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Abstract: The ability of the Canadian agriculture sector to make better decisions and manage
its operations more competitively in the long term is only as good as the information available
to inform decision-making. At all levels of Government, a reliable flow of information between
scientists, practitioners, policy-makers, and commodity groups is critical for developing and
supporting agricultural policies and programs. Given the vastness and complexity of Canada’s
agricultural regions, space-based remote sensing is one of the most reliable approaches to get detailed
information describing the evolving state of the country’s environment. Agriculture and Agri-Food
Canada (AAFC)—the Canadian federal department responsible for agriculture—produces the
Annual Space-Based Crop Inventory (ACI) maps for Canada. These maps are valuable operational
space-based remote sensing products which cover the agricultural land use and non-agricultural land
cover found within Canada’s agricultural extent. Developing and implementing novel methods for
improving these products are an ongoing priority of AAFC. Consequently, it is beneficial to implement
advanced machine learning and big data processing methods along with open-access satellite
imagery to effectively produce accurate ACI maps. In this study, for the first time, the Google Earth
Engine (GEE) cloud computing platform was used along with an Artificial Neural Networks (ANN)
algorithm and Sentinel-1, -2 images to produce an object-based ACI map for 2018. Furthermore,
different limitations of the proposed method were discussed, and several suggestions were provided
for future studies. The Overall Accuracy (OA) and Kappa Coefficient (KC) of the final 2018 ACI
map using the proposed GEE cloud method were 77% and 0.74, respectively. Moreover, the average
Producer Accuracy (PA) and User Accuracy (UA) for the 17 cropland classes were 79% and 77%,
respectively. Although these levels of accuracies were slightly lower than those of the AAFC’s ACI
map, this study demonstrated that the proposed cloud computing method should be investigated
further because it was more efficient in terms of cost, time, computation, and automation.
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1. Introduction

Knowledge of the location, extent, and type of croplands are important for food security systems,
poverty reduction, and water resource management [1]. Therefore, it is crucial for stakeholders
to have accurate cropland maps. This will help in coordinating managerial plans and policies for
croplands. In this regard, remote sensing provides valuable opportunity for classifying and monitoring
agricultural areas in a cost- and time-efficient manner especially over large areas [2].

Numerous studies have investigated the potential of remote sensing for cropland mapping
worldwide, most of which have been conducted over relatively small geographical areas. For instance,
the study sites of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM)
Joint Experiments for Crop Assessment and Monitoring (JECAM) are no larger than 25 × 25 km2.
Although such studies have large value for demonstrating the capability of new methodologies and
algorithms for crop mapping purposes, their ability to be scaled for operational application over much
larger regions often remains unclear. In this regard, one of the important issues to be considered
is processing big geo data (e.g., thousands of satellite images, often comprising tens of terabytes
of data) over a large area in the classification procedure [3]. This task is impossible by commonly
used classification software packages. Thus, several platforms, such as Google Earth Engine (GEE),
have been developed to effectively process big geo data and produce large-scale maps.

The GEE cloud computing platform contains numerous open-access remote sensing datasets
and various algorithms (e.g., cloud masking functions and classifiers) which can be easily accessed
for different applications, such as producing country-wide cropland inventories [4–6]. So far, several
studies have utilized GEE to produce large-scale cropland classifications. For example, Dong et al. [7]
mapped paddy rice regions in northeast Asia using Landsat-8 images within GEE. Their results
showed that GEE was significantly helpful in annual paddy rice mapping over large areas by reaching
the Producer Accuracy (PA) and User Accuracy (UA) of 73% and 92%, respectively. Moreover,
Xiong et al. [8] developed an automatic algorithm within GEE to classify croplands over the entire
Africa using various in situ and remote sensing datasets. Massey et al. [9] also used Landsat
imagery available in GEE to map agricultural areas in North America in 2010. For this purpose, they
fused pixel-based Random Forest (RF) and an object-based segmentation algorithm, called Recursive
Hierarchical Segmentation (RHSeg). The Overall Accuracy (OA) of the final map was more than 90%,
indicating the high potential of their proposed method for continental cropland mapping tasks. Finally,
Xie et al. [10] classified irrigated croplands over the conterminous United States with 30 m optical
Landsat imagery in GEE. They reported that they were able to obtain the OA and KC of 94% and 0.88,
respectively, at the aquifer level in 2012.

Canada contains numerous agricultural areas, making the country one of the largest food
producers and exporters in the world [7]. Given the vastness and complexity of Canada’s agricultural
regions in terms of crop types, remote sensing is one of the most reliable methods to produce detailed
information describing the evolving state of the country’s environment. Sector-wide, there is a need
for relevant, timely, and accurate spatially specific information on the state and trends in agricultural
production, bio-physical resource utilization and mitigations, domestic and international market
conditions, and how these conditions relate to global conditions. These needs coincide with a rapid
expansion of data availability brought about by the increasing development of technology that has made
geospatial data less expensive, more reliable, more available, and easier to integrate and disseminate.
Over the past decade, various research studies have explored the utility of remote sensing methods for
agricultural mapping across Canada’s diverse and often complex agricultural landscape. For instance,
Deschamps et al. [11] compared Decision Tree (DT) and RF algorithms to map Canadian agricultural
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areas using satellite imagery. They reported that RF outperformed DT by up to 5% and 7% for OA
and class accuracies, respectively. They employed multi-temporal remote sensing images acquired
between May and September and reported that the best time to distinguish different crops was between
August and early September at the peak biomass and after wheat harvest. Jiao et al. [12] also applied
multi-temporal RADARSAT-2 images to an object-based classification algorithm to classify croplands
in an agricultural area in northeastern Ontario, Canada. They classified five different crop types with
an OA of 95%. Finally, Liao et al. [13] used the RF classifier along with multi-temporal RADARSAT-2
datasets to map croplands in southwestern Ontario, Canada. Their results showed that the elements
of the coherency matrix and the imagery acquired between June to November provided the highest
classification accuracy (OA = 90%).

As mentioned above, most studies on cropland classification in Canada were conducted over
relatively small areas and using relatively traditional methods where a small number of crop types were
mapped. The only near nation-wide cropland classification is the Annual Space-Based Crop Inventory
(ACI) produced by the Agriculture and Agri-Food Canada with 30 m spatial resolution (AAFC,
Figure 1). ACI is updated annually and is available free of charge to the public via the Government of
Canada‘s Open Data Portal. ACI contains a map of the agricultural land use and non-agricultural
land cover found within Canada’s agricultural extent [14]. The DT methodologies along with optical
(e.g., Landsat-8) and SAR (e.g., SGX dual-polarization RADARSAT-2 in the Wide mode) imagery are
applied to produce ACI. Although these maps achieve an OA of 85% at the national scale, its accuracy
can vary from crop-to-crop, from region-to-region, and from year-to-year, depending on the satellite
data availability and training site distribution. Generally, the highest mapping accuracies (>90.0%)
are found where crops display significantly different spectral characteristics at the time of the remote
sensing data acquisition. Conversely, lower mapping accuracies (70% to 80%) occur where crops are
spectrally similar [14].

Figure 1. Annual Space-based Crop Inventory (ACI) produced by Agriculture and Agri-Food Canada
(AAFC) in 2018.

Developing and implementing novel methods for improving the accuracy of ACI is an ongoing
priority of AAFC remote sensing science. Recent advancements in the fields of machine learning and
big data processing methods suggest that alternative approaches may exist for more quickly generating
agricultural maps of Canada with high accuracy. Consequently, it is required to investigate the most
recent machine learning algorithms and cloud computing methods to produce accurate ACI map
in a more operational and automatic approach. Thus, this study aims to classify croplands over 10
provinces of the country using GEE and Artificial Neural Network (ANN) for the first time. For this
purpose, all the Ground Range Detected (GRD) products of Sentinel-1 and Sentinel-2 acquired in 2018
were applied to produce an object-based ACI map at the spatial resolution of 10 m.
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2. Study Area and Datasets

2.1. Study Area

Figure 2 illustrates the study region in the red boundary with an area of 2.803 million km2 which
comprises ~28% of Canada’s terrestrial landmass. This area includes important agricultural areas over
10 provinces of Canada, and it is the region with which AAFC generates its ACI maps. The study
area contains a wide range of ecoregions and is characterized by various ecological factors, including
climate, vegetation, and water because of its large extent and geography. Although land cover varies
across the study area, it is mostly dominated by forests, wetlands, grassland, and croplands [3,15].

Figure 2. The study area (red boundary) within Canada’s boundary (black boundary). The field
samples are indicted by cyan color Note that since ground observations for the western Provinces
are collected by Provincial Crop Insurance companies, they were unavailable for this study. (NL:
Newfoundland and Labrador, NB: New Brunswick, PE: Prince Edward Island, NS: Nova Scotia, QC:
Quebec, ON: Ontario, MB: Manitoba, SK: Saskatchewan, AB: Alberta, BC: British Columbia).

2.2. Field Data

Field data for 2018 were provided by AAFC. AAFC collects tens of thousands of crop type
observations from crop insurance information and car-based “windshield surveys” every year. In the
latter approach, some primary sampling units were first randomly delineated from the existing
databases (i.e., administrative regions) according to their cropland size [14]. Subsequently, the Global
Positioning System (GPS)-enabled tablets were used to determine the crop type along the roads from
the moving vehicle. This approach allowed a simple and rapid collection of numerous field samples
from diverse crop types. In this study, the AAFC database for 2018 that comprises the boundaries of the
croplands mapped during the 2018-windshield surveys across the country was utilized. The quality of
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field boundary delineation was validated using a cross-check with existing high-resolution optical
imagery from ArcGIS basemap and Google Earth. Figure 2 illustrates the distribution of field samples
across Canada and Table 1 provides the information about the field samples in each province. It is
worth noting that although AAFC considers about 59 different cropland classes (see Figure 1), only 17
cropland classes, which are the main classes found in Canada, were mapped in this study. The main
reason for this was that the number of field samples for some of the classes was insufficient for training
and validating the classification algorithm. Moreover, three classes of Barley, Oats, and Spring Wheat
were combined. This was because they had similar spectral and backscattering characteristics in the
satellite images and contained a high confusion in the classification.

Table 1. The list of cropland classes along with their number of field samples (polygons) which were
used in this study.

Class NL PE NS NB QC ON BC Sum

Barley/Oats/Spring
Wheat 11 424 167 711 32,772 1210 79 35,374

Rye 0 16 21 6 829 285 4 1161
Winter Wheat 1 38 128 3 2587 2269 17 5043

Corn 28 143 852 507 61,562 11,065 574 74,731
Tobacco 0 0 0 0 0 221 0 221
Ginseng 0 0 0 0 0 190 3 193

Canola/Rapeseed 0 22 4 48 1789 263 6 2132
Soybeans 0 247 316 262 54,586 12,099 15 67,525

Peas 5 58 0 48 593 58 8 770
Beans 0 0 0 1 1044 239 7 1291

Tomatoes 0 0 0 1 39 110 2 152
Potatoes 34 532 39 1008 1802 231 98 3744

Blueberry 4 66 265 155 486 7 516 1499
Cranberry 12 4 13 28 484 0 93 634
Orchards 0 4 186 55 246 462 728 1681
Vineyards 0 4 63 9 19 346 361 802
Buckwheat 0 12 1 1 658 9 0 681

Sum 91 1570 2055 2848 159,496 29,064 2511 197,634

NL: Newfoundland and Labrador, PE: Price Edward Island, NB: New Brunswick, NS: Nova Scotia, QC: Quebec, ON:
Ontario, BC: British Columbia.

2.3. Satellite Data

A combination of multi-temporal SAR (Sentinel-1) and optical (Sentinel-2) imagery, acquired in
2018, was used in this study. Each of these satellite dataset can detect different spectral and physical
characteristics of crops and, thus, a combination could potentially compensate the limitation of using
one type of imagery [16–18]. For instance, Davidson et al. [14] reported that experiments undertaken at
Canadian research sites indicated that a combination of Landsat and RADARSAT-2 data can improve
the accuracy of cropland classification by up to 5–8% compared to when only Landsat imagery was
used. Additionally, many studies (e.g., [15,17,19]) have discussed that it is essential to use multi-date
satellite data to produce highly accurate cropland classification. This is because various croplands
have different phenology and temporal patterns, which can be potentially detected by multi-temporal
remote sensing images.

Sentinel-1 acquires C-band data in various swath modes (i.e., Interferometric Wide swath (IW),
Extra Wide swath (EW), and Strip Map (SM)), and both single (HH: Horizontal transmit and Horizontal
receive polarization, or VV: Vertical transmit and Vertical receive polarization) and dual polarizations
(HH/HV: Horizontal transmit and Vertical receive polarization, or VV/VH: Vertical transmit and
Horizontal receive polarization). The primary conflict-free modes are IW with VV+VH polarization
over lands (excluding polar regions) [20]. In this study, the GRD data collected in IW mode and in
the ascending orbit with 10 m spatial resolution were used. Furthermore, since the HH and HH/HV
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polarizations are designed only for polar regions [20], they were not available over the entire Canada
and, thus, only the VV/VH dual polarization was used in this study.

Sentinel-2 is a European multi-spectral satellite, which acquires imagery in 13 spectral bands,
such as visible (band 2–4), Red Edge (RE, band 5–7), Near Infrared (NIR, band 8), and Shortwave
Infrared (SWIR, band 11–12) bands with 10 m, 20 m, 10 m, and 20 m spatial resolutions, respectively.
In this study, the Normalized Difference Vegetation Index (NDVI = NIR − Red

NIR + Red ) and the Normalized
Difference Water Index (NDWI = NIR − SWIR

NIR + SWIR ) with 10 m spatial resolution were only used to reduce
the computational cost of processing.

3. Methodology

The flowchart of the method to produce the ACI map using the GEE platform and ANN algorithm
is illustrated in Figure 3. The details of each step are also discussed in the following five subsections.

Figure 3. Flowchart of the proposed method to produce the Annual Space-Based Crop Inventory
(ACI) map using Google Earth Engine (GEE) and Artificial Neural Network (ANN) algorithm (AAFC:
Agriculture and Agri-Food Canada, NDVI: Normalized Difference Vegetation Index, NDWI: Normalized
Difference Water Index, SNIC: Simple Non-Iterative Clustering, MODIS LCP: Moderate Resolution
Imaging Spectroradiometer Land Cover Product).

3.1. Satellite Data Pre-Processing

The available Sentinel-1 Ground Range Detected (GRD) products in the ascending mode within
GEE (Image Collection ID: COPERNICUS/S1_GRD) were used in this study. This product was already
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calibrated to backscattering coefficient (σ◦, dB), ortho-rectified, and converted to the backscattering
coefficient using the Sentinel-1 Toolbox [21]. In fact, the five following pre-processing steps were
used by the GEE developers to derive the backscattering coefficient for each pixel of Sentinel-1 image,
the details of which are discussed in [22]: (1) applying orbit file, (2) GRD border noise removal,
(3) thermal noise removal, (4) radiometric calibration, and (5) terrain correction. In addition to these
pre-processing steps, a foreshortening mask correction was applied to reduce the geometric distortions
due to SAR data imaging [23].

The level-1C Sentinel-2 images available within GEE (Image Collection ID: COPERNICUS/S2)
were used in this study. These products were converted to Top of Atmosphere (TOA) reflectance values
scaled by 10,000 through radiometric calibration [24]. Because of the necessity of cloud masking in
optical images, all scenes with higher than 10% cloud cover were also removed from further steps.
Moreover, the quality band was applied to remove invalid observations as well as to produce the
cloud-free mosaic optical image over the study area.

Finally, the pre-processed Sentinel-1 and Sentinel-2 datasets were clipped over the cropland areas
using the union of the AAFC’s cropland inventory map (Figure 1) and Moderate Resolution Imaging
Spectroradiometer (MODIS) yearly land cover product with 500 m spatial resolution (Image Collection
ID: MODIS/006/MCD12Q1) [25]. By doing this, the final study area was the cropland areas identified
by either the AAFC or MODIS land cover product in 2018.

3.2. Feature Extraction

The performance of classification algorithms depends on the extraction of suitable features [26].
Therefore, in this section, the extracted features from optical and SAR datasets are discussed.

Regarding SAR features, the mean function was initially applied to preprocessed Sentinel-1 images
to produce bi-monthly VV and VH images (see Table 2). The mean function enabled the production
of 12 mosaic SAR images (6 VV + 6 VH) over the study area for the whole year of 2018. Moreover,
the mean function reduced the effects of speckle noise in the feature layer [27].

Table 2. Number of the Sentinel-1 and Sentinel-2 images used for each time interval.

Months
Sentinel-1 Sentinel-2

Features # Images Features # Images

January–February VV-1, VH-1 537 NDVI-1, NDWI-1 9552March–April VV-2, VH-2 545
May–June VV-3, VH-3 620 NDVI-2, NDWI-2 14,532

July–August VV-4, VH-4 705
September–October VV-5, VH-5 660 NDVI-3, NDWI-3 11,861

November–December VV-6, VH-6 761
Total 6 VV + 6 VH 3828 3 NDVI + 3 NDWI 35,945

Spectral indices derived from remote sensing images have been widely employed for crop
classification [28]. In this regard, the Normalized Difference Vegetation Index (NDVI) proved
to be competent in crop classification [29,30]. Moreover, the Normalized Difference Water Index
(NDWI), which contains the amount of plant water content, has been extensively utilized for crop
mapping [31–33]. Finally, it was reported that using a combination of these two indices provides
complementary information about vegetation canopies and, thus, could improve the accuracy of
crop classification [34]. Therefore, in this study, the NDVI and NDWI images were calculated from
preprocessed Sentinel-2 images. A median function was applied to all NDVI and NDWI images within
every four months, resulting in three NDVI and three NDWI images for the year of 2018 (see Table 2).
This function allowed producing six single homogenous and cloud-free NDVI/NDWI images over
the study area. Moreover, this function removed the wrong values that were calculated because of
the existence of very bright/dark or noisy pixels [3,35]. It should be noted that the reason to produce
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the four-month mosaic images was the fact that four month was the minimum amount of time to
produce cloud-free NDVI/NDWI mosaic images over the study area because of the frequent cloud
cover in Canada.

Finally, three NDVI, three NDWI, and 12 SAR images were stacked, producing a single mosaic
image with 18 layers over the study area. For this purpose, 3,828 Sentinel-1 and 35,945 Sentinel-2
images were processed within the GEE (see Table 2). This final mosaic image was applied to the
classification algorithm to map croplands. It is worth noting that utilizing these two features at different
time intervals reduced the artifact lines between images acquired at different orbits.

3.3. Segmentation

Many studies have reported that object-based image analysis could improve crop type classification
compared to pixel-based methods [36,37]. Therefore, the Simple Non-Iterative Clustering (SNIC)
algorithm, which is the best segmentation algorithm in GEE, was applied to segment the final
layer-stacked mosaic image. SNIC is an improved version of the Simple Linear Iterative Clustering
(SLIC) segmentation algorithm that benefits from a non-iterative procedure and enforces the connectivity
rule from the initial stage [38]. The SNIC is initialized by a user-defined number of seed points spread
on a regular grid in the image space. Afterward, a distance measure along with the 4/8 connectivity
rule are applied to grow each seed point, resulting in final segments. In this study, the SNIC algorithm
was applied to the single mosaic image with 18 layers and, then, the values of each segment were
averaged to decrease the noises and increase the reliability of the samples that were used in further
steps. Finally, these segments were employed to perform an object-based classification to produce
the ACI map. The implemented SNIC algorithm within GEE comprises five input parameters [39]:
Size, Compactness, Connectivity, Neighborhood Size, and Seeds (an optional parameter). In this study,
these parameters were set to 50, 1, 8, 100, and null, respectively based on multiple trials and errors to
find the optimum values for these parameters.

Figure 4 illustrates the results of SNIC segmentation over a sample region in the study area.

Figure 4. Results of applying the Simple Non-Iterative Clustering (SNIC) algorithm and the calculated
mean value of each segment for a sample region in the study area. (a) high-resolution image of the
corresponding region. False RGB color composites of (b) NDVI-1, NDVI-2, and NDVI-3, (c) NDWI-1,
NDWI-2, and NDWI-3, (d) VV-1, VV-2, and VV-3, and (e) VV-4, VV-5, and VV-6 (NDVI: Normalized
Difference Vegetation Index, NDWI: Normalized Difference Water Index, VV: Vertical transmit and
Vertical receive polarization).
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3.4. Classification

Deep learning algorithms, such as ANN, have been extensively employed for crop type
classifications [33,40–42]. ANN was inspired by the biological neural networks that simulates the
human brain nervous recognition system with high potential for non-linear classification capacity [43].

In this study, the single mosaic image with 18 layers generated within GEE were used to produce
the ACI map using the ANN algorithm. To this end, the reference samples were first randomly divided
into three sets of training (70%), validation (15%), and test (15%) samples. According to sampling theory,
random sampling shall provide independent information and avoid spatial biases [14]. The training,
validation, and test samples were applied to train the ANN algorithm, adjust the hyperparameters
of the ANN architecture, and accuracy assessment of the final ACI map, respectively. Despite the
high computational performance of GEE, this cloud platform has computational limitations for the
cases when the numbers of reference samples or input features for classification are too large [3,6,35].
Therefore, the mean values of training and validation samples were first extracted (for each segment)
from the single mosaic image with 18 layers in GEE and, then, were transferred into a local computer
to train a feedforward ANN algorithm. It should be noted that the training phase was conducted on a
local computer with an Intel Core i7-5820K, 3.3 to 3.6 GHz.

Generally, four parameters of the number of layers, number of neurons, type of activation function,
and learning algorithm are used to determine the architecture of an ANN model. In this study, an
ANN architecture with two hidden layers with 40 and 30 neurons was used, respectively. The numbers
of neurons were selected by implementing multiple trials and errors to find the most optimum values.
The numbers of neurons for the input and output layers were 18 and 17 that were equal to the number
of input features and ACI classes, respectively. The activations function of all neurons was the tangent
sigmoid. Furthermore, the minimum performance gradient was used as the stopping criterion, and the
model satisfied this criterion after 4,226 iterations. The Scaled Conjugate Gradient (SCG) method was
also employed as the back-propagation learning algorithm. The SCG employs second-order techniques
in the second derivatives and conjugate direction to find a better local minimum in each step [44].
In contrast to the algorithms that employ gradient direction as the search direction, SCG avoids zig-zag
solutions [45]. Furthermore, the SCG algorithm benefits from relatively small storage requirement and
fast convergence speed, which can be useful for large-scale studies [45,46]

After training the ANN model, it was transferred to GEE and was applied to the entire study area
to produce the ACI map. It is worth noting that all the weights and biases of the trained ANN model
on the local computer were manually transferred into GEE API.

3.5. Accuracy Assessment

It is necessary to evaluate the classification result of the final ACI map to ensure the reliability
of the proposed method. Therefore, the accuracy of the final classified ACI map was assessed both
visually and statistically. For visual assessment, the available high-resolution satellite imagery within
ArcGIS and Google Earth were employed. Regarding statistical accuracy assessment, the confusion
matrix of the classification was calculated using independent test samples (15% of all samples) within
GEE. Subsequently, various metrics such as OA, KC, PA, UA, Commission Error (CE), and Omission
Error (OE) were derived from the confusion matrix.

4. Results

Figure 5 illustrates the object-based 2018 ACI map produced using the ANN algorithm and a
combination of Sentinel-1 and -2 imagery within the GEE cloud computing platform. The resulting
ACI map is visually clear and noise-free because of the incorporation of the SNIC algorithm for noise
(salt-and-pepper) reduction, as mentioned in Section 3.3. Through the visual interpretation, it was
observed that the proposed method was reasonably able to detect and classify the cropland classes.
In this regard, three zoomed regions were explored and illustrated along with the corresponding
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high-resolution images available in ArcGIS to present the visual accuracy of the produced ACI map
(see Figure 6).

Figure 5. The object-based Annual Space-Based Crop Inventory (ACI) map produced using Sentinel-1
and -2 imagery, Google Earth Engine (GEE) cloud computing, and Artificial Neural Networks (ANN)
algorithm. Three regions marked with black stars were selected for visual accuracy assessment of the
produced ACI map.

Figure 6. Three zoomed regions of the Annual Space-Based Crop Inventory (ACI) map along with the
corresponding high-resolution satellite images used for visual assessment (see Figure 5 for the location
of each region and the legend of the classes).
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The first zoomed region (Figure 6a) is located in the southern part of Alberta in which circular
(center-pivot irrigation) and rectangular croplands exist. The proposed approach was able to
successfully identify the type of croplands and removed the non-cropland areas. Moreover, the proposed
method had high potential in delineating the boundary of croplands (circular patterns) over this region.
The dominant cropland classes were Barley/Oats/Spring Wheat over this zoomed region. Likewise,
the proposed method efficiently classified the croplands located in the southern part of Manitoba
(Figure 6b). Potatoes and Canola/Rapeseed classes were assigned the largest cultivation area in this
region. Furthermore, Figure 6c shows the effectiveness of the proposed GEE workflow to classify the
croplands in the south-east of Ontario. This region contains several croplands dominated by Corn and
Winter Wheat.

Table 3 provides the area of each cropland type, which were calculated from the produced
ACI map. In total, 81,157,426 hectares of the study area were identified and classified as croplands.
Generally, three classes of Barley/Oats/Spring Wheat, Canola/Rapeseed, and Blueberry had the highest
coverage over the study area with areas of about 34, 12, and 5 million hectares, respectively. The lowest
coverages were for Tomatoes, Tobacco, and Ginseng classes with areas of approximately 118, 124, 129
thousand hectares, respectively.

Table 3. Area of different cropland classes over the study area calculated from the produced ACI map
in this study.

ID Class Area (Hectare)

1 Barley/Oats/Spring Wheat 34,773,308
2 Rye 3,859,182
3 Winter Wheat 4,607,312
4 Corn 2,007,945
5 Tobacco 124,157
6 Ginseng 129,507
7 Canola/Rapeseed 12,561,075
8 Soybeans 2,132,346
9 Peas 4,887,516

10 Beans 1,841,635
11 Tomatoes 118,822
12 Potatoes 4,053,364
13 Blueberry 4,932,649
14 Cranberry 1,028,732
15 Orchards 1,583,179
16 Vineyards 425,621
17 Buckwheat 2,091,076

- Total 81,157,426

Table 4 provides the confusion matrix of the classified ACI map using over 10 million independent
test samples. The OA and KC were respectively 77% and 0.74, indicating the high potential of the
proposed cloud computing method for the ACI production. The classes had medium to high PA
values, varying between 63% and 96%. The classes of Cranberry and Canola/Rapeseed had the highest
PAs, respectively. These classes have distinct spectral (NDVI + NDWI) and backscattering (VV + VH)
characteristics compared to other cropland classes. Moreover, the ACI map achieved a satisfactory
average UA of 77%. The Cranberry and Blueberry classes obtained the highest UAs, respectively,
while the classes of Rye and Soybeans had the lowest UA values. It was also observed that the classes
of Barley/Oats/Spring Wheat had the highest confusion with other cropland classes (6 other classes),
causing 34% loss of PAs in total. Furthermore, the largest amount of reciprocal confusion was observed
between the classes of Soybeans and Beans, resulting in a reduction in PAs by approximately 28%
in total.
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Table 4. Confusion matrix of the produced Annual Space-Based Crop Inventory (ACI) map in terms of the number of pixels.

Reference Data (ID)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total

Classified Data
(ID)

1 2230420 75114 69312 41847 324 427 12583 20015 31924 16198 261 13174 6758 1004 5279 1613 44910 2571163
2 154119 422211 65392 13932 2830 3382 1807 7130 10396 6057 222 5067 3769 266 5334 2229 2336 706479
3 179766 63932 672192 16167 168 537 958 9048 8590 5072 276 1527 3565 508 7783 3805 3651 977545
4 48904 11934 5394 428800 840 702 1131 36133 21025 14373 1340 8291 1409 201 3737 3146 18614 605974
5 111 3230 214 1290 138560 4295 26 3167 505 4206 578 1378 92 7 456 505 9 158629
6 198 3518 925 1021 5108 69627 7 2732 186 2973 80 901 211 54 769 427 1 88738
7 24834 3583 389 2955 90 4 405153 3560 7219 2350 452 9876 478 20 309 324 15018 476614
8 16752 5932 2758 37286 4866 2061 2966 417017 13700 82097 4027 38583 1217 342 3526 2155 9161 644446
9 55878 8840 3878 28620 544 335 8286 14923 558750 36085 116 9680 1952 50 769 162 6531 735399

10 37563 8436 5856 21258 4020 1279 4823 77461 42492 812496 261 23708 810 165 2367 703 10640 1054338
11 582 1240 249 5986 3189 1041 40 6341 772 1427 58848 1203 17 1 286 137 356 81715
12 26778 7867 902 9490 4449 811 8587 49022 10973 39950 1905 423930 1355 81 958 630 19407 607095
13 11913 1982 415 1069 56 146 343 651 686 811 2 302 264369 2301 5829 1614 1242 293731
14 896 602 532 12 0 36 0 7 301 132 0 21 4474 146766 239 558 31 154607
15 7169 2818 4520 2306 336 307 15 2936 581 2621 140 358 5521 545 222276 21522 247 274218
16 1806 1431 4346 1428 56 525 3 1592 86 605 47 43 4148 243 24791 138215 146 179511
17 65946 5049 2627 18185 0 16 10297 6909 6087 5852 72 10213 2509 171 300 297 384835 519365

Total 2863635 627719 839901 631652 165436 85531 457025 658644 714273 1033305 68627 548255 302654 152725 285008 178042 517135 10129567
PA (%) 77.89 67.26 80.03 67.89 83.75 81.41 88.65 63.31 78.23 78.63 85.75 77.32 87.35 96.10 77.99 77.63 74.42 OA =

76.95 %UA (%) 86.75 59.76 68.76 70.76 87.35 78.46 85.01 64.71 75.98 77.06 72.02 69.83 90.00 94.93 81.06 77.00 74.10
CE (%) 22.11 32.74 19.97 32.11 16.25 18.59 11.35 36.69 21.77 21.37 14.25 22.68 12.65 3.90 22.01 22.37 25.58 KC =

0.738OE (%) 13.25 40.24 31.24 29.24 12.65 21.54 14.99 35.29 24.02 22.94 27.98 30.17 10.00 5.07 18.94 23.00 25.90

OA: Overall Accuracy, KC: Kappa Coefficient, PA: Producer Accuracy, UA: User Accuracy, CE: Commission Error, OE: Omission Error
1: Barley/Oats/Spring Wheat, 2: Rye, 3: Winter Wheat, 4: Corn, 5: Tobacco, 6: Ginseng, 7: Canola/Rapeseed, 8: Soybeans, 9: Peas, 10: Beans, 11: Tomatoes, 12: Potatoes, 13: Blueberry, 14: Cranberry, 15: Orchards, 16:

Vineyards, 17: Buckwheat
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5. Discussion

In this section, the limitations of the study regarding the filed data, similarity of croplands,
and discriminating croplands from non-cropland are discussed. Several suggestions, such as adding
more satellite data, producing the Canada-wide cropland map, producing ACI map, and change
analysis are also provided.

5.1. Field Data

Similar to most of the remote sensing studies, the quality and quantity of field data play an
important role in the accuracy of the classification. This problem is exacerbated in this study area
due to the small number of field data collected relative to the very large geographical area mapped.
In fact, the number of field data for several classes were insufficient for training and validating the
classification algorithm and, thus, were initially removed. Significant variation in the number of
reference samples of different classes results in an imbalance references sets, affecting the classifier
performance [47–49]. Thus, the 59 cropland classes used by AAFC were reduced to 17 cropland classes
in this study. It should be noted that these 17 classes are the major croplands in Canada by seeded area.
Another characteristic of the current study that made it more sensitive to the number of field data was
utilizing ANN as the deep learning classification method. This was another reason that the classes
with a small number of field samples were initially removed.

Another issue regarding field data that affected the accuracy of classification was the fact that field
data were available over only seven Canadian provinces. Clearly, different provinces have various
climates and different land covers/land uses. Thus, lacking field data over some provinces reduced the
accuracy and reliability of the final ACI map over several regions.

5.2. Spectral Similarity of Croplands

In this study, 17 classes were distinguished, some of which contained similar spectral and physical
characteristics. Therefore, they had similar pixel values in both optical and SAR imagery. Figure 7
demonstrates the box plots of the 17 cropland classes using different spectral and SAR features at
different time ranges in 2018. As is clear, there is a high overlap between the values of various croplands,
which made the discrimination of these classes more challenging. This fact was also well reflected in
the confusion matrix (Table 4) and the final ACI map (Figure 5) where a high confusion between some
of the classes was observed and several misclassifications occurred. Furthermore, it was observed that
using a specific feature at different time ranges was beneficial in discriminating various croplands.
For example, the mosaic SAR images with the VH polarization (i.e., Figure 7g–i) had different patterns
of box plots, indicating an improvement in cropland discrimination using the VH features generated
at different seasons. It is finally worth noting that the confusion between multiple cropland classes
would have been much worse if the numbers of the classes were not decreased to 17 classes.
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Figure 7. Box plots of the cropland classes using (a–c) three mosaic Normalized Difference Vegetation
Index (NDVI) features, (d–f) three mosaic Normalized Difference Water Index (NDWI) features,
(g–i) three mosaic backscattering coefficients at the Vertical transmit and Horizontal receive (VH)
polarization, (j–l) three mosaic backscattering coefficients at the Vertical transmit and Vertical receive
(VV) polarization. The cross (×) mark indicates the mean value.

5.3. Discrimination of Cropland and Non-Cropland Areas

Generally, cropland classification has two main steps: (1) discriminating cropland from
non-cropland areas, and (2) classifying various crop types within the cropland area. As discussed
in Section 3, the AAFC’s ACI map along with the MODIS yearly land cover product were initially
applied to distinguish croplands from non-croplands. However, the accuracies of these products,
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especially the MODIS product, in identifying the cropland areas are questionable at multiple regions.
Thus, a considerable amount of error could have incurred at this step. It is therefore recommended to
develop a specific algorithm to initially distinguish these two general categories (i.e., cropland and
non-cropland) to produce a more accurate and reliable ACI map in the future.

5.4. Including More Satellite Data

One of the approaches to improve the classification accuracy is utilizing different remote sensing
datasets with various characteristics to facilitate discriminating different croplands by generating more
information [50]. For instance, AAFC has used the datasets collected by three satellites of Landsat-8,
Sentinel-2, and RADARSAT-2 for producing the 2018 ACI map with the spatial resolution of 30 m
(Figure 1). However, in this study, the ACI map was produced using Sentinel-1 and Sentinel-2 datsets
with 10 m spatial resolution. There are several recently launched and former satellites which could
be included in the ACI production to improve the accuracy. For example, Canada has launched
RADARSAT Constellation Mission (RCM) on June 12, 2019. This satellite provides circular polarization
datasets with high spatial resolution and, thus, can considerably improve the accuracy of future
ACI maps.

5.5. Canada-Wide Cropland Inventory Map

As discussed, the area specified by AAFC which is approximately 28% of the country (Figure 2)
was considered in this study to produce the ACI map. Although this area contains most croplands
in Canada, there are additional croplands outside of this boundary, such as Yukon. Consequently,
the future studies should aim to produce ACI map for the entire country or extend the boundaries of
classification until all the cropland areas are included.

5.6. ACI Maps at Diffeent Years and Change Analysis

For managing the amount of food being produced and distributed in a country, it is important to
track crop production in different years. Moreover, for protecting agricultural areas and other land
covers, like wetlands, it is imperial to detect what land covers are changed to agricultural fields or vice
versa. Therefore, ACI maps at different years can be produced to answer these questions. The proposed
GEE cloud computing method can be effectively applied to produce ACI maps and assess the changes
in a more cost-efficient approach compared to the methods that are currently utilized by AAFC.

6. Conclusions

Although a vast portion of Canada is covered by different types of croplands, advanced machine
learning and big geo data processing methods have not been investigated for producing ACI maps.
Therefore, a cloud computing method was presented in this study to produce object-based ACI maps
using a combination of multi-date Sentinel-1 and Sentinel-2 images acquired in 2018. The method was
implemented within GEE, and an ANN was applied to delineate 17 cropland classes over 10 provinces
of Canada. The overall classification accuracy was 77%, and the average PA and UA for cropland
classes were 79% and 77%, respectively. This level of accuracy was reasonable for the first effort to use
GEE for ACI production. The proposed method was highly efficient in terms of cost and computation.
In fact, using GEE cloud platform and open-access satellite images (i.e., Sentiel-1/-2) instead of local
computers and costly images (e.g., RADARSAT-2) used by AAFC made the proposed method more
efficient in terms of time and cost and would facilitate automated production of the ACI maps in
future. It is believed that the proposed approach could be effectively applied to create Canada-wide
cropland inventories and facilitate change detection and monitoring efforts. Future studies should
consider the proposed method along with the following factors to produce more accurate and reliable
ACI maps: (1) More field data should be utilized to be able to discriminate more classes and improve
the class accuracies; (2) an efficient algorithm should be developed to discriminate cropland from
non-cropland regions. This will improve the accuracy and reliability of the map and will also facilitate
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the production of Canada-wide ACI maps; (3) ACI maps should be produced for different years and a
change detection algorithm should be developed to assess the amount of changes; and (4) additional
satellite data, such as RCM and X-band SAR images, should be incorporated into the classification.

Author Contributions: Conceptualization, M.A. and M.K.; data curation, M.A., M.K., A.M. (Armin Moghimi),
A.G., A.D., T.F., and P.R.; formal analysis, M.A., M.K., A.M. (Armin Moghimi), A.G., and S.M.; funding acquisition,
M.A.; investigation, M.A., M.K., A.G., and T.F.; methodology, M.A. and M.K.; project administration, M.A.;
resources, M.A., M.K., A.M. (Armin Moghimi), A.G., A.D., T.F., P.R., and B.B.; software, M.A. and M.K.;
supervision, M.A.; validation, M.A., M.K., A.M. (Armin Moghimi), A.G., S.M. and T.F.; visualization, M.A., M.K.,
and A.G.; writing—original draft, M.A., M.K., A.G., B.R., and S.M.; writing—review and editing, M.A., M.K., A.M.
(Armin Moghimi), A.G., B.R., S.M., A.D., T.F., P.R., B.B., and A.M. (Ali Mohammadzadeh). All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank AAFC for providing valuable field data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine Platform for
Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci.
2017, 5. [CrossRef]

2. McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J.
Remote Sens. 2004, 30, 525–542. [CrossRef]

3. Amani, M.; Mahdavi, S.; Afshar, M.; Brisco, B.; Huang, W.; Mohammad Javad Mirzadeh, S.; White, L.;
Banks, S.; Montgomery, J.; Hopkinson, C. Canadian Wetland Inventory using Google Earth Engine: The First
Map and Preliminary Results. Remote Sens. 2019, 11, 842. [CrossRef]

4. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

5. Amani, M.; Brisco, B.; Afshar, M.; Mirmazloumi, S.M.; Mahdavi, S.; Mirzadeh, S.M.J.; Huang, W.; Granger, J. A
generalized supervised classification scheme to produce provincial wetland inventory maps: An application
of Google Earth Engine for big geo data processing. Big Earth Data 2019, 3, 378–394. [CrossRef]

6. Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Alizadeh
Moghaddam, S.H.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing
Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2020, 13. [CrossRef]

7. Dong, T.; Liu, J.; Shang, J.; Qian, B.; Huffman, T.; Zhang, Y.; Champagne, C.; Daneshfar, B. Assessing the
Impact of Climate Variability on Cropland Productivity in the Canadian Prairies Using Time Series MODIS
FAPAR. Remote Sens. 2016, 8, 281. [CrossRef]

8. Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D.
Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J.
Photogramm. Remote Sens. 2017, 126, 225–244. [CrossRef]

9. Massey, R.; Sankey, T.T.; Yadav, K.; Congalton, R.G.; Tilton, J.C. Integrating cloud-based workflows in
continental-scale cropland extent classification. Remote Sens. Environ. 2018, 219, 162–179. [CrossRef]

10. Xie, Y.; Lark, T.J.; Brown, J.F.; Gibbs, H.K. Mapping irrigated cropland extent across the conterminous
United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine. ISPRS J.
Photogramm. Remote Sens. 2019, 155, 136–149. [CrossRef]

11. Deschamps, B.; McNairn, H.; Shang, J.; Jiao, X. Towards operational radar-only crop type classification:
Comparison of a traditional decision tree with a random forest classifier. Can. J. Remote Sens. 2012, 38, 60–68.
[CrossRef]

12. Jiao, X.; Kovacs, J.M.; Shang, J.; McNairn, H.; Walters, D.; Ma, B.; Geng, X. Object-oriented crop mapping and
monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS J. Photogramm. Remote Sens. 2014,
96, 38–46. [CrossRef]

http://dx.doi.org/10.3389/feart.2017.00017
http://dx.doi.org/10.5589/m03-069
http://dx.doi.org/10.3390/rs11070842
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1080/20964471.2019.1690404
http://dx.doi.org/10.1109/JSTARS.2020.3021052
http://dx.doi.org/10.3390/rs8040281
http://dx.doi.org/10.1016/j.isprsjprs.2017.01.019
http://dx.doi.org/10.1016/j.rse.2018.10.013
http://dx.doi.org/10.1016/j.isprsjprs.2019.07.005
http://dx.doi.org/10.5589/m12-012
http://dx.doi.org/10.1016/j.isprsjprs.2014.06.014


Remote Sens. 2020, 12, 3561 17 of 18

13. Liao, C.; Wang, J.; Huang, X.; Shang, J. Contribution of Minimum Noise Fraction Transformation of
Multi-temporal RADARSAT-2 Polarimetric SAR Data to Cropland Classification. Can. J. Remote Sens. 2018,
44, 215–231. [CrossRef]

14. Davidson, M.A.; Fisette, T.; McNarin, H.; Daneshfar, B. Detailed crop mapping using remote sensing
data (Crop Data Layers). In Handbook on Remote Sensing for Agricultural Statistics; FAO: Rome, Italy, 2017;
pp. 91–130.

15. McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic
Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm.
Remote Sens. 2009, 64, 434–449. [CrossRef]

16. Ban, Y. Synergy of multitemporal ERS-1 SAR and Landsat TM data for classification of agricultural crops.
Can. J. Remote Sens. 2003, 29, 518–526. [CrossRef]

17. Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding
the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications.
Remote Sens. Environ. 2017, 199, 415–426. [CrossRef]

18. Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2
Imagery for Crop Mapping: A Case Study for Belgium. Remote Sens. 2018, 10, 1642. [CrossRef]

19. Agriculture and Agri-Food Canada. ISO 19131 Annual Crop Inventory–Data Product Specifications; Agriculture
and Agri-Food Canada: Ottawa, ON, Canada, 2018.

20. Agency, E.S. Sentinel-1-Observation Scenario—Planned Acquisitions—ESA. Available online: https://sentinel.
esa.int/web/sentinel/missions/sentinel-1/observation-scenario (accessed on 15 March 2020).

21. Sentinel-1 Toolbox. Available online: https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1 (accessed on
10 March 2020).

22. Sentinel-1 Algorithms. Available online: https://developers.google.com/earth-engine/sentinel1 (accessed on
20 March 2020).

23. Kakooei, M.; Nascetti, A.; Ban, Y. Sentinel-1 Global Coverage Foreshortening Mask Extraction: An Open
Source Implementation Based on Google Earth Engine. In Proceedings of the IGARSS 2018–2018 IEEE
International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6836–6839.

24. Sentinel-2User Handbook. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_
User_Handbook (accessed on 5 April 2020).

25. Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500
m SIN Grid V006. 2019, distributed by NASA EOSDIS Land Processes DAAC. Available online: https:
//lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 20 March 2020).

26. Ghorbanian, A.; Mohammadzadeh, A. An unsupervised feature extraction method based on band correlation
clustering for hyperspectral image classification using limited training samples. Remote Sens. Lett. 2018.
[CrossRef]

27. Anchang, J.Y.; Prihodko, L.; Ji, W.; Kumar, S.S.; Ross, C.W.; Yu, Q.; Lind, B.; Sarr, M.A.; Diouf, A.A.; Hanan, N.P.
Toward Operational Mapping of Woody Canopy Cover in Tropical Savannas Using Google Earth Engine.
Front. Environ. Sci. 2020, 8, 4. [CrossRef]

28. Wang, L.; Dong, Q.; Yang, L.; Gao, J.; Liu, J. Crop classification based on a novel feature filtering and
enhancement method. Remote Sens. 2019, 11, 455. [CrossRef]

29. Ashourloo, D.; Shahrabi, H.S.; Azadbakht, M.; Aghighi, H.; Nematollahi, H.; Alimohammadi, A.; Matkan, A.A.
Automatic canola mapping using time series of sentinel 2 images. ISPRS J. Photogramm. Remote Sens. 2019,
156, 63–76. [CrossRef]

30. Dimitrov, P.; Dong, Q.; Eerens, H.; Gikov, A.; Filchev, L.; Roumenina, E.; Jelev, G. Sub-Pixel Crop Type
Classification Using PROBA-V 100 m NDVI Time Series and Reference Data from Sentinel-2 Classifications.
Remote Sens. 2019, 11, 1370. [CrossRef]

31. Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sens. Environ. 1996, 58, 257–266. [CrossRef]

32. Sitokonstantinou, V.; Papoutsis, I.; Kontoes, C.; Lafarga Arnal, A.; Armesto Andrés, A.P.; Garraza Zurbano, J.A.
Scalable parcel-based crop identification scheme using sentinel-2 data time-series for the monitoring of the
common agricultural policy. Remote Sens. 2018, 10, 911. [CrossRef]

33. Sun, C.; Bian, Y.; Zhou, T.; Pan, J. Using of multi-source and multi-temporal remote sensing data improves
crop-type mapping in the subtropical agriculture region. Sensors 2019, 19, 2401. [CrossRef]

http://dx.doi.org/10.1080/07038992.2018.1481737
http://dx.doi.org/10.1016/j.isprsjprs.2008.07.006
http://dx.doi.org/10.5589/m03-014
http://dx.doi.org/10.1016/j.rse.2017.07.015
http://dx.doi.org/10.3390/rs10101642
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1
https://developers.google.com/earth-engine/sentinel1
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
http://dx.doi.org/10.1080/2150704X.2018.1500723
http://dx.doi.org/10.3389/fenvs.2020.00004
http://dx.doi.org/10.3390/rs11040455
http://dx.doi.org/10.1016/j.isprsjprs.2019.08.007
http://dx.doi.org/10.3390/rs11111370
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.3390/rs10060911
http://dx.doi.org/10.3390/s19102401


Remote Sens. 2020, 12, 3561 18 of 18

34. Champagne, C.; Shang, J.; McNairn, H.; Fisette, T. Exploiting spectral variation from crop phenology for
agricultural land-use classification. In Proceedings of Spie; Remote Sensing and Modeling of Ecosystems for
Sustainability II, San Diego, CA, USA, 31 July–4 August 2005; Spie: Bellingham, MA, USA, 2005; Volume 5884,
p. 588405.

35. Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved land
cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow
for land cover classification using migrated training samples. ISPRS J. Photogramm. Remote Sens. 2020,
167, 276–288. [CrossRef]

36. Li, Q.; Wang, C.; Zhang, B.; Lu, L. Object-based crop classification with Landsat-MODIS enhanced time-series
data. Remote Sens. 2015, 7, 16091–16107. [CrossRef]

37. Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted
dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [CrossRef]

38. Achanta, R.; Susstrunk, S. Superpixels and polygons using simple non-iterative clustering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 4651–4660.

39. Google Earth Engine API. Available online: https://developers.google.com/earth-engine/api_docs (accessed
on 8 March 2020).

40. Murthy, C.S.; Raju, P.V.; Badrinath, K.V.S. Classification of wheat crop with multi-temporal images:
Performance of maximum likelihood and artificial neural networks. Int. J. Remote Sens. 2003, 24, 4871–4890.
[CrossRef]

41. Kumar, P.; Prasad, R.; Mishra, V.N.; Gupta, D.K.; Singh, S.K. Artificial neural network for crop classification
using C-band RISAT-1 satellite datasets. Russ. Agric. Sci. 2016, 42, 281–284. [CrossRef]

42. Seydi, S.T.; Hasanlou, M.; Amani, M. A New End-to-End Multi-Dimensional CNN Framework for Land
Cover/Land Use Change Detection in Multi-Source Remote Sensing Datasets. Remote Sens. 2020, 12, 2010.
[CrossRef]

43. Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the
Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ.
2018, 216, 345–354. [CrossRef]

44. Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533.
[CrossRef]

45. Chen, C.; Ma, Y.; Ren, G. Hyperspectral Classification Using Deep Belief Networks Based on Conjugate
Gradient Update and Pixel-Centric Spectral Block Features. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2020, 13, 4060–4069. [CrossRef]

46. Du, Y.-C.; Stephanus, A. Levenberg-Marquardt neural network algorithm for degree of arteriovenous fistula
stenosis classification using a dual optical photoplethysmography sensor. Sensors 2018, 18, 2322. [CrossRef]

47. Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing:
An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]

48. Naboureh, A.; Li, A.; Bian, J.; Lei, G.; Amani, M. A Hybrid Data Balancing Method for Classification of
Imbalanced Training Data within Google Earth Engine: Case Studies from Mountainous Regions. Remote Sens.
2020, 12, 3301. [CrossRef]

49. Moghimi, A.; Mohammadzadeh, A.; Celik, T.; Amani, M. A Novel Radiometric Control Set Sample Selection
Strategy for Relative Radiometric Normalization of Multitemporal Satellite Images. IEEE Trans. Geosci.
Remote Sens. 2020, 1–17. [CrossRef]

50. Amani, M.; Mahdavi, S.; Berard, O. Supervised wetland classification using high spatial resolution optical,
SAR, and LiDAR imagery. J. Appl. Remote Sens. 2020, 14, 1. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.isprsjprs.2020.07.013
http://dx.doi.org/10.3390/rs71215820
http://dx.doi.org/10.1016/j.rse.2017.10.005
https://developers.google.com/earth-engine/api_docs
http://dx.doi.org/10.1080/0143116031000070490
http://dx.doi.org/10.3103/S1068367416030137
http://dx.doi.org/10.3390/rs12122010
http://dx.doi.org/10.1016/j.rse.2018.07.006
http://dx.doi.org/10.1016/S0893-6080(05)80056-5
http://dx.doi.org/10.1109/JSTARS.2020.3008825
http://dx.doi.org/10.3390/s18072322
http://dx.doi.org/10.1080/01431161.2018.1433343
http://dx.doi.org/10.3390/rs12203301
http://dx.doi.org/10.1109/TGRS.2020.2995394
http://dx.doi.org/10.1117/1.JRS.14.024502
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Datasets 
	Study Area 
	Field Data 
	Satellite Data 

	Methodology 
	Satellite Data Pre-Processing 
	Feature Extraction 
	Segmentation 
	Classification 
	Accuracy Assessment 

	Results 
	Discussion 
	Field Data 
	Spectral Similarity of Croplands 
	Discrimination of Cropland and Non-Cropland Areas 
	Including More Satellite Data 
	Canada-Wide Cropland Inventory Map 
	ACI Maps at Diffeent Years and Change Analysis 

	Conclusions 
	References

