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Abstract: This study investigates how gross primary production (GPP) estimates can be improved
with the use of solar-induced chlorophyll fluorescence (SIF) based on the interdependence between SIF,
precipitation, soil moisture and GPP itself. We have used multi-year datasets from Global Ozone
Monitoring Experiment-2 (GOME-2), Tropical Rainfall Measuring Mission (TRMM), European Space
Agency Climate Change Initiative Soil Moisture (ESA CCI SM), and FLUXNET observations from
ten stations in the continental United States. We have employed a GPP quantification framework
that makes use of two factors whose influence on the SIF–GPP relationship was not evaluated
previously—namely, differential plant sensitivity to water supply at different stages of its lifecycle
and spatial variability patterns in SIF that are in contrast to those of GPP, precipitation, and soil
moisture. It was found that over the Great Plains and Texas, fluorescence emission levels lag
behind precipitation events from about two weeks for grasses to four weeks for crops. The spatial
variability of SIF and GPP is shown to be characterized by different patterns: SIF demonstrates
less variation over the same spatial extent as compared to GPP, precipitation and soil moisture.
Thus, using newly introduced SIF–precipitation lead–lag relationships, we estimate GPP using SIF,
precipitation and soil moisture data for grasses and crops over the US by applying the multiple
linear regression technique. Our GPP estimates capture the drought impact over the US better than
those from Moderate Resolution Imaging Spectroradiometer (MODIS). During the drought year
of 2011 over Texas, our GPP values show a decrease by 50–75 gC/m2/month, as opposed to the
normal yielding year of 2007. In 2012, a drought year over the Great Plains, we observe a significant
reduction in GPP, as compared to 2007. Hence, estimating GPP using specific SIF–GPP relationships,
and information on different plant functional types (PFTs) and their interactions with precipitation
and soil moisture over the Great Plains and Texas regions can help produce more reasonable GPP
estimates.

Keywords: solar-induced chlorophyll fluorescence; precipitation; soil moisture; gross primary
production; satellite observations; multiple linear regression

1. Introduction

Knowledge of how global vegetation takes up atmospheric carbon dioxide is crucial for
understanding the Earth’s carbon cycle processes. Gross primary production (GPP), which is equivalent
to the amount of carbon fixed during photosynthesis, constitutes the largest global land carbon flux
that maintains ecosystem functions such as growth and respiration [1–3]. GPP is also closely related to
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crop yield, and hence can be considered the basis for food production, thus supporting human welfare.
Despite the model simulations to provide GPP estimates [4–7], the lack of observational datasets and
analyses limits our ability to validate these model outputs. Moreover, as drought events are projected
to increase over both the US and other regions [8–11] in future, it is important to quantify their effects
on plant productivity [12,13]. Challenges remain due to the complexity of plants’ biophysical and
physiological processes associated with droughts [14].

Many researchers have used solar-induced chlorophyll fluorescence (SIF) in studies of plant
photosynthesis [15–18]. As a fraction of the solar energy that is re-emitted at longer wavelengths
after being absorbed by chlorophyll molecules, SIF can provide information on the plant functional
state [19–21]. As a result, SIF measurements have been long used to assess changes in plant physiology,
in both lab- and field-scale studies [15,16]. In the last decade, satellite SIF retrievals have demonstrated
that chlorophyll fluorescence exhibits a strong correlation with GPP [22]. This high correlation was
found to hold for both natural vegetation [23] and croplands [22]; in addition, it was also shown to be
valid from an individual leaf level [24] to the ecosystem level [25]. It is recognized that the relationship
between SIF and GPP is mainly driven by absorbed photosynthetically active radiation (APAR), as both
SIF and GPP depend on it. In addition, the light use efficiencies for photochemistry and fluorescence
are expected to co-vary in the absence of other protective mechanisms [22,26].

Guanter et al. [22] and Guan et al. [27] have shown that the linear regression method using
SIF and GPP as independent and dependent variables, respectively, produces reasonably good GPP
estimates for croplands and grasslands over the US and Europe. These estimates are shown to
produce good agreement with GPP at flux tower sites, as well as net primary production (NPP),
based on the agricultural yield statistics provided by the US Department of Agriculture (USDA) [28].
Guanter et al. [22] used GPP observations from FLUXNET stations over Europe and the US to derive
global crop and grass GPP estimates using a linear SIF-based equation, and it was demonstrated
that data- and process-based biogeochemistry models, compared to the above-mentioned SIF-based
approach, tend to underestimate crop GPP by 50–75%. Given this level of success, the question remains
as to whether such a linear relationship can be further improved?

Currently, the mechanistic link between SIF and GPP remains unclear [29] and such a SIF–GPP
relationship might vary from region to region due to local differences, such as prevalent vegetation
types [30] and environmental conditions [31]. The relationship between SIF and GPP would also reflect
impacts of all other parameters that influence SIF. For example, one of the major physiological limits
controlling plant functioning is water availability [3,32,33], which translates to soil moisture availability,
as plants do not ingest water directly from the atmosphere. The drought-induced deficit in soil
moisture causes stomatal closure and a reduction in CO2 uptake [34] and by extension photosynthesis.
A decrease in photosynthesis can modulate fluorescence via several mechanisms, one of which is
non-photochemical quenching (NPQ) [35,36]. A reduction in photochemical yield due to water stress
does not necessarily mean that fluorescence yield will increase, since NPQ may reach a high enough
level to compensate for the photochemical yield decrease, resulting in a reduction of fluorescence yield
and, therefore, SIF. Thus, precipitation and soil moisture can exert significant influence on both SIF
and GPP and be significantly correlated with them [37–39].

It is also noted that plant water need varies with the stage of crop development. According to the
Food and Agriculture Organization of the United Nations [40], a typical crop has four development
stages: initial stage, crop development, mid-season, and late season. The importance of water
availability for a plant is such that if a water stress event occurs in a critical growth development period,
the resulting crop production and quality later in the season will be reduced [1]. In this connection,
it would be necessary to factor in precipitation and soil moisture information from earlier in the season
to be able to produce meaningful estimates of plant production. Therefore, in order to investigate the
possibility of using SIF in conjunction with other parameters for GPP quantification, it is imperative
that we look into the link between water availability during the critical crop development period
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(e.g., pod development stage in soybean [41,42]) and response from the plant machinery, as reflected
in photosynthesis and fluorescence levels.

In this study, we intended to explore and investigate the influence of soil moisture and
precipitation along with SIF on GPP quantification. Accordingly, we needed a statistical tool to
establish such relationships between dependent and independent parameters. Thus, this study aims
to use multiple linear regression (MLR) analysis in a statistically justified manner to include SIF,
precipitation and soil moisture for the purpose of GPP quantification. We proposed to use SIF-based
GPP equations constrained by local conditions and formulated such equations to characterize crop
and grass plant production over the contiguous US. Note that we did not estimate GPP for vegetation
types other than crops and grasses, e.g., mixed forests along the East Coast or shrublands over the
Southwestern US and other US regions [43,44]. We have also tested the relationships between GPP
and precipitation, and soil moisture with the inclusion of a lead–lag effect. This effect is likely related
to the fact that plant water demand and availability during the development stage influence its
production at later stages of the lifecycle.

2. Data and Methodology

2.1. Observational Data

Global Ozone Monitoring Experiment-2 (GOME-2) terrestrial chlorophyll fluorescence data
product is the primary dataset being used in this study. GOME-2 provides retrievals of SIF peaking at
740 nm, which are based on the measurements from a broader spectral range of 734–758 nm [45,46].
GOME-2 SIF data have been successfully used to obtain the plant functional states related to
GPP [22,46–49]. The GOME-2 v25 level 3 dataset we used in this study covers the time period from
2007 to 2012 and has a spatial resolution of 0.5 × 0.5°.

Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall data were further used to quantify
the relationship between SIF, precipitation, soil moisture, and GPP. TRMM 3B42 and 3B43 gridded
estimates are on a spatial resolution of 0.25 × 0.25° in the belt extending from 50°N to 50°S. We also
used TRMM 3B43 monthly precipitation based on 3-hourly rainfall estimates summed for the calendar
month with rain gauge data applied for large-scale bias adjustment. The TRMM 3B43 product was
used to produce SIF predictions based on dependence between SIF and precipitation.

In order to provide information on soil moisture impact on SIF and GPP, we have used
the European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) combined
daily dataset (1978–2014) at 0.25 × 0.25° spatial resolution. This dataset represents the most
comprehensive global time series of satellite-based soil moisture applicable at up to the top 5 cm
of the soil. The CCI Soil Moisture product combines passive Level 2 radiometer-based products
from Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager
(SSM/I), Tropical Rainfall Measuring Mission’s Microwave Imager (TMI), and Advanced Microwave
Scanning Radiometer (AMSR-E) with active scatterometer-based products from European Remote
Sensing satellite (ERS-1/2) and Advanced Scatterometer (ASCAT). As shown in several studies
[50–54], ESA CCI SM data have been successfully used for a variety of applications, e.g., studying
land–atmosphere coupling dynamics.

We linked GPP from FLUXNET measurements at five crop (US-Ne3, US-ARM, US-Twt,
US-Tw2, US-Tw3) and five grass stations (US-KFS, US-AR1, US-AR2, US-Cop, US-Wkg) (Table 1)
to SIF, precipitation and soil moisture. FLUXNET data have been extensively used in various
studies investigating processes related to the exchange of CO2 between the land surface and
atmosphere [55–59]. It was previously demonstrated that ecosystem-level GPP can be accurately
estimated from measurements of CO2 fluxes at eddy covariance towers [60]. FLUXNET GPP values,
which are calculated as difference between total ecosystem respiration and net ecosystem exchange,
are obtained at a half-hourly step and expressed in µmol/m2/s; therefore, we have converted GPP
measurements to gC/m2/day and gC/m2/month, the units used throughout this study.
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Table 1. Basic information regarding the FLUXNET sites used in this study. GRA denotes grass and
CRO denotes crop.

Site Name and Code State Latitude (°N) Longitude (°E) Land Cover Period

ARM Southern Great Plains site-Lamont (US-ARM) OK 36.61 –97.49 CRO 2003–2012
ARM USDA UNL OSU Woodward Switchgrass 1 (US-AR1) OK 36.42 –99.42 GRA 2009–2012
ARM USDA UNL OSU Woodward Switchgrass 2 (US-AR2) OK 36.64 –99.60 GRA 2009–2012

Corral Pocket (US-Cop) UT 38.09 –109.39 GRA 2001–2007
Kansas Field Station (US-KFS) KS 39.06 –95.19 GRA 2007–2012

Mead rainfed maize-soybean rotation site (US-Ne3) NE 41.18 –96.44 CRO 2001–2013
Twitchell Corn (US-Tw2) CA 38.10 –121.64 CRO 2012–2013

Twitchell Alfalfa (US-Tw3) CA 38.12 –121.65 CRO 2012–2013
Twitchell Island (US-Twt) CA 38.11 –121.65 CRO 2009–2014

Walnut Gulch Kendall Grasslands (US-WKG) AZ 31.74 –109.94 GRA 2004–2014

GPP data are also available from Moderate Resolution Imaging Spectroradiometer (MODIS),
a key instrument onboard the Terra (originally EOS AM-1) satellite that started providing global
GPP products in 2000 [61]. We used monthly MOD17A2 data product available at 1 × 1 km spatial
resolution as an observational reference to evaluate the performance of SIF-, precipitation- and soil
moisture-based GPP estimates.

Based on the light use efficiency (LUE) concept [62], MODIS GPP is expressed as

GPP = PAR · FPAR · LUE (1)

LUE = LUEmax · f (VPD) · g(Tmin) (2)

FPAR = 1 − e−k·LAI (3)

where PAR is photosynthetically active radiation, FPAR is fractional absorption of PAR, LUE is the
efficiency with which absorbed radiation is converted to fixed carbon, f (VPD) is the scalar of daily
vapor pressure deficit (VPD), g(Tmin) is the scalar of daily minimum air temperature (Tmin), and k
is the extinction coefficient. Biome physiological parameters were specified with the use of a biome
property look-up table (BPLUT), which was modified to agree with GPP derived from flux towers and
synthesized net primary production [13].

