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Abstract: The global navigation satellite system (GNSS) has seen tremendous advances in
measurement precision and accuracy, and it allows researchers to perform geodynamics and
geophysics studies through the analysis of GNSS time series. Moreover, GNSS time series not only
contain geophysical signals, but also unmodeled errors and other nuisance parameters, which affect
the performance in the estimation of site coordinates and related parameters. As the number of globally
distributed GNSS reference stations increases, GNSS time series analysis software should be developed
with more flexible format support, better human–machine interaction, and with powerful noise
reduction analysis. To meet this requirement, a new software named GNSS time series noise reduction
software (GNSS-TS-NRS) was written in MATLAB and was developed. GNSS-TS-NRS allows users to
perform noise reduction analysis and spatial filtering on common mode errors and to visualize GNSS
position time series. The functions’ related theoretical background of GNSS-TS-NRS were introduced.
Firstly, we showed the theoretical background algorithms of the noise reduction analysis (empirical
mode decomposition (EMD), ensemble empirical mode decomposition (EEMD)). We also developed
three improved algorithms based on EMD for noise reduction, and the results of the test example
showed our proposed methods with better effect. Secondly, the spatial filtering model supported five
algorithms on a separate common model error: The stacking filter method, weighted stacking filter
method, correlation weighted superposition filtering method, distance weighted filtering method,
and principal component analysis, as well as with batch processing. Finally, the developed software
also enabled other functions, including outlier detection, correlation coefficient calculation, spectrum
analysis, and distribution estimation. The main goal of the manuscript is to share the software with the
scientific community to introduce new users to the GNSS time series noise reduction and application.
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1. Introduction

With the rapid development of space observation technology, the global navigation satellite system
(GNSS) has become an important tool to observe and model geophysical processes (e.g., tectonic rate,
landslide, earthquake displacement map, seasonal variations), and is being widely used in the study of
the crustal deformation of the Earth’s surface [1–4]. Currently, the globally distributed international
GNSS service (IGS) reference stations have accumulated nearly twenty years of coordinate time series,
which provide valuable basic data for the study of the geodynamics and global tectonics of Earth’s
lithosphere and mantle. Tens of thousands of GNSS stations have been installed worldwide to provide
continuous position information with millimeter-level accuracy in order to measure their changes in
position over time, which is associated with a number of geophysical phenomena such as the plate
motion [5,6], the deformation of the crust due to earthquakes (i.e., pre-, co-, and post-seismic offsets [7]),
glacial isostatic adjustment [8,9], ocean tide loading [10,11], and atmospheric loading [12].

However, GNSS time series are a sum of stochastic processes and geophysical signals such as the
tectonic rate and the seasonal variations [3,13]. GNSS daily position time series also contain unmodeled
signals (e.g., satellite orbit errors, small offsets) which affect the precise estimation of the geophysical
signals. Therefore, the analysis of the daily position time series should include the implementation
of various filtering models, together with making further systematic studies on the source of these
global positioning system (GPS) nonlinear variations. These techniques could not only help in the
estimation of geophysical signals, but can also lead to the detection of small amplitude signals and to
understanding new geodynamical mechanisms.

Routine analysis of GNSS time series can be performed with specific software. There are
various high-precision GNSS data post-processing software packages, such as GGMatlab, iGPS, Sigseg,
TSAnalyzer, and SARI [14–18]. There are also several specific packages which are used to estimate the
linear trend in time series with temporal corelated noise, e.g., CATS, Hector, and Est_noise [19–21].
Several geodetic groups have developed graphical user interfaces (GUIs) and services creation for
GNSS time series modeling and visualization [22–24]. However, only a few software packages were
designed specifically for GNSS time series noise reduction and analysis. These software packages suffer
from several drawbacks such as a user-friendly interface, or not being independent of commercial
software. To address these issues, we are here developing an open-source MATLAB-based GNSS time
series noise reduction software (GNSS-TS-NRS) written in MATLAB. Note that GNSS-TS-NRS could
also act as a TS input of CATS, Hector, and Est_noise, and the main feature of GNSS-TS-NRS is that it
provided powerful noise reduction functions.

2. Program Language and Installation

GNSS-TS-NRS was developed by using the MATLAB programming language with a graphical
user interface [25]. It has powerful functions in scientific computing, graphic visualization, computer
simulation, and the simplicity of programming languages. GNSS-TS-NRS mainly consists of source
code files, sample files, and instruction manuals. It also supports independent operation with the
MATLAB m-files. The main software interface is shown in Figure 1. It can be seen from Figure 1 that
GNSS-TS-NRS is mainly composed of 5 modules: Time series noise reduction module, common mode
error mitigation module, a time series plot and statistical analysis module, a time series processing
tools module, nearby sites and find co-located sites module. Users can start the package by running
“GNSS-TS-NRS.m” in MATLAB.
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3. Software Features of GNSS-TS-NRS

The models of GNSS-TS-NRS are highly independent, meaning the user can run each model
independently. At the same time, there is a certain connection between modules; that is, the output of
one module can be used as the input data of another module. The integration and fusion of the modules
form a fully functional time series processing and analysis software. The details of the mathematical
models and main functions of each module are provided below.

3.1. Common Mode Error Mitigation Model

The common mode error mitigation model (spatial filtering analysis model) includes data import,
method selection, spatial filtering, graph drawing, and accuracy evaluation. The graph drawing
includes three parts: (1) Drawing the time series before and after filtering the common mode error
(CME) of each station; (2) accuracy evaluation calculating the root mean square (RMS) of the time series
before and after filtering; (3) viewing the rate of RMS change before and after filtering. Five spatial
filtering methods are introduced below.

3.1.1. Stacking Filtering Method

The basic principle of the stacking filtering method is described as follows. Suppose that there are
S GNSS stations in the network: After removing the mean and trend terms of the recorded GNSS time
series, the residual time series is obtained. Then the CME is calculated by the following formula [26]:

εSF(i) =

S∑
n=1

εn,i

S
(1)
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where i is the index of the epoch, εn,i is the coordinate residual time series of the n-th GNSS station at
the i-th epoch, and εSF(i) is the coordinate residual time series after stacking filtering at the i-th epoch.
It can be seen that in the stacking filtering method, the CME is equal to the average of the residuals of
all the stations in the GNSS network at the current epoch [27].

3.1.2. Weighted Stacking Filtering Method

Suppose also that there are S GNSS stations in the network. After removing the mean and trend
terms of the recorded GNSS time series, the common mode error at the i-th epoch is calculated by the
following formula [28]:

εWSF(i) =

S∑
n=1

εn,i

σ2
n,i

S∑
n=1

1
σ2

n,i

(2)

where σn,i is the error of the daily position solution of the coordinate residual time series of the
n-th GNSS station at the i-th epoch, and other parameters have the same definitions in Equation (1).
When there were less than 3 sites, the calculation of common mode error was not performed.

3.1.3. Correlation Weighted Stacking Filtering Method

The correlation coefficient of the residual position time series between GPS stations could well
characterize the commonality of CME between the stations. Different from the weighted stacking
filtering algorithm, the correlation weighted superimposed filtering separately calculates the individual
CME sequence of each station as follows [29]:

εCWSF( j, i) =

S∑
n=1

εn,i

σ2
n,i
× r j,n

S∑
n=1

1
σ2

n,i
× r j,n

(3)

where εCWSF( j, i) represents the CME value of station j at epoch i,and r j,n is the correlation coefficient
between the coordinate residual sequences of station j and station n.

3.1.4. Distance Weighted Filtering Method

It is a fact that that the distance between GNSS stations affects the correlation between the
coordinates of the stations, and also has a certain impact on the regional CME size. The distance
weighted filtering method uses the center distance of all stations as the weight to calculate the CME of
a give station n (n = 1,2 . . . S) as follows:

ln = (xn − x)2 + (yn − y)2 + (zn − z)2 (4)

εDWF(i) =

S∑
n=1

εn,i
ln

S∑
n=1

1
ln

(5)

where ln is the distance from the station n to the center of the GPS network stations, and (x, y, z) is the
mean position of the stations.

3.1.5. Principal Component Analysis

Principal component analysis (PCA) is a standard mathematical tool that transforms a number
of different, but possibly correlated, variables into a smaller number of uncorrelated variables called
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principal components. Dong et al. proposed a PCA spatial filtering method, also called eigenvector
analysis, which is a commonly used data analysis method to separate common mode errors [30].
The core idea is to transform the original data into a set of linearly independent representations of each
dimension through linear transformation; that is, to orthogonally decompose the data into mutually
orthogonal vector spaces, which can be used to extract the main components (principal components)
of the data features [31,32].

3.2. Noise Reduction Analysis Model

Signal noise reduction includes four steps: Data import, noise reduction processing, graph
drawing, and precision analysis. The data import part imports external data or generates simulation
data. The noise reduction analysis part uses the correlation coefficient, root mean square error,
and signal-to-noise ratio as evaluation indicators to quantitatively evaluate the noise reduction effect.
The correlation coefficient reflects the similarity between the denoising time series (TS) and the original
TS. The closer the correlation coefficient value is to 1, the better the fitting effect; that is, the better
the denoising effect. Secondly, the root mean square error reflects the degree of deviation between
the denoising signal and the original signal, and the smaller the value, the better the denoising effect.
Thirdly, the signal-to-noise ratio mainly reflects the proportion of the noise signal in the overall signal.
The larger the value, the better the denoising effect. Last, the graph drawing function can draw the
correlation coefficient graph of the IMF (intrinsic mode function) and the original time series, each IMF
component graph, and the signal sequence comparison graph before and after noise reduction. In the
following section, we focus on the five noise reduction algorithms built into the software.

3.2.1. Empirical Mode Decomposition (Method 1)

The empirical mode decomposition (EMD) method was first proposed by Huang [33]. It is
an adaptive signal processing method for non-stationary nonlinear signals. The steps of EMD
decomposition of signal X(t) are:

Step 1: Find all the maximum and minimum points of the original time series X(t). Calculate the
average of the upper and lower envelopes d1. Subtract d1 from the original time series, then attain a
new time series c1(t);

Step 2: Repeat step 1 until the IMF threshold condition is met, to attain the first IMF component;
Step 3: Subtract the first IMF component from the original data sequence X(t) to form a new data

sequence X2(t), then repeat steps 1 and 2 until the m−th IMF component is obtained. Thus, the original
data sequence can be expressed as:

x(t) =
m∑

k=1

IMFk + r(t) (6)

where r(t) is the residual term, k is the IMF serial number, and t means the epoch.
In actual signal decomposition, the IMF component is difficult to strictly meet the condition that

the upper and lower envelopes composed of local extrema have zero mean value. The threshold
expression for each j-th to stop filtering is given as follows:

SD =
N−1∑
t=0

[
(ck(t) − ck−1(t))

2

ck(t)
2 ] (7)

SD is the threshold for each IMF to stop sifting, usually 0.2~0.3. ck(t), ck−1(t) are the two adjacent data
sequences of the k-th IMF sifting process.

After the original data sequence is decomposed by EMD, it is necessary to determine the boundary
IMF function between the noise and the real signal. The boundary IMF is selected by the correlation
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coefficient criterion. That is, the IMF corresponding to the minimum value of the correlation coefficient
ρk for the first time is the boundary IMF function, which is calculated as follows:

ρk =

N−1∑
t=0

IMFk(t)x(t)[
N−1∑
t=0

IMF2
k(t)

N−1∑
t=0

x2(t)
] 1

2

(8)

The EMD method incorporates the boundary IMF into the noise part, and the low-frequency IMF
components and residual terms after the demarcation are reconstructed to obtain a noise-reduced
signal, which can be expressed as:

x̂(t) =
m∑

k=K+1

IMFk + r(t) (9)

where x̂(t) is the signal after noise reduction and K is number of the boundary IMF value. For IMFk, if
K < k ≤ m, we take the IMFk as the signal component, and if k ≤ K, then we consider the IMFk as noise.

3.2.2. Signal Noise Aliasing Reduction (Method 2)

The traditional EMD method determines the boundary IMF according to the correlation coefficient
rule after obtaining IMFs, then deleting the boundary IMF and the previous judgment as high-frequency
noise components, to achieve the separation of signal and noise. However, due to the problem of
signal-to-noise aliasing, high-frequency IMF may still contain some real signal. Based on this, we
proposed a method of using multiple EMD to reduce signal noise. The detailed process is as follows [34]:

Step 1: Initialization: Download raw data xi, i = 1;
Step 2: EMD decomposition to obtain Mi IMF, and trend items ri(t);
Step 3: Calculate the correlation coefficient; the boundary IMF is IMFKi ;

Step 4: Low-frequency IMF reconstruction ti =
∑Mi

mi=Ki+1 IMFmi + ri(t);

Step 5: Eliminate the first high frequency IMF;
Step 6: i = i + 1;

Step 7: High-frequency IMF reconstruction: xi =
∑Ki

mi=2 IMFmi ;

Return to step 2.

The cyclic decomposition stops when the dividing IMF value is ki = 2 or the correlation coefficient
is monotonous. Then, all low-frequency IMF components and trend items are reconstructed to obtain
the data sequence after noise reduction, which can be expressed as:

x̂1 =

M1∑
m1=K1+1

IMF1m1 +

M2∑
m2=K2+1

IMF2m2 + · · ·+

Mi∑
mi=Ki+1

IMFimi +
i∑

j=1

r j(t) (10)

In the formula, x̂1 is the time series after noise reduction, Ki represents the order of noise coexistence of
the i-th original data sequence, Mi represents the total number of IMF components of the i-th original
data sequence, IMFimi represents the IMF component of the i-th original data sequence, and r j(t)
represents the residual term of the j-th EMD decomposition.

3.2.3. Average Period and Power Density (Method 3)

Considering the complexity of using the correlation coefficient criterion to determine the
demarcation IMF, and the issue of selecting the K value of the delimited IMF function, we proposed
using the product of the average period and energy density as an indicator, and an algorithm for
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automatically determining the boundary IMF was developed, which could directly determine the K
value of the boundary IMF function [35].

The average period Tk of the k-th IMF is given by:

Tk =
N × 2
nemk

(11)

and the energy density is calculated by:

Ek =
1
N

N−1∑
t=0

[IMFk(t)]
2 (12)

Thus, the product of the average period and the energy density is:

ETk = Ek × Tk (13)

Here, nemk is the total number of extreme points of the k-th IMF, and N is the data length of
each mode.

The threshold for determining the boundary between signal and noise is defined as:

Rk−1 = abs


ETk

1
k−1

k−1∑
i=1

ETi

 (14)

where abs(x) denotes the absolute value of x, k ≥ 2, when Rk−1 ≥ C (here C is 2). Then we determined k
as the boundary point, reconstructing the first k− 1 noise-dominated modal components, and the data
sequence was subtracted from the reconstructed noise to obtain the noise-reduced signal.

3.2.4. Composite Evaluation Index (Method 4)

To reduce the complexity of determining the boundary IMF, based on the correlation coefficient
criterion, and dealing with the inaccuracy of using the single index to determine the boundary IMF,
a composite evaluation index (T) was adopted. This index comprehensively considered the two index
values of curve smoothness (r) and root mean square error (RMSE), and an improved EMD noise
reduction method is provided to directly determine the K value of the delimited IMF function.

For formula clarity, the residual term was regarded as the last IMF component.
The formula for calculating the root mean square error is given by [36]:

RMSE =

√√√
1
N

N−1∑
t=0

(IMFk(t) − x(t))2 (15)

and the formula for calculating smoothness is defined as:

r =

N−2∑
t=0

(IMFk(t + 1) − IMFk(t))
2

N−2∑
t=0

(x(t + 1) − x(t))2

(16)

Here, IMFk(t) represents the k-th IMF component, the value of k is 1, 2, . . ., m + 1; x(t) represents
the noisy original data sequence.
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The two indicators of RMSE and r are normalized according to:

PRMSE =
RMSE∑
(RMSE)

(17)

Pr =
r∑
(r)

(18)

The coefficient of variation in the weighting method is applied to weigh the two normalized
indicators, and the weights are defined as follows:

CVPRMSE =
σPRMSE
µPRMSE

(19)

CVPr =
σPr

µPr
(20)

WPRMSE =
CVPRMSE

CVPRMSE + CVPr
(21)

WPr =
CVPr

CVPRMSE + CVPr
(22)

where σ and µ represent the standard deviations and mean values of the data sequence {PRMSEk} and
{Prk}, respectively; CV represents the coefficient of variation; and W is the weighted value based on the
coefficient of variation.

Thus, the composite evaluation index T is described by:

T = WPRMSE × PRMSE + WPr × Pr (23)

The threshold for determining the boundary between signal and noise is defined by:

Rk−1 =

∣∣∣∣∣Tk−1

Tk

∣∣∣∣∣ (24)

where k ≥ 2, and when the threshold first satisfies 1 ≤ Rk−1 ≤ 3, then k− 1 is determined as the cutoff

point; that is, the K value of the cutoff IMF function is k − 1, and the previous K IMF components
(IMF j, j ≤ K) are all regarded as noise, and the IMF components (IMF j, j > K) are regarded as a
signal. The IMF components dominated by the signal are reconstructed to obtain a sequence after
noise reduction.

3.2.5. Ensemble Empirical Mode Decomposition (Method 5)

To reduce the influence of mode aliasing, Wu and Huang also developed a noise-assisted EMD
method called ensemble empirical mode decomposition (EEMD) [37]. First, this method adds white
noise of finite amplitude to the signal:

xi(t) = x(t) + wi(t) (25)

where x(t) represents the observation, xi(t) represents the i-th observation perturbed by white noise,
and wi(t) represents the white noise that is added to the i-th observation. The magnitude of the added
white noise is decided on the ratio of the standard deviation of the added noise and that of x(t), which
is the ratio of the standard deviation of the added noise and that of x(t) and is usually about 0.1 or
0.2. On the other hand, the number of the ensemble size is several hundreds. Each decomposition
will generate a set of IMFs from high frequency to low frequency. Since white noise is a normal
random sequence with zero mean, the influence of adding white noise will be eliminated by averaging.
The corresponding IMFs are averaged to obtain the final decomposed IMFs of EEMD [38]. Since white
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noise is a normal random variable with zero mean, after the ensemble size times average, the influence
of adding white noise is eliminated, and the decomposed IMFs all come from the original signal itself.

3.3. Time Series Processing Tools

3.3.1. GNSS Time Series Format Convert

There are many GNSS time series data formats, so format conversion tools are very necessary.
This module supports the batch conversion of two *.neu format files issued by the crustal movement
observation network of China (CMONOC) and Scripps orbit and permanent array center (SOPAC)
into *.mom format files, which can be used by other modules in the software.

3.3.2. Offset Correction and Analysis

The estimation of geophysical signals such as uplift rates and seasonal signals are affected by
discontinuities in the GNSS time series that can be caused by equipment changes at individual
stations as well as earthquakes producing spatially coherent offsets [19,26,39]. In the current version
of GNSS-TS-NRS, offset detection is not implemented, but it supports offset correction with known
parameters; e.g., the offset parameter delivered by SOPAC or site log files delivered by IGS data centers.
We can also use Hector to make the offset estimation and then make the offset correction based on the
estimated offsets [20]. Corresponding to the offset correction function, we added an artificial offset
function, which could add offsets in time series in batches, and could be used to explore the relation or
effect of offset on geophysical signals. Figure 2 is an example of the offset, which inserted four offsets
with an amplitude of 18 mm in four epochs.
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3.3.3. Outlier Detection Function

This module contains 4 algorithms, i.e., 3 Sigma, 5 Sigma, 3 interquartile range (IQR), and median
absolute deviation (MAD) [40], which can read time series files in batches, detect gross errors according
to the selected algorithm, remove them after determining them as gross errors, and save the new file to
the corresponding folder. The gross error points on the time series graph are marked, the gross error
rate is calculated, and a gross error elimination report is generated.

3.4. Time Series Plot and Statistical Analysis

3.4.1. Root Mean Square Calculation

We read the station time series files in batches, calculated the root mean square (RMS) of the time
series, plotted the calculation results as shown in Figure 3, and saved the results to files. Figure 3
shows the RMS results of 10 CMONOC stations from 1999 to 2019, which can reflect the stability of the
time series.
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3.4.2. Correlation Coefficient Calculation

The correlation coefficient is an indicator that reflects the correlation between the time series
of different sites. The software is designed with a module to calculate this indicator. The specific
implementation of the calculation is given as follows:

Corr(i, j) =

N∑
t=1

xi(t)x j(t)√(
N∑

t=1
x2

i (t)
)(

N∑
t=1

x2
j (t)

) , i, j = 1, 2 . . . S (26)

where Corr(i, j) is the correlation coefficient of the i-th and j-th site time series, S is the number of
stations in the input data, N is the number of epochs in the time series, and xi(t) is the time series of the
i-th station. This module can read time series files in batches, calculate correlation coefficients in the
same direction between different stations, generate a correlation coefficient matrix, and automatically
save the results.

3.4.3. Plot GNSS Time Series

There are two data import methods, which import one-direction and three-direction time series,
respectively, and can quickly achieve the visualization of time series graphics. Figure 4 shows an
example of visualization of a three-direction time series (BJFS, Beijing Fangshan GPS station) from
1999 to 2019, and it can be seen from Figure 4 that BJFS has a long-term trend moving to the southeast,
and the vertical component shows seasonal variation.
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3.4.4. Box-Whisker Plot and Violin Plot Statistics

A box plot does not require that the data to obey a specific distribution in advance, or any other
restrictive requirements on the data, and it is not affected by outliers. The box plot can be used to
intuitively read the maximum, minimum, median, upper quartile, lower quartile, outlier, and average
value of a set of data. There is a corresponding module in GNSS-TS-NRS, which can quickly realize
batch drawing of data (e.g., 5 stations) box diagrams as shown in Figure 5 [41]. The box diagram can
display the data dispersion and intuitively display the mean, maximum, minimum, median, upper,
and lower quartiles of the time series. It is mainly used to reflect the characteristics of the original data
distribution, and it can also compare multiple sets of data distribution characteristics.
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On the other hand, a violin plot is considered as a combination of the box plot with a kernel
density plot, and is mainly used to show the distribution shape of data. It is similar to the box plot,
but is better displayed at the density level. The violin chart is especially suitable when the amount of
data is very large, and it is not convenient to display one by one. The drawing using the same data
with box plot is shown in Figure 6 [42]. The violin chart is usually used to show the distribution status
and probability density of multiple sets of data. This kind of chart combines the characteristics of a box
plot and a density plot, and is mainly used to show the distribution shape of the data. It is similar to
the box plot, but is better displayed at the density level. The violin chart is especially suitable when the
amount of data is very large, and it is not convenient to display one by one.

3.4.5. Power Spectral Density Analysis

Power spectral density (PSD) is a physical quantity that characterizes the relationship between the
power energy of the signal and the frequency. PSD is usually normalized according to the frequency
resolution, and is often used to study random vibration signals. There is a module in GNSS-TS-NRS
that can quickly draw PSD images of GNSS time series for data analysis. Figure 6 shows an example of
the PSD plots of six coordinate time series using fast Fourier transform (FFT), which was employed to
evaluate the dominant periods of these signals in the frequency domain, especially for periodic signal
detection [43,44].

3.4.6. Distribution Estimation

It is generally believed that the error of GNSS time series conforms to the normal distribution,
but current research shows that the Alpha-stable distribution may be a more reasonable error
model [45,46]. Therefore, in GNSS-TS-NRS, there is a module for estimating the distribution of GNSS
residual time series, including normal distribution and alpha-stable distribution for users to choose.
The module can calculate relevant parameters and draw their cumulative distribution function (CDF)
and probability density function (PDF); correlation coefficients between fitted data and original data
can be calculated and related graphics can be drawn. Figure 7 shows an example of the PDF and CDF
of one-direction time series at a station, generated by GNSS-TS-NRS [47]. From Figure 8, we can see
that the Anderson–Darling test checks whether the sample data comes from a specific distribution of
ACSO GPS station (which located in Ohio State of United States): h = 0 means that the null hypothesis
with 95% confidence is passed, and h = 1, means that the null hypothesis is not true. p is the probability
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of observing a test statistic as extreme as, or more extreme than, the observed value under the null
hypothesis [48]. Both normal distribution and alpha-stable distribution can be used to model this time
series well, although the correlation coefficient between the latter and actual data is slightly larger.
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Figure 8. Probability density functions and cumulative distribution function of north-direction time
series at ACSO GPS station (N coordinate). (a) Residual time series with alpha-stable distribution;
(b) cumulative density function of residual time series and alpha-stable distribution (correlation;
alpha = 0.98); (c) residual time series with normal distribution; (d) cumulative density function of
residual time series and normal distribution (correlation; norm = 0.98).
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3.5. Nearby Sites and Finding Co-Located Sites

This module includes two functions: Searching for nearby sites and judgment of co-located sites [49].
The nearby site search module involves three procedures: (1) Database preparation: Users can create a
site database which includes the latitude, longitude, and XYZ coordinates of monitoring network sites
such as IGS, CMONOC, and so on; (2) parameter setting: Users can find nearby sites in the database
by entering the site name or latitude and longitude, and the limit distance constraint can be set at the
same time; (3) operation: Users can click the button “Get nearby sites” to obtain sites that meet the
requirements. By use of the station overlay judgment module, users can build the GNSS station and
tide gauge (TG) station database, respectively, and enter the limit distance (e.g., 15 [50], 20 km [51]).
The spatial distance limitation ensures as possible that the GNSS and the TG sites are close enough,
and therefore the GNSS vertical motion can directly contribute to the TG-derived trend (velocity, etc.).
Then, the software judges whether the station is overlaid and output it based on the limit distance.
Figure 9 shows the software interface for searching for nearby sites and finding co-located sites.
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4. Noise Reduction Test and Result

In order to verify the reliability of the software and the credibility of the algorithm, specific
experiments were carried out on this software platform. The experiments were divided into two parts:
The simulation experiment and the measured data experiment to comprehensively test the software.
Among them, 3 sets of simulation data, including different types of simulation data and different
types of noise, were used to verify the universality of the noise reduction method. The measured data
verifies the practicability of GNSS-TS-NRS.

4.1. Simulated Test with GNSS-TS-NRS

GNSS coordinate time series are generally composed of three parts: Seasonal items, trend, and noise.
In the simulation data I, the site position, trend term, and step offset were first eliminated, and the three
constant amplitude periodic terms and noise were mainly considered. Setting the sampling frequency to
1 HZ and setting the number of sampling points to 1024, and then adding the Gaussian white noise so
that the signal-to-noise ratio was 4 dB, the simulation data was generated as follows:

y1 = 4 sin(2πt/800) sin(2πt/250)
y2 = 2 sin(2πt/600)
y3 = sin(2πt/50)
ε = Noise
x = y1 + y2 + y3 + ε

(27)

where y1, y2, and y3 are the periodic components, and ε is the added noise. After inputting the
above-mentioned parameters in the GNSS-TS-NRS signal input module, the corresponding simulation
signal sequence was established by the software, and the graph of each signal component was drawn
during operation, as shown in Figure 10.
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Figure 10. Four signal components of simulation data I.

Since the continuous GNSS coordinate sequence contains the amplitude time-varying seasonal
signal, the remaining two simulation data were added with the amplitude change factor on the premise
of excluding the station position, trend item, and step offset. The time-varying seasonal signal data of
the coordinate sequence of 10 years was simulated by the following formula:

y(ti) = a sin(2πti) + b cos(2πti) + c(ti) sin(2πti) + c(ti) cos(2πti)+

d sin(4πti) + e cos(4πti) + c(ti) sin(4πti) + c(ti) cos(4πti) + ε(ti)
(28)

where y(ti) is the simulated time-varying seasonal signal, a, b, d, e are constants, ti is the GNSS day of
year, c(ti) = 2e0.3 sin (ti) is the amplitude change factor, and ε(ti) is the noise.

In order to verify the processing effect of different noise types and the function of this software,
in simulation data II and III, the values of a, b, d, e were 6, 7, 8, and 9 mm, respectively. The noise
added in the simulation data II was Gaussian white noise with a signal-to-noise ratio of 4 dB, and the
noise added in the simulation data III was a combination of power law and white noise (PL+WN).
The amplitude of white noise was 5 mm, the amplitude of colored noise was 0.02 mm, and the spectral
index of power law noise was −1.2. In Figure 11, the two components of the simulation data are
drawn separately.
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Figure 11. Simulation data II (left) and III (right) are the signal sequences on the top; the left and
right are the same. The bottom is the respective noise, the left is white noise of 4 dB, and the right is
the power law- and white noise (PL+WN)-type noise (white noise amplitude is 5 mm, colored noise
amplitude 0.02 mm, the spectral index of power law noise is −1.2).

In GNSS-TS-NRS, the 3 sets of simulation data were respectively processed for noise reduction by
the four methods. Since the true value of the simulation data was known, the noise reduction effect
could be quantitatively reflected by calculating the correlation coefficient between the signal sequence
after noise reduction and the true value. The calculation results were shown in Table 1.

Table 1. The analysis results of the 4 kinds of noise reduction methods after the noise reduction
of different data. The indexes are the correlation coefficient, the root mean square error, and the
signal-to-noise ratio.

Method
I II III

ρk RMSE SNR ρk RMSE SNR ρk RMSE SNR

1 0.9303 1.0033 7.4029 0.9983 0.6978 299.4933 0.9900 1.7208 50.0330
2 0.9726 0.6156 18.4766 0.9984 0.6837 311.2626 0.9900 1.7155 50.2418
3 0.9696 0.6613 16.6838 0.9991 0.5135 552.3157 0.9949 1.2186 98.1886
4 0.9488 0.8582 10.0070 0.9983 0.6978 299.4933 0.9949 1.2186 98.1886

Since the three new methods were based on EMD, we compared the noise reduction effect between
EMD and Methods 2–4. As seen in the first and second rows in Table 1, Method 2 was used to reduce
the noise of 3 groups of simulation signal sequences. The closer the ρk is to 1, the higher the similarity
of the time series, the better the fitting effect, and the better the denoising effect. The RMSE reflects the
degree of deviation between the noise reduction signal and the real signal, and the smaller the value,
the better the noise reduction effect. The signal-to-noise ratio (SNR) mainly reflects the proportion of
the noise signal in the overall signal, and the larger the value, the better the denoising effect. In the test
of simulation data I, the ρk increased by 0.0423, the RMSE decreased by 0.3877, and the SNR increased
by 11.0736; in the test of simulation data II, the indicators improved slightly, with the ρk increasing by
0.0001, the RMSE being reduced by 0.0140, and the SNR increasing by 11.7693. The test of simulation
data III achieved basically similar results. In summary, the simulation data I (the blue line) improved
the most, and the signal after Method 2 noise reduction was very smooth, as shown in Figure 12.
Therefore, based on the above analysis, we have reason to believe that Method 2 is more helpful for
signal noise reduction than the traditional EMD method.
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Figure 12. Result of noise reduction with method of simulation data I.

On the other hand, Methods 3 and 4 in the software were proposed to solve the problem of
inaccurate demarcation by the correlation coefficient method. A simulation experiment was carried
out with the same data, and the accuracy evaluation results of the experiment are shown in the
third and fourth rows of Table 1. Table 2 shows the boundary IMF values determined by the three
methods. When Method 3 was applied to simulated data I, the same results as Method 1 were obtained,
indicating that Method 3 has a certain degree of reliability. In the test of simulated data II and III,
the boundary IMF values obtained by Method 3 were different than Method 1. Therefore, we focused
on the indicators in Table 1 to determine which method is better. It can be seen that the time series
obtained by Method 3 achieved a higher correlation coefficient and SNR and lower RMSE, indicating
that this method performs better than the correlation coefficient method of traditional EMD.

Table 2. The boundary IMF of Methods 1, 3, and 4 in three simulation data.

Method
Boundary IMF Value

I II III

1 5 3 3
3 3 4 4
4 4 3 4

The results obtained by Method 4 are similar to the traditional EMD method but also have different
results. The difference from the results obtained in Method 3 is that in the experiment with simulation
data II, Method 4 failed to obtain the same accurate results as Method 3, but was similar to the EMD
method. However, in the experiments with simulated data I and III, the two methods achieved similar
results. Therefore, it can be considered that Method 4 outperforms the traditional EMD method.
In order to directly compare the noise reduction effect, we provide the noise reduction comparison
result of simulation data I using different methods in Figure 13.
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In summary, experiments with three sets of simulation data demonstrated the ability of the three
new algorithms proposed and contained in GNSS-TS-NRS to reduce signal noise and enhance the
practicability and operability of GNSS-TS-NRS. On the other hand, the three accuracy indicators of
correlation coefficients, RMSE, and SNR quantitatively showed that the three improved algorithms
outperformed the traditional EMD method. The software also drew the graphics of the signal sequences
processed by different methods to intuitively reflect the noise reduction effect.

4.2. Test GNSS-TS-NRS with Real GNSS Data

In order to verify the practicability and reliability of the software, experiments were conducted
on the GNSS-TS-NRS platform using the data of the BJFS station from March 1999 to March 2006,
which spanned 7 years. Before the noise reduction analysis, in order to reduce the negative impact
of the gross error on the experiment, the gross error elimination tool in GNSS-TS-NRS was used to
eliminate the gross error of the test data. The discrimination criteria included four algorithms: 3 Sigma,
5 Sigma, 3 IQR, and MAD. After the gross error was eliminated, the software generated a report of the
gross error elimination rate (Table 3) and marked the position of the gross error in the entire time series
(Figure 14). Compared with the EN components, the U component shows relatively more gross errors,
and the E and N direction sequences did not detect gross error points. We chose the U direction data
processed by the 3 Sigma rule as the experimental data.

Table 3. Gross error rate of BJFS station under different algorithms.

Criterion 3 IQR 3 Sigma 5 Sigma MAD

Error rate (%) 0.196 0.352 0.196 0.274

We imported the above data into GNSS-TS-NRS and analyzed the noise reduction with four
algorithms to compare the noise reduction effects of different methods. First, the correlation coefficient
between the IMFs obtained by the EMD method and the original sequence is shown in Figure 15.
The correlation coefficient took the minimum value for the first time when the IMF was 4. Therefore,
according to the correlation coefficient criterion, K = 4 was judged to be the boundary IMF value.
The first to fourth IMF were recognized as high-frequency noise components, so they were removed,
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and the next 7 IMFs components were superimposed to form a noise-reduced signal. Figure 16 shows
the IMFs of raw data through EMD.
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Figure 16. The IMFs of BJFS station in U direction from EMD.

Method 2 iterated on the basis of the first EMD decomposition, superimposed the second to
the boundary IMF component, and continued to decompose until the correlation coefficient showed
a monotonic trend or the number of IMFs decomposed was less than 3, and then the iteration was
stopped. In this signal, decompositions were carried out 14 times. In each decomposition, we attained
a set of IMFs from high frequency to low frequency. The boundary IMF value was calculated by a
correlation coefficient rule. Last, the set of 14 low-frequency IMFs added to the noise reduction signal.
In Method 3, the software separately calculated the average period, energy density, and their product.
Then the method calculated its threshold. The results showed that: k = 3 was the demarcation point,
that is, the boundary IMF K = 4, which was similar to the result of Method 1. Method 4 attained
different results, and judged the boundary IMF K = 3. After completing the calculations, the software
automatically drew the original signal sequence and the signal sequence obtained by different methods
for visual comparison as shown in Figure 17.
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As mentioned above, the boundary IMF values obtained by Methods 1 and 3 were equal, so the
graphs of Methods 1 and 3 overlap. From Figure 17, we can see that different the noise reduction
methods were obviously efficient in noise reduction for the time series of the U direction of the BJFS
station. The graph is clearly gentler, and more intuitively reflects the changing trend of the station.
The results of Methods 2 and 3 are basically similar to Method 1, which proves its noise reduction
effect. Method 4 obviously reflects more detailed changes and achieves a better noise reduction effect.
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Besides the qualitative analysis of graphic comparison, we quantitatively analyzed the noise
reduction effect with three indicators: Correlation coefficient, root mean square error, and signal-to-noise
ratio. In Table 4, compared with Methods 1 and 3, Method 2 obtained a lower RMSE and a higher SNR,
indicating that the overall signal was more stable, although the correlation coefficients were basically
the same. Similarly, Method 4 also obtained a performance gain, with the correlation coefficient
increasing by 0.0091, RMSE decreasing by 0.2723, and the SNR increasing by 0.7037, indicating that
the selection of boundary IMF was more accurate. In summary, the reliability of the three improved
EMD-based noise reduction methods proposed in this paper were verified.

Table 4. Accuracy evaluation results of measured data.

Method
Evaluation Indicator

ρk RMSE SNR

1 0.9149 5.1463 5.0256
2 0.9153 5.1327 5.0839
3 0.9149 5.1463 5.0256
4 0.9240 4.8740 5.7292

5. Conclusions and Future Research Direction

We designed an open-source MATLAB-based GNSS-TS-NRS software, and the software showed
good interactivity. With batch processing for GNSS time series noise reduction and analysis, it could
also be extended to work with other geodetic time series. For GNSS-TS-NRS, we implemented
classic EMD and EEMD algorithms, and we also proposed three improved algorithms based on
EMD and acquired good results. In addition, we realized 5 spatial filtering analysis methods with
MATLAB, i.e., the stacking filtering method, weighted stacking filtering method, correlation weighted
stacking filtering method, distance weighted filtering method, and principal component analysis. Last,
GNSS-TS-NRS software provided us with several time series processing tools, and it provides useful
tools for new users to explore GNSS time series noise reduction and application.

We intend to share the GNSS-TS-NRS software with the scientific community to introduce new
users to the GNSS time series signal processing and noise reduction technique. The software can also
be extended to work with other geodetic time series, for example, tide gauges observations for sea
level rise study, illustrating that users can easily adapt the software for other purposes. The software
is available at https://github.com/CL-Xiong/GNSS-TS-NRS. Apart from the improvements from the
current modules, some new time series analysis and prediction methods, e.g., independent component
analysis, wavelet decomposition, deep learning and machine learning, and the prophet model will
be integrated into GNSS-TS-NRS in the future. In addition, a future version of the software will
be available in Python together with a new application for sea level rise study. We hope that the
GNSS-TS-NRS software can benefit the users who want to perform post-analysis of geodetic time
series, and we have thus developed it under an open-source framework.
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