conducive to the simulation of the complex nonlinear relationship between the population
and heterogeneous geographic covariates. Therefore, using NPP/VIIRS, POI data, land use/land cover
(LULC) data, NDVI, roads, Digital Elevation Model (DEM) data, and censuses, this study constructed
the RF regression model in order to calculate the population density data at a 100 m × 100 m resolution
in mainland China in 2015.
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The remainder of this paper is structured as follows: Sections 2 and 3 introduce the data and
methods, respectively; the results, accuracy verification, and feature importance of the modeling
factors are outlined in Section 4; in the discussion section of Section 5, the differences between POIs
and NPP/VIIRS, the response of POI data, and the error analysis in mapping the population density
are analyzed; and finally, Section 6 outlines the conclusions.

2. Data

The data used in this paper include NPP/VIIRS, POI, LULC, NDVI, DEM, road, and census data
(Table 1).

Table 1. Data resources.

Datasets Data
Declaration Time Sources

NPP/VIIRS 750 m 2015
National Oceanic and Atmospheric Administration,
(NOAA) (https://ngdc.noaa.gov/eog/viirs/download_dnb_
composites.html)

POIs Point features 2015 Baidu Maps API (http://lbsyun.baidu.com/)

Land use/
land cover 100 m 2015

Chinese Academy of Sciences Resource and
Environmental Science Data Center
(http://www.resdc.cn/data.aspx?DATAID=99)

NDVI 250 m 2015 Moderate-resolution Imaging Spectroradiometer (MODIS)
(http://ladsweb.modaps.eosdis.nasa.gov/)

DEM 90 m 2000 National Aeronautics and Space Administration (NASA)
(http://srtm.csi.cgiar.org/srtmdata/)

Roads Line features 2015 Baidu Maps Application Programming Interface (API)
(http://lbsyun.baidu.com/)

Census County
Township 2015

2016 Statistical Yearbook of Provinces and Cities, National
Bureau of Statistics of China
(http://www.stats.gov.cn/tjsj/pcsj/,
http://www.ngcc.cn/ngcc/)

Worldpop 100 m 2015 University of Southampton
(https://www.worldpop.org/geodata/listing?id=16)

Administrative
boundary map

County
Township 2015 National Fundamental Geography Information System

(http://www.ngcc.cn/ngcc/)

The NPP/VIIRS satellite imagery was obtained from a new generation of polar-orbiting satellite
system preparation projects. The first version of the ‘vcm-orm-ntl’ annual synthetic product was
used in this paper, which excludes stray light and filters out transient lights, background values,
and abnormal values, forming cloudless average radiation value data.

POI is a type of social perception data, and the duplicate records need to be deleted. Within mainland
China, a total of 16,101,762 records of POI data were obtained in 2015. All of the POIs were classified
into 10 categories based on their type (Table 2).

LULC data, representing one of the most accurate long-term products in China, was obtained by
the visual interpretation of Landsat satellite images, and the accuracy exceeds 75% [31,32]. The types
of LULC data used in this paper include four classifications: cultivated land, forest land, grassland,
and construction land.

The NDVI data include the MOD13Q1 product, with a spatial resolution of 250 m. The data are
16-day synthetic data. It is necessary to mosaic all of the NDVI on the same day to generate a full map
of China.

The DEM data were employed in order to obtain elevation data and slope data.
The road data includes seven types (railways, national roads, provincial roads, high-speed roads,

urban roads, county roads, and village roads). A total of 13,429,160 road data sets for mainland China
were obtained.

https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
http://lbsyun.baidu.com/
http://www.resdc.cn/data.aspx?DATAID=99
http://ladsweb.modaps.eosdis.nasa.gov/
http://srtm.csi.cgiar.org/srtmdata/
http://lbsyun.baidu.com/
http://www.stats.gov.cn/tjsj/pcsj/
https://www.worldpop.org/geodata/listing?id=16
http://www.ngcc.cn/ngcc/
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Table 2. 10 categories of the Point of Interest (POI) data downloaded from Baidu Application
Programming Interface.

Classification Content

Transportation Airports, railway stations, bus stations, terminals, ferries, etc.
Government Government agencies
Village Villages
Education Universities, research institutes, middle schools, kindergartens, etc.
Food Restaurants, canteens, etc.
Medical Hospitals, pharmacies, health service stations, clinics, etc.
Entertainment Business centers, supermarkets, shops, wholesale markets, etc.
Accommodation Guest, hotels, etc.
Working place Companies, factories, etc.
Financial ATMs, banks, savings centers, etc.

Additionally, 2867 county-level censuses, with a total of 1,374,620,000 people, were obtained
and were used as the dependent variable in order to establish the RF model. The township level is
the smallest unit of the census in China, and is a lower administrative unit than the county level.
This study also obtained 28,505 township censuses (accounting for 74% of all of the townships in
China), which were employed in order to analyze the model’s accuracy (Figure 1).
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Figure 1. The classification of 28,505 township-level census data sets in China. The township census
data of the Tianjin, Hong Kong, Macau, and Taiwan provinces are missing.

The Worldpop global population data set was provided by the University of Southampton
(https://www.worldpop.org/geodata/listing?id=16), with a spatial resolution of 100 m. The Worldpop
program provide high resolution, open and contemporary data in human population distributions,
which makes the measurement of the population density more accurate.

In this paper, the data were resampled to 100 m × 100 m.

3. Methods

3.1. Mapping the Population Density with the RF Model

This paper first constructs a non-linear relationship between the modeling factors and censuses
at the county level. Then, the non-linear relationship at the county level is applied to the grid level,

https://www.worldpop.org/geodata/listing?id=16
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in order to achieve the spatialization of the population data. As shown in Figure 2, Step 1 is
the establishment of the RF model: the 10 NDVI, slope, elevation, NPP/VIIRS, POI density layer,
road distance layer, and LULC (cultivated land, forest, grassland, and construction land) preprocessed
layers are aggregated at the county level (the preprocessing of independent variables is described in
Section 3.2). Taking the above-10 county-level summary values as independent variables, and the
natural logarithm of the county-level census as the dependent variable, all of the variables need to be
divided into train sets and test sets. A total of 70% of the variables are randomly selected as train sets
for the training of the RF model. The remaining 30% form the test set, which is used to calculate the
model’s accuracy. Step 2 involves predicting the population density. By taking 10 independent variable
raster layers as prediction sets, the prediction sets are input into the RF model to obtain the population
density data. Step 3 includes the dasymetric population mapping, where the population density data
are adjusted according to the relationship between the census and the population density calculated by
the RF model. The final population density data (named Popi) is calculated by Equation (1):

pg =
p′g × pc

p′c
, (1)

where pg is the Popi data, p′g is the population density data calculated by the RF model, pc is the
census data at the county level, and p′c is the aggerated value of population density data calculated by
the RF model at the county level.
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3.2. Preprocessing of the Remote Sensing Data and Geographic Big Data

3.2.1. Eliminating the Background Noise and Extreme Values of the NPP/VIIRS Data

Due to the strong sensitivity of the sensor, it is easy to detect objects such as instant lights and
aurora. Therefore, the NPP/VIIRS data requires the following corrections. First, the background noise
needs to be eliminated: the non-zero DN value in 2013 the DMSP/OLS image is used as a mask and the
area outside the mask is regarded as a noise area. Then, the 2015 NPP/VIIRS data are extracted by the
mask. Additionally, the maximum value needs to be excluded: according to the assumption proposed
by Shi et al. [33], the maximum DN value in NPP/VIIRS cannot exceed the maximum DN value in the
most developed cities in mainland China. This paper takes the maximum DN value (400) of the most
economically developed cities (Beijing, Shanghai, and Guangzhou) in the study area as the threshold.
The eight-neighborhood algorithm is utilized for the smoothing of the pixels which are larger than
the threshold.

It can be seen from Figure 3 that the corrected NPP/VIIRS data eliminates the background noise
and DN values greater than 400. In addition, since the resolution of the NPP/VIIRS data is 750 m,
it needs to be matched with other data. Considering that NPP/VIIRS is the current high-resolution
global open source night light data, and that we also have other high-resolution data to provide
detailed information, we use the nearest neighbor method to resample the NPP/VIIRS data to 100 m.
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3.2.2. Producing NDVI Annual Synthetic Data

The maximum value composite (MVC) method is used to generate annual synthetic NDVI images
from multi-temporal NDVI images in order to separate human settlements from other land cover types,
and to eliminate the effects of cloud pollution [2]. The MVC method is shown in Equation (2):

NDVImax = MAX (NDVI1, NDVI2, . . . , NDVI23), (2)

NDVI = NDVImax/10000, (3)

where NDVI is the annual synthetic image; NDVImax is an unscaled annual synthetic image; and NDVI1,
NDVI2, . . . , NDVI23 are images obtained after the mosaic process. Since the NDVImax value range is
−10000 to 10000, Equation (3) can scale the NDVImax value between −1 and 1.

3.2.3. Generating the POI Density Layers

The POI density layer is generated from POI point data by the kernel density estimation (KDE)
method. In order to ease the burden of the calculation and make full use of POI, the entropy method is
used to merge 10 POI density layers into one layer.
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First, the 10 types of discrete POI point data (vector) are utilized to generate 10 smooth surfaces
(the raster layer) of 100 m × 100 m through the KDE with a 6500 m bandwidth, respectively. KDE can
calculate the density of a certain type of POI point within a given range. The optimal bandwidth is
determined as follows: when setting the bandwidth, the step length is set to 100 m in the range of
1000–10,000 m, and the step length is set to 1000 m in the range of 10,000–24,000 m. Then, a total of
105 different bandwidths are set, and 1050 corresponding POI density layers (105 times × 10 layers)
are generated in sequence. Next, the county-level 10 POI density layer is generated by different
bandwidths, respectively. Finally, taking 10 POI county-level sums as the independent variables,
and the county-level census as the dependent variable, an RF regression model is built. A total of 105 RF
regression models were constructed in this study. The bandwidth corresponding to the minimum
out-of-bag error value of the 105th RF model is the optimal bandwidth. ‘Out-of-bag’ is an unbiased
estimate of the RF generalization error [30]. The smaller the out-of-bag value, the smaller the model
error. The out-of-bag experienced a process of decreasing first and then increasing (Figure 4). When the
bandwidth is 6500, the out-of-bag value is the lowest.
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Figure 4. The out-of-bag values at different bandwidths.

Then, the 10 different types of POI density layers need to be combined into one layer. The entropy
value can be utilized to calculate the weight of the 10 POI density layers. The entropy method only
depends on the data itself and is an objective weighting method [34]. The smaller the entropy value,
the greater the weight of the indicator, and vice versa. Therefore, in order to eliminate the difference in
the dimension and range between different indicators, this study utilized Equation (4) to normalize the
10 POI density layers, respectively. Then, Equations (5) and (6) were utilized to calculate the entropy
value (ej) and weight value (wj) of the j index. The POI weight is shown in Table 3. Finally, Equation (7)
was used to merge the 10 POI layers into one layer (POIsum).

bij =
aij −min

{
a1j, · · · , anj

}
max
{
a1j, · · · , aij

}
−min

{
a1j, · · · , aij

} , (4)

ej = −
1

ln(n)
×

n∑
i=1

 bij∑n
i=1 bij

× ln

 bij∑n
i=1 bij

, (5)

wj =
1− ej∑m

j=1 (1− ej)
, (6)

POIsum =
m∑

j=1

wjbij, (7)

where bij is the pixel value of the POI density layer after normalization; aij is the pixel value of the
POI density layer; ej is the entropy value; wj is the weight value; POIsum is the merged POI layer; m is
the number of layers, j = 1, ..., m, m = 10; and I = 1,..., n, n is the number of pixels in the raster layer,
with a total of 2,047,689,100 pixels.
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Table 3. The weight of the POI layer.

Categories Transportation Government Village Education Food

Weight 0.096 0.103 0.105 0.106 0.094

Categories Medical Entertainment Accommodation Working Place Financial

Weight 0.104 0.098 0.099 0.092 0.105

3.2.4. Calculating the Road Distance Layers

The distance from the center point of each grid to the nearest road of each type was calculated in
order to generate seven road distance rasters. Then, to simplify the subsequent calculations, the entropy
method was utilized to merge the seven road raster layers into one raster layer, and the process of
merging the layers was the same as that in Section 3.2.3. The road data weights are shown in Table 4.

Table 4. The weight of the road layer.

Categories Railway National Road Provincial Road Highway

Weight 0.140 0.151 0.138 0.139

Categories Urban Road County Road Village Road

Weight 0.161 0.128 0.143

3.3. Accuracy Assessment

Indirect verification was utilized as a compromise, since the 100 m × 100 m population density
data were inaccessible. Therefore, we compared the Popi data and Worldpop data with the census at
the township level. The indicators, including the Relative Error (RE), Root Mean Squared Error (RMSE),
and Mean Absolute Error (MAE), were used to measure the accuracy. The formulae are as follows:

RE =
Pi −Ci

Ci
, (8)

RMSE =

√
1
n

∑
(Pi −Ci)

2
, (9)

MAE =
1
n

∑
|Pi −Ci| , (10)

where Pi is the sum of population density products at the township level, and Ci is the
township population.

4. Results

4.1. Results of the Population Density Mapping

In order to improve the model’s accuracy, the parameters of the RF model need to be optimized.
Considering that the random search parameter is time-consuming, we preset the possible value range of
the parameter and utilized the out-of-bag value to access the optimal parameters (Figure 5). The range
and optimal values are shown in Table 5. The goodness of fit (R2) of the training set is 0.98, and the R2

of the test set is 0.88.
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Table 5. The parameter range and optimal value.

Parameter Type Range Optimal Value

Max. features 1–10 5
Number of trees 1–1100 200

Max. depth 1–20 15
Min. samples split 2–20 2
Min. samples leaf 1–20 1

The population density at the 100 m × 100 m resolution in 2015 is shown in Figure 6a.
The population density shows a strong imbalance in mainland China. The population of China
is densely distributed in the southeast and sparsely distributed in the northwest. In the east,
the population distribution is concentrated. For example, in four of the most densely-populated
cities, including Beijing, Shanghai, Guangzhou, and Shenzhen, the population density is more than
1000 people/km2. In the less densely populated cities, such as Lanzhou, Kunming, Shenyang, and
Urumqi, which contain more rural areas compared with the densely populated cities, the population
density is 200–300 people/km2. Due to natural factors, the population density in certain western
regions is less than 10 people/km2.

The spatial distribution of the population is affected by the altitude, landform, vegetation,
land cover, transportation, and social economy, etc. The natural conditions of the river valleys, plains,
and hills with middle and low altitudes provide superior land conditions for the development of
human activities. For example, there are the population is more concentrated in marine plains (such as
Shanghai), alluvial plains (such as central Shaanxi), and low-elevation hilly areas (such as Guangzhou).
Next, the different combinations of terrain, climate, and vegetation lead to different land cover types.
The population will first gather in areas with advantageous natural resource endowments. Since land
is the carrier of the population distribution, the population is more likely to be gathered in areas
with superior conditions (such as built-up areas). Moreover, the road accessibility affects the level
of communication between regions, causing the flow of various resource elements, including the
population. Since major traffic arteries become the axis of the population distribution, the population
is concentrated in areas with developed transportation (such as Beijing and Shanghai). The intensity
of the economic development represented by the level of urbanization redistributes the population
density based on resources and natural conditions, forming a ‘core–periphery’ effect of the population’s
spatial distribution within the city, reflected in municipality cities, such as Shenzhen, or provincial
capitals, including Shenyang and Kunming, etc. (Figure 6b).
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4.2. Accuracy Assessment

Furthermore, we utilized the 28,505 township censuses to verify the Popi product and compared
it with the Worldpop product. The RMSE of the Worldpop and Popi products is 18,014 and 14,839,
respectively, and the MAE is 8572 and 7218, respectively. The Worldpop and Popi products have a
higher accuracy in mainland China, while the Popi data are slightly better than the Worldpop data.
As seen from Figure 7, Popi products can reduce the overestimation and underestimation to a certain
extent. For example, Popi products have reduced overestimation in the western provinces (such as
southern Xinjiang). Meanwhile, Popi products have reduced underestimation in the central and eastern
provinces (such as Shaanxi, Sichuan, Hunan, Anhui, and Zhejiang, etc.).
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Figure 7. The spatial distribution of the relative error values at the township level for the (a) Popi product
and (b) Worldpop product. The township censuses of Tianjin, Hong Kong, Macau, and Taiwan provinces
are missing. Besides this, when RE < −0.5, the township is considered seriously underestimated.
A township with −0.5 < RE < −0.25 is considered to be a slight underestimation. Furthermore,
−0.25 < RE < 0.25 is an accurate estimate. When 0.25 < RE < 0.5, it is slightly overestimated. A township
with RE > 0.5 is considered to be seriously overestimated.

In order to analyze the accuracy of the Popi data, we calculated the RE values of the townships
and divided them into five levels (Figure 7). Overall, few townships are significantly overestimated
and underestimated in these two products. Among them, the number of townships that are accurately
estimated with the Popi product is 19,300 (67.7%), while the number of townships that are accurately
estimated with the Worldpop product is 16,237 (56.9%). There are 1051 (3.6%) and 4996 (17.5%)
townships in the Popi products that are slightly overestimated and slightly underestimated, respectively.
The number of townships that are slightly overestimated in the Worldpop products is 2038 (7.1%),
and the number of townships that are slightly underestimated is 5847 (20.5%). Meanwhile, the number of
townships seriously overestimated and seriously underestimated in the Popi products are 1572 (5.5%)
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and 1586 (5.6%), respectively. The Worldpop product has 2092 (7.3%) seriously overestimated townships,
and 2291 (8.1%) seriously underestimated townships. Above all, the sum of the proportions of the
severely overestimated or severely underestimated townships is about 10%, indicating that both
products have a good accuracy.

Furthermore, the underestimation ratio of the two products exceeds 20%, and is slightly higher
than the overestimation ratio (about 10%). For example, there are many underestimations in the central
and eastern provinces (such as Jiangsu, Anhui, Sichuan, and Zhejiang), where the total population of
the province exceeds 50 million, with a higher density. In contrast, the western provinces (such as
Xinjiang, Tibet, Qinghai, and Inner Mongolia) with small populations and low densities have many
obvious overestimations for the two products. The township area of the western region is larger,
but the township number is small, while the township area of the central and eastern regions is smaller,
and the number is larger. Therefore, more townships are underestimated.

In order to analyze the accuracy of the different regions, we calculated the R2 between the township
census and the estimated township population in 30 provinces. As seen from Figure 8, the R2 value of
the Popi product in 22 provinces is higher than that of the Worldpop product, and the R2 value of the
Worldpop product in eight provinces is higher than that of the Popi product.
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Figure 8. The goodness of fit (R2) between the township census and the estimated township population
of Worldpop and Popi products in 30 provinces (the R2 values for the Tianjin, Hong Kong, Macau,
and Taiwan provinces are missing).

From a regional perspective, the southeast regions, such as Guangdong, Fujian, Zhejiang,
and Jiangsu, are mainly distributed in plains and hills with low altitudes, which are suitable for humans
and have the highest accuracy (R2 > 0.7). Similarly, the northwest, including Shaanxi and Ningxia,
with medium- and low-altitude alluvial plains, is also suitable for humans, and has R2 > 0.7. In the
central regions, such as Guangxi and Anhui, the landforms are mainly low-altitude mountains and
hills, showing that the natural conditions are suitable, and exhibiting a higher accuracy (0.7 > R2 > 0.6).

Next, the western region, including Xinjiang, Sichuan, and Guizhou, has a medium accuracy
(0.6 > R2 > 0.5) and a high altitude, and is dominated by mountains and hills, such as the Tianshan
Mountains and the Hengduan Mountains. Henan and Shandong, with a total population exceeding
100 million, have a medium accuracy (0.6 > R2 > 0.5). They are followed by the northwest and
southwest regions, including Qinghai, Gansu, and Chongqing, where the landform is occupied by
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alluvial platforms, mountains, and denuded platforms, etc., illustrating the unsuitability of natural
conditions with a lower accuracy (0.5 > R2 > 0.4). The provinces with the lowest accuracy (R2 < 0.4)
are in the southwest and northeast, including Tibet, Heilongjiang, and Liaoning. Tibet is dominated by
mountains with high altitudes, such as Tanggula Mountain, demonstrating uninhabitable characteristics.
Heilongjiang and Liaoning are dominated by mountains and terraces with a low altitude, but the
population is less affected by the low temperature.

Above all, the accuracy is affected by the altitude, landform, temperature, and total population,
etc. The provinces with a poor accuracy are located in densely-populated or sparsely-populated areas,
or areas with poor natural conditions.

In order to analyze the relationship between the population density of the townships and RE, we
divided the population density of the townships into six classifications, as shown in Figure 9. Overall,
the RE values of the two products are mostly distributed in the range of −0.25 to 0.25. The distribution
of the RE values in the Popi data are more concentrated, with fewer extreme points, and the median of
the RE values is closer to 0. The distribution of the RE values in the Worldpop dataset is more scattered,
with more extreme values.
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Figure 9. The result of the relative error at the township level (the township censuses of the Tianjin,
Hong Kong, Macau, and Taiwan provinces are missing).

There is a certain correlation between the RE value and the population density. We found that
there may be an overestimation when the population density is less than 50 people/km2 and the
median of RE in this classification is close to 0.2. There tends to be an underestimation when the
population density exceeds 1000 people/km2 and the median of the RE in this classification is close
to −0.15. Moreover, compared with a low population density (less than 50 people/km2), the median
of the RE value with a high population density (exceeds 1000 people/km2) is closer to 0, with fewer
discrete points. Hence, the accuracy of these two products is better in areas with a higher population
density than it is in areas with a lower population density. When the population density is in the range
of 50–1000 people/km2, the median value of the RE is close to 0, indicating that both products have
good effects.

4.3. The Feature Importance of the Independent Variables

In order to analyze the importance of the independent variables, the feature importance indicator
was calculated. The feature importance is the degree of influence on the accuracy of the RF model
when an independent variable is replaced by randomly distributed data. If the independent variables
do not participate in the model’s training, the model’s accuracy will decrease. The higher the feature’s
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importance, the more important the independent variables, and vice versa. The feature importance of
the RF model is shown in Figure 10.
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Figure 10. The feature importance of the independent variables.

Compared with the natural factors, such as the NDVI, elevation, slope, and LULC data,
the socio-economic factors, including the POI data and NTL, are more important. Among them,
the feature importance of the POI data is 0.49. If the POI data does not participate in the model training,
the accuracy of the model will drop by approximately half, which indicates that the POI data are the
most important. This is followed by the NTL data, where the feature importance of the NPP/VIIRS
is 0.14. If neither the POI nor NTL data participate in the RF model training, the model’s accuracy
decreases by about 63%. Therefore, the method of combining the POI and NPP/VIIRS data is more
conducive to the estimation of the population density.

The feature importance value of construction land is 0.16, while the values for cultivated land,
forest land, and grassland are all below 0.1. The feature importance of construction land is significantly
higher than that of the last three factors. The construction land includes urban construction land,
rural construction land, industrial land, and mining land, while the population is usually distributed in
built-up areas, rural areas, and workplaces. Only a small number of people are engaged in agriculture
or forestry, and are therefore distributed in cultivated land or woodland, etc. Therefore, cultivated land,
forest land, and grassland are less important in the spatialization of the population.

The population distribution is limited by natural conditions (NDVI, elevation, and slope) and
road factors. Although the feature importance of these factors is less than 0.1, the model’s accuracy will
decrease when these factors are removed. For example, in Guizhou, as one of the main karst regions
in China, Dong et al. [8] confirmed that the altitude, slope, and aspect have a great influence on the
population distribution. The feature importance confirms that there is a certain relationship between
these natural factors and the population.

5. Discussion

5.1. The Differences between POIs and NPP/VIIRS in Mapping the Population Density

As shown in Figure 10, the feature importance of the POI data is significantly higher than that of
the NTL data. In order to analyze the cause of this phenomenon, we divided the NPP/VIIRS data from
2015 into a lighted area and an unlighted area, according to whether the DN value was greater than 0.
The lighted area was shown to be only 2,163,658 km2 (22.5%). Zhuo et al. [15] divided the DMSP/OLS
data values within mainland China from 1998 into two types: with and without lights. The area with
light only accounts for 503,400 km2 (5.3%), while the area without light accounts for 8,040,000 km2
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(84.7%). There is also a population distribution in the areas without lights. The NPP/VIIRS and
DMSP/OLS data have similar problems.

One limitation of NPP/VIIRS is that the overpass time is later than 12:00 PM, and most of the lights
are off at that time. The urban functions differed in their temporal light dynamics [35,36]. For example,
Li et al. [36] found that an outdoor sports field and an administrative building lost 97.28% and 4.56%
of their measured brightness between 8:08 PM–4:05 AM, respectively, while the entire study area
in Wuhan, China, lost 61.86% of its total brightness. Furthermore, the period between 9:06 PM and
10:05 PM was the period with the greatest amount of light loss in the study area.

Furthermore, the lighted areas are mostly distributed in urban areas, and are less covered in
rural areas, while the POI data covers urban and rural areas. In particular, the type of village in the
POI data can effectively simulate the spatial distribution of the rural population. In 2015, there were
3,567,162 records of villages, which can make up for the lack of NPP/VIIRS in rural areas.

Additionally, there are several differences between the NTL and POI data in the urban built-up
areas and the rural areas. We utilized urban construction land and rural construction land in LULC
data as mask data, and the NPP/VIIRS data and POI density layer were divided into built-up areas and
rural areas by masks, respectively. The four layers (NPP/VIIRS (built-up area), POIs (built-up area),
NPP/VIIRS (county), and POIs (county)) were aggregated at the city level, respectively. We took the
city census as the dependent variable and the four aggregated values as the independent variable in
order to calculate the correlation coefficient and the R2 of the linear regression model between the
independent and dependent variables, respectively (Figure 11).Remote Sens. 2020, 07, x FOR PEER REVIEW 17 of 22 
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Figure 11. The census data with respect to the National Polar-orbiting Operational Environmental
Satellite System Preparatory Project/Visible Infrared Imaging Radiometer (NPP/VIIRS) and point of
interest (POI) at the city level (using urban construction land and rural construction land in the 2015
LULC data as masks, the built-up areas and rural areas of 340 cities in mainland China were extracted,
respectively). (a) The census data with respect to the NPP/VIIRS data in built-up area; (b) the census
data with respect to the POIs data in built-up area; (c) the census data with respect to the NPP/VIIRS
data in county; (d) the census data with respect to the POIs data in county.

The NPP/VIIRS and POI data have a positive correlation with the city census in urban built-up
areas and rural areas. Two independent variables perform better in urban built-up areas than in rural
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areas, while the POIs perform better than NPP/VIIRS in the same area. As shown in Figure 11, the city
census has the highest correlation with the POIs within the built-up areas; the correlation coefficient is
0.73, and the R2 is 0.54. Then, the correlation coefficient between the city census and the NPP/VIIRS
value within the built-up area is 0.67. Apart from that, the correlation coefficient between the city
census and the POIs in the rural area is 0.65, and the R2 is 0.43. Finally, the correlation coefficient
between the city census and the NPP/VIIRS values in the rural area is 0.64, and the R2 is 0.41.

5.2. The Correlation between POIs and Censuses

Previous studies have proved that there is a correlation between POI and the population.
For example, Li et al. [24] and Yang et al. [37] used POI data to estimate the population density,
confirming that POI data can be used as a population spatialization modeling factor. Similarly,
the feature importance of the POI calculated in this paper is 0.49, and Figure 12a shows that there
is a positive correlation between POI data and the total population at the city level. Furthermore,
Figure 12l shows that the correlation coefficient between the population density and POI density is 0.83,
indicating a positive correlation between the population and POI. This fully illustrates the availability
of POI data in the establishment of the model.
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Figure 12. The relationship between the census and different type POI data at the city level.
(a) POI density layer (the POI density layer is the combination of the 10 individual POI layers
using the entropy weight method); (b) the company type POI data; (c) the education type POI data;
(d) the food type POI data; (e) the financial type POI data; (f) the hotel type POI data; (g) the government
type POI data; (h) the medical type POI data; (i) the village type POI data; (j) the shopping type POI
data; (k) the traffic type POI data; (l) the POI density data.

In addition, there are many types of POI data, but not every type is related to the population
distribution. For example, airports and railway stations, etc., are usually far away from urban
(higher population density) areas, and have no obvious correlation with population density. The POI
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types selected in the article, including education, factories, finance, and villages, are more closely
related to the population.

In order to explore the relationship between censuses and multiple POIs, we utilized the city
administrative boundary data to aggregate the POI density layer and the 10 types of POI layers,
respectively. Then, we took the city census as the dependent variable and the aggregated value at
the city level as the independent variable, and the correlation coefficient and the R2 were calculated,
respectively (Figure 12).

There is a positive and strong correlation between the census and the POI density layer [38].
The correlation coefficient between the aggregated value of the POI density layer and the city census is
0.85, and the R2 of the linear regression model is 0.72, which is significantly higher than the values
for the other 10 POIs. Therefore, the method of integrating multiple POI layers into one POI density
layer can effectively reduce the calculation, and can form the distribution of the population under the
combined action of multiple POI types.

The 10 POI data are positively correlated with the population, and the correlation coefficient
is greater than 0.7. The population has the highest correlation with four types of POI: education,
government, finance, and villages. Specifically, the correlation coefficients between the city censuses
and education, government, finance, and villages are 0.83, 0.82, 0.81, and 0.81, respectively. These four
types of POI data are closely related to human life. The correlation coefficients between the city
censuses and medical services and transportation are 0.77 and 0.76, respectively, indicating that
medical services and transportation are indispensable in people’s daily lives. Moreover, the correlation
coefficients between the city census and catering, entertainment, hotels, and workplaces are 0.73, 0.72,
0.7, and 0.7, respectively.

5.3. Error Analysis

These two products performed well in most areas of mainland China. However, due to the large
differences in the natural resources and socioeconomic conditions in different regions, certain errors remain.

The Popi dataset is better than the Worldpop dataset for the following reasons: both datasets
employ the RF model and similar modeling factors, including natural factors (elevation, slope, LULC,
etc.) and socioeconomic factors (NTL, roads, etc.). It can be seen from Section 4.3 that the feature
importance of POI and NTL is significantly higher than for other natural factors. The POI data applied
in Worldpop are derived from the Open Street Map (OSM) dataset. The OSM data are an online map
collaboration program. Any registered user can edit the map content. The lack of professional editing
may lead to inaccurate positioning or classification, which reduces the credibility of the data [39].
Compared with OSM data, POIs are produced and edited by professionals, providing more accurate
location information and attribute information. Especially in urban areas, POI data can accurately
describe the relevant information of humanity, reflect the spatial heterogeneity, and improve the
accuracy of the population spatial modeling.

In addition, the data sources used by Worldpop have a low resolution and poor timeliness.
For example, the NTL data used by Worldpop is DMSP/OLS data, with a resolution of 1 km, which has
a pixel saturation effect [16]. The resolutions of the LULC and NTL data used in this paper are 30 and
750 m, respectively, which are significantly better than those given in Worldpop. The LULC and NTL
data of Worldpop use 2009 data and 1992–2013 time-series data, respectively [39]. Due to timeliness,
there are certain shortcomings in the estimation of the spatial distribution of the population in 2015.

When the population density is higher (>1000 people/km2) or lower (<50 people/km2), more errors
are likely to occur. Furthermore, the accuracy of these two products in low-density areas is not as
high as it is in high-density areas. Areas with a higher population density include developed urban
areas, such as Beijing and Shanghai, while areas with a lower population density may be found in rural
regions. Gaughan et al. [6] believe that the modeling process does not concentrate people enough in
densely-populated urban areas, and the estimates are scattered to less-populated areas. This is inherent
in the dasymetric approach used in the mapping population redistribution, but it affects relatively few
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total census units. Additionally, the greater the city population, the richer the types and quantities of
the POI data [26]. The rural population is relatively scattered, and the number of POIs in rural areas is
small and scattered [40]. Next, the NTL in the urban area with a DN value greater than 0 is higher than
that in rural areas, and the NTL information is more abundant in the city [15]. Furthermore, the urban
landforms are relatively simple, mostly dominated by plains and basins, and the terrain is relatively
flat. The rural landforms may be hills or mountains, etc. These complex topographies and landforms
affect the results of the population spatialization. For example, Bai et al. [9] found that the Worldpop
dataset has considerable errors in hilly areas, such as the Hengduan Mountains. Besides this, due to
the sparse distribution of the cultivated land and residential areas in rural areas, it is difficult to achieve
an accurate classification of the land cover data in rural areas, which is not conducive to the spatial
modeling of the population.

Overall, the quality and appropriateness of the modeling factors will affect the accuracy of
population density data. For example, the Twitter data used by our predecessors in population density
mapping has achieved better results in Indonesia; however, the use of Twitter is not widespread in
China [41]. In contrast, as the accuracy of the location and attributes of the POI data is reliable, and it is
optimal to utilize the socioeconomic factors in the quantification of the population density in China.
Furthermore, the anisotropic characteristic of the artificial light at night may also impact the NPP/VIIRS
data [42]. The Luojia-1 satellite provided a new data source for nighttime light applications, which
could be a future direction of study. In addition, the modeling method also affects accuracy of the
population density data. For example, Yang et al. [37] used POI data to calculate the population density
of Zhejiang Province, China, and applied the linear regression equation to build the model. The linear
model needs to assume that there is a linear relationship between the population and the modeling
factors. However, the Enhanced Vegetation Index (EVI) used by Yang et al. [37] was not shown to have
to have a linear relationship with the population density.

Finally, although the accuracy of the Popi product is slightly higher than that of Worldpop in this
research area, there are few shortcomings in this article. For example, the LULC data used in this
paper is highly accurate, but is not open source data. Secondly, the Baidu POI data can only be used
in China, and not the rest of the world. It is still difficult to promote to the world due to the lack of
Baidu POI data. In addition, the coverage of the OSM data used by the Worldpop data in China has
not been completed yet [43]. Moreover, OSM, as a volunteered geographic information (VGI)-based
dataset, may have incorrect locations or attributes that will affect the accuracy of the population
density products. However, Worldpop products also have their own advantages. This product is
a global high-precision population density product, and is currently the mainstream population
density product.

6. Conclusions

Taking the LULC, NDVI, NPP/VIIRS, POI, road, and DEM data as the independent variables, the RF
regression model was applied to disaggregate the 2015 county-level census population, in order to
map the population density in a 100 m × 100 m grid in mainland China. The population density map
that was produced showed a higher accuracy than the Worldpop dataset. This study demonstrated
that the utilization of multi-source data can effectively improve the accuracy of population mapping at
a finer scale.

The combination of POIs and NPP/VIIRS data is more conducive to the estimation of the population
density. The sum of the feature importance of the socioeconomic factors, including POI and NPP/VIIRS,
exceeds 60%, which is significantly higher than the other natural factors. Without the POIs and
NPP/VIIRS in the RF model training, the model accuracy will decrease by about 63%.

The accuracy of the model is affected by the altitude, landform, temperature, and total
population, etc. The areas with a poor accuracy were mainly located in the densely-populated
and sparsely-populated areas. Obvious overestimation and underestimation appeared in areas with
a population density of less than 50 people/km2 and more than 1000 people/km2, respectively.
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The method of population density mapping based on remote sensing and POI data utilized in this
paper has a certain practical significance. However, POIs are concentrated in urban areas, and are less
concentrated in rural areas (except for rural settlement types). In our future work, we will introduce
socioeconomic data, such as building data [25], Tencent location data [44], and Twitter [45], etc.
The combination of POIs and NTL with other socioeconomic data sources may improve the accuracy.

Author Contributions: C.H. and Y.W. designed the experiment; Y.W. and M.Z. collected the required data and
performed the experiment; Y.W., C.H., M.Z., J.H., Y.Z. and J.G. contributed towards the writing and review.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Strategic Priority Research Program of the Chinese Academy of
Sciences (grant number XDA19040500).

Acknowledgments: The authors thank the anonymous reviewers for the helpful comments that improved
this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with
multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [CrossRef]

2. Ferguson, N.M.; Cummings, D.A.; Cauchemez, S.; Fraser, C.; Riley, S.; Meeyai, A.; Iamsirithaworn, S.;
Burke, D.S. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 2005,
437, 209–214. [CrossRef] [PubMed]

3. Storeygard, A.; Balk, D.; Levy, M.; Deane, G. The Global Distribution of Infant Mortality: A subnational
spatial view. Popul. Space Place 2008, 14, 209–229. [CrossRef]

4. Balk, D.; Storeygard, A.; Levy, M.; Gaskell, J.; Sharma, M.; Flor, R. Child hunger in the developing world:
An analysis of environmental and social correlates. Food Policy 2005, 30, 584–611. [CrossRef]

5. Wang, Y.; Huang, C.; Feng, Y.; Zhao, M.; Gu, J. Using Earth Observation for Monitoring SDG 11.3.1-Ratio of
Land Consumption Rate to Population Growth Rate in Mainland China. Remote Sens. 2020, 12, 357. [CrossRef]

6. Gaughan, A.E.; Stevens, F.R.; Huang, Z.; Nieves, J.J.; Sorichetta, A.; Lai, S.; Ye, X.; Linard, C.; Hornby, G.M.;
Hay, S.I.; et al. Spatiotemporal patterns of population in mainland China, 1990 to 2010. Sci. Data 2016,
3, 160005. [CrossRef] [PubMed]

7. Openshaw, S. A million or so correlation coefficients: Three experiments on the modifiable areal unit problem.
In Statistical Applications in the Spatial Sciences; Wrigley, N., Ed.; Pion: London, UK, 1979; pp. 127–144.

8. Dong, C.; Liu, J.; Zhao, R.; Wang, G. An discussion on correlation of geographical parameter with spatial
population distribution. Remote Sens. Inform. 2002, 4, 61–64.

9. Bai, Z.; Wang, J.; Wang, M.; Gao, M.; Sun, J. Accuracy Assessment of Multi-Source Gridded Population
Distribution Datasets in China. Sustainability 2018, 10, 1363. [CrossRef]

10. Deichmann, U.; Balk, D.; Yetman, G. Transforming Population Data for Interdisciplinary Usages: From Census
to Grid. In Population Health Metrics; Center for International Earth Science Information Network:
Washington, DC, USA, 2001.

11. Balk, D.L.; Deichmann, U.; Yetman, G.; Pozzi, F.; Hay, S.I.; Nelson, A. Determining Global Population
Distribution: Methods, Applications and Data. In Global Mapping of Infectious Diseases: Methods, Examples and
Emerging Applications; Academic Press: London, UK, 2006; pp. 119–156.

12. Dobson, J.E.; Bright, E.A.; Coleman, P.R.; Durfee, R.C.; Worley, B.A. LandScan: A Global Population Database
for Estimating Populations at Risk. Photogramm. Eng. Remote Sens. 2000, 66, 849–857.

13. Jiang, D.; Yang, X.; Wang, N.; Liu, H. Study on spatial distribution of population based on remote sensing
and GIS. Adv. Earth Sci. 2002, 17, 734–738.

14. Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating census data for population mapping
using random forests with remotely-sensed and ancillary data. PLoS ONE 2015, 10, e0107042. [CrossRef]

15. Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the
pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009,
30, 1003–1018. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2008.05.009
http://dx.doi.org/10.1038/nature04017
http://www.ncbi.nlm.nih.gov/pubmed/16079797
http://dx.doi.org/10.1002/psp.484
http://dx.doi.org/10.1016/j.foodpol.2005.10.007
http://dx.doi.org/10.3390/rs12030357
http://dx.doi.org/10.1038/sdata.2016.5
http://www.ncbi.nlm.nih.gov/pubmed/26881418
http://dx.doi.org/10.3390/su10051363
http://dx.doi.org/10.1371/journal.pone.0107042
http://dx.doi.org/10.1080/01431160802430693


Remote Sens. 2020, 12, 3645 21 of 22

16. Hsu, F.; Baugh, K.; Ghosh, T.; Zhizhin, M.; Elvidge, C. DMSP-OLS Radiance Calibrated Nighttime Lights
Time Series with Intercalibration. Remote Sens. 2015, 7, 1855–1876. [CrossRef]

17. Zhao, J.; Ji, G.; Yue, Y.; Lai, Z.; Chen, Y.; Yang, D.; Yang, X.; Wang, Z. Spatio-temporal dynamics of urban
residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets.
Appl. Energy 2019, 235, 612–624. [CrossRef]

18. Wang, X.; Sutton, P.C.; Qi, B. Global Mapping of GDP at 1 km2 Using VIIRS Nighttime Satellite Imagery.
ISPRS Int. J. Geo-Inf. 2019, 8, 580. [CrossRef]

19. Chen, X. Nighttime Lights and Population Migration: Revisiting Classic Demographic Perspectives with an
Analysis of Recent European Data. Remote Sens. 2020, 12, 169. [CrossRef]

20. Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map
derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [CrossRef]

21. Yu, B.; Lian, T.; Huang, Y.; Yao, S.; Ye, X.; Chen, Z.; Yang, C.; Wu, J. Integration of nighttime light remote
sensing images and taxi GPS tracking data for population surface enhancement. Int. J. Geogr. Inf. Sci. 2018,
33, 687–706. [CrossRef]

22. Gao, S.; Janowicz, K.; Couclelis, H. Extracting urban functional regions from points of interest and human
activities on location-based social networks. Trans. GIS 2017, 21, 446–467. [CrossRef]

23. Bakillah, M.; Liang, S.; Mobasheri, A.; Arsanjani, J.J.; Zipf, A. Fine-resolution population mapping using
OpenStreetMap points-of-interest. Int. J. Geogr. Inf. Sci. 2014, 28, 1940–1963. [CrossRef]

24. Li, K.; Chen, Y.; Li, Y. The Random Forest-Based Method of Fine-Resolution Population Spatialization by
Using the International Space Station Nighttime Photography and Social Sensing Data. Remote Sens. 2018,
10, 1650. [CrossRef]

25. Yao, Y.; Liu, X.; Li, X.; Zhang, J.; Liang, Z.; Mai, K.; Zhang, Y. Mapping fine-scale population distributions at
the building level by integrating multisource geospatial big data. Int. J. Geogr. Inf. Sci. 2017, 31, 1220–1244. [CrossRef]

26. Wang, L.; Fan, H.; Wang, Y. Improving population mapping using Luojia 1-01 nighttime light image and
location-based social media data. Sci. Total Environ. 2020, 730, 139–148. [CrossRef]

27. Sutton, P.C. Modeling population density with night-time satellite imagery and GIS. Comput. Environ. Urban
Syst. 1997, 21, 227–244. [CrossRef]

28. Wang, L.; Wang, S.; Zhou, Y.; Liu, W.; Hou, Y.; Zhu, J.; Wang, F. Mapping population density in China
between 1990 and 2010 using remote sensing. Remote Sens. Environ. 2018, 210, 269–281. [CrossRef]

29. Wang, L.; Fan, H.; Wang, Y. Fine-Resolution Population Mapping from International Space Station Nighttime
Photography and Multisource Social Sensing Data Based on Similarity Matching. Remote Sens. 2019,
11, 1900. [CrossRef]

30. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
31. Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal

characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014,
24, 195–210. [CrossRef]

32. Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns
of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005,
98, 442–456. [CrossRef]

33. Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the Ability of NPP-VIIRS
Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China
at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [CrossRef]

34. Sun, M.; Wang, T.; Xu, X.; Zhang, L.; Li, J.; Shi, Y. Ecological risk assessment of soil cadmium in China’s
coastal economic development zone: A meta-analysis. Ecosyst. Health Sustain. 2020, 6, 1733921. [CrossRef]

35. Li, X.; Levin, N.; Xie, J.; Li, D. Monitoring hourly night-time light by an unmanned aerial vehicle and its
implications to satellite remote sensing. Remote Sens. Environ. 2020, 247, 111942. [CrossRef]

36. Dobler, G.; Ghandehari, M.; Koonin, S.E.; Nazari, R.; Patrinos, A.; Sharma, M.S.; Tafvizi, A.; Vo, H.T.;
Wurtele, J.S. Dynamics of the urban lightscape. Inform. Syst. 2015, 54, 115–126. [CrossRef]

37. Yang, X.; Ye, T.; Zhao, N.; Chen, Q.; Yue, W.; Qi, J.; Zeng, B.; Jia, P. Population Mapping with Multisensor
Remote Sensing Images and Point-Of-Interest Data. Remote Sens. 2019, 11, 574. [CrossRef]

38. Chun, J.; Zhang, X.; Huang, J.; Zhang, P. A Gridding Method of Redistributing Population Based on POIs.
Geogr. Geo-Inf. Sci. 2018, 34, 83–89. (In Chinese)

http://dx.doi.org/10.3390/rs70201855
http://dx.doi.org/10.1016/j.apenergy.2018.09.180
http://dx.doi.org/10.3390/ijgi8120580
http://dx.doi.org/10.3390/rs12010169
http://dx.doi.org/10.1016/j.cageo.2009.01.009
http://dx.doi.org/10.1080/13658816.2018.1555642
http://dx.doi.org/10.1111/tgis.12289
http://dx.doi.org/10.1080/13658816.2014.909045
http://dx.doi.org/10.3390/rs10101650
http://dx.doi.org/10.1080/13658816.2017.1290252
http://dx.doi.org/10.1016/j.scitotenv.2020.139148
http://dx.doi.org/10.1016/S0198-9715(97)01005-3
http://dx.doi.org/10.1016/j.rse.2018.03.007
http://dx.doi.org/10.3390/rs11161900
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s11442-014-1082-6
http://dx.doi.org/10.1016/j.rse.2005.08.012
http://dx.doi.org/10.3390/rs6021705
http://dx.doi.org/10.1080/20964129.2020.1733921
http://dx.doi.org/10.1016/j.rse.2020.111942
http://dx.doi.org/10.1016/j.is.2015.06.002
http://dx.doi.org/10.3390/rs11050574


Remote Sens. 2020, 12, 3645 22 of 22

39. Lloyd, C.T.; Sorichetta, A.; Tatem, A.J. High resolution global gridded data for use in population studies.
Sci. Data 2017, 4, 170001. [CrossRef] [PubMed]

40. Zhao Xin, S.Y.; Liu, Y.; Chen, F.; Hu, Y. Population Spatialization Based on Satellite Remote Sensing and POI
Data: Guangzhou as an Example. Trop. Geogr. 2020, 40, 101–109.

41. Patel, N.N.; Stevens, F.R.; Huang, Z.; Gaughan, A.E.; Elyazar, I.; Tatem, A.J. Improving Large Area Population
Mapping Using Geotweet Densities. Trans. GIS 2016, 21, 317–331. [CrossRef]

42. Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L. Anisotropic characteristic of artificial light at
night—Systematic investigation with VIIRS DNB multi-temporal observations. Remote Sens. Environ. 2019,
233, 111357. [CrossRef]

43. Tian, Y.; Zhou, Q.; Fu, X. An Analysis of the Evolution, Completeness and Spatial Patterns of OpenStreetMap
Building Data in China. ISPRS Int. J. Geo-Inf. 2019, 8, 35. [CrossRef]

44. Liu, Y.; Zhu, A.X.; Wang, J.; Li, W.; Hu, G.; Hu, Y. Land-use decision support in brownfield redevelopment
for urban renewal based on crowdsourced data and a presence-and-background learning (PBL) method.
Land Use Policy 2019, 88, 104188. [CrossRef]

45. Jiang, Y.; Li, Z.; Ye, X. Understanding demographic and socioeconomic biases of geotagged Twitter users at
the county level. Cartogr. Geogr. Inf. Sci. 2018, 46, 228–242. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/sdata.2017.1
http://www.ncbi.nlm.nih.gov/pubmed/28140386
http://dx.doi.org/10.1111/tgis.12214
http://dx.doi.org/10.1016/j.rse.2019.111357
http://dx.doi.org/10.3390/ijgi8010035
http://dx.doi.org/10.1016/j.landusepol.2019.104188
http://dx.doi.org/10.1080/15230406.2018.1434834
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data 
	Methods 
	Mapping the Population Density with the RF Model 
	Preprocessing of the Remote Sensing Data and Geographic Big Data 
	Eliminating the Background Noise and Extreme Values of the NPP/VIIRS Data 
	Producing NDVI Annual Synthetic Data 
	Generating the POI Density Layers 
	Calculating the Road Distance Layers 

	Accuracy Assessment 

	Results 
	Results of the Population Density Mapping 
	Accuracy Assessment 
	The Feature Importance of the Independent Variables 

	Discussion 
	The Differences between POIs and NPP/VIIRS in Mapping the Population Density 
	The Correlation between POIs and Censuses 
	Error Analysis 

	Conclusions 
	References