While MODIS algorithm provides spatial patterns of GPP reasonably well and captures its
temporal variability across various biome types [63], accurate GPP estimates over certain biomes are
still difficult to achieve [64–66]. Recently, it was demonstrated that standard MOD17 GPP product
substantially underestimates GPP over croplands [67–69], especially in summer, which is likely due to
the prescribed LUE being too low [64,70]. One limitation of MOD17 product is related to the fact that
it does not take into account the influence exerted on the photosynthetic capacity and consequently
GPP estimation by leaf quality, which is linked to leaf chlorophyll and nitrogen content [71].

We have employed Breathing Earth System Simulator (BESS) GPP data as an additional
observational reference. The BESS GPP dataset used in this study is a global 8-day 1-km product
derived with the use of the simplified process-based BESS model, MODIS land and atmosphere data,
reanalysis datasets and ancillary data sources [72]. BESS GPP product has demonstrated performance
similar to that of MODIS GPP when compared against FLUXNET data, and better consistency with
GPP modeled by MPI-BGC [73].

Normalized Difference Vegetation Index (NDVI) is also provided by the MODIS instrument.
In this study, we used a 16-day composite MOD13A2 product at 1 × 1 km spatial resolution.

NDVI is an index calculated from the near-infrared and visible radiation reflected by vegetation

NDVI =
RNIR − Rred
RNIR + Rred

(4)

where RNIR is the reflectance in the near-infrared (NIR) region of the spectrum, and Rred is the
reflectance in the red range of the spectrum. NDVI values typically vary from −1 to 1, where zero
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indicates the absence of vegetation and values approaching 1 generally correspond to tropical
rainforests with characteristic dense vegetation.

As a measure of vegetation “greenness”, NDVI has proved to be useful in monitoring seasonal
and phenologic activity, as well as quantifying the duration of the growing season and leaf turnover,
or ‘dry-down’, period [74]. A time integral of NDVI values over the growing season is highly correlated
with net primary production (NPP) [75–77], and in some cases NDVI can be used as a surrogate
estimator of NPP [78].

2.2. Framework for Quantifying GPP, SIF, Precipitation and Soil Moisture Relationships

As stated in the introduction section, precipitation and soil moisture influence both SIF and
GPP. Therefore, in order to avoid the replication of soil moisture and precipitation effects due to their
multicollinearity, we have turned to multiple linear regression analysis.

We have used the multiple linear regression method to estimate the relative importance of
fluorescence, precipitation and soil moisture for GPP quantification. Multiple linear regression is a
technique widely applied in the atmospheric sciences [79–81]. Multiple regression is an extension
of linear regression with two or more predictor variables. It is also known to take into account
the interdependence between independent parameters by regulating the weights assigned to them.
The coefficients of independent parameters can be high but negative depending on the relationships
between them [81]. This is due to the fact that the parameters can have a strong correlation with GPP
while being not totally independent of each other. MLR accounts for this interdependence so that the
impacts from precipitation and soil moisture are not replicated in SIF and GPP.

The multiple linear regression equation is as follows

Y = b0 + b1x1 + b2x2 + ... + bpxp (5)

where Y is the predicted or expected value of the dependent variable, x1 through xp are p distinct
independent, or predictor, variables, b0 is the value of Y when all of the independent variables
(x1 through xp) are equal to zero, and b1 through bp are the estimated regression coefficients [82].
To derive the equations, we used weekly averaged values of precipitation, SIF, soil moisture,
and FLUXNET GPP in order to have a larger number of datapoints to achieve better statistical
significance. A predictor contributing the most to the equation is automatically chosen at first and then
other predictors are added until and unless a predictor is statistically insignificant.

The relationship between SIF and GPP is deemed a biome-dependent one [29,83]. Therefore, we
have calculated the equations separately for both grass and crop vegetation types using remotely
sensed SIF, precipitation and soil moisture data along with station-based GPP measurements.
Our goal was to derive an equation that explains the relationships between the predicting parameters
(SIF, precipitation, and soil moisture) and the predictant (GPP) the best in terms of standard error
analysis and explained variance. Starting from a subset of one predictor (here, SIF), we have
extended our analysis using a combination of two and three different predictors (for example, SIF and
precipitation) to identify a subset of independent variables that maximizes the explained variance
in GPP.

We used a fraction of our data to derive MLR equations and the rest to validate the proposed
equations—namely, we chose a combination of six FLUXNET stations with the longest record to
derive the model and the remaining stations to validate it. This approach was chosen due to the
fact that not all the FLUXNET stations in this study have a record over the entire period of interest,
i.e., 2007–2012; e.g., Twitchell corn (US-Tw2) station has available data for the period of 2 years only.
Using the explained variance, analysis of the error values, and the coefficient of correlation between
predicted GPP and actual GPP, the equations were derived from the FLUXNET stations with C3 crop,
C3 non-arctic grasses and C4 grasses.
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While estimating GPP within each grid cell, we multiplied GPP for grass and crop by
corresponding plant functional type (PFT) fractions from Community Land Model (CLM) to avoid
an overestimation of predicted GPP. This is because the amount of rainfall inside a grid cell is shared
by different PFTs, and the recorded SIF is a combination of SIF emitted from vegetation belonging
to different plant types. Therefore, we multiplied the GPP equations with the grass and crop PFT
fractions, since grass and crop responses to SIF and precipitation are different and have been already
accounted for by the different coefficients obtained in the equations based on 100% grass or crop
stations, as stated above. It is necessary to emphasize that PFT classification from the CLM [84,85],
PFT percentage and spatial patterns have been used to estimate GPP over the continental US.

It has long been recognized that water stress has a large effect on chlorophyll fluorescence
parameters, which reflect plant structural and functional damage [86]. In this analysis, we focused on
temporal dependence between SIF, precipitation and soil moisture. As stated earlier in the introduction,
such relationships appear not to be simultaneous. Thus, production from crops received later in the
season may not be directly linked to the precipitation and/or soil moisture availability during the
same period. Hence, we further performed lead–lag correlation analysis using the above independent
variables of SIF, precipitation and soil moisture to ascertain the temporal relationship between them.

We then introduced a new method of MLR GPP quantification, which employs knowledge of the
lead–lag between precipitation and SIF. In order to do so, we have used SIF data at a given point in time,
and precipitation and soil moisture from two to four weeks ago, depending on PFT, and entered these
into MLR equations as predictors to calculate the predictant (GPP). MLR equations quantifying GPP
were formulated for crop and grass vegetation types separately and produced GPP estimates for June,
July and August (JJA) in 2007, 2011 and 2012. Calculation of predicted GPP is only performed if and
when SIF, as an indicator of the activity of plant photosynthetic machinery, is greater or equal to zero.

Since all the equations linking GPP, SIF, precipitation and soil moisture were generated for C3
non-arctic grasses, C4 grasses and C3 crops only, we expect the estimates based on them to be the most
robust in the areas with a high percentage of these vegetation types, such as the Great Plains and Texas
(Figure 1).

Figure 1. Percentage of C3 non-arctic grasses (PFT 13 in CLM) (a), crops (PFT 15) (b), and their
combination (c) over the contiguous US. PFT maps were derived from the 1-km IGBP (International
Geosphere-Biosphere Program) DISCover dataset and the 1-km University of Maryland tree cover
dataset [85]. This PFT product is modified by re-labeling the IGBP classes of the MODIS Land Cover
Type 1 product. Red dots indicate FLUXNET station locations.
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Over regions where crop and grass PFT percentage is low (such as the East Coast or Southwest),
our GPP estimation approach may not be accurate since we have not formulated equations for other
PFTs. Therefore, our primary objective is to investigate and evaluate the performance of MLR equations
over the Great Plains and Texas. We principally focus on finding the relationships between SIF and GPP
that are hypothesized to vary for different plant types and be pertinent to environmental conditions
over a specific region.

3. Results

While SIF has a strong and highly linear relationship with GPP and has been previously used for
its quantification without auxiliary data [22,27], it is necessary to ensure that no information useful for
GPP quantification purposes is lost. In our case, one caveat can potentially stem from the relatively
coarse spatial resolution of the datasets. It is to be noted that while changes in soil moisture and
precipitation are already reflected in corresponding SIF signal fluctuations, it is possible that these
parameters might not be well delineated by SIF due to its comparatively lower spatial resolution.
Therefore, in order to provide substantiation for usage of a few predictor variables in addition to SIF,
we have turned to the covariogram analysis.

The covariogram might be thought of as the covariance, i.e., similarity, of point values as a
function of distance between the points, thus enabling an understanding of how important spatial
variability is for each given variable. Over both the Great Plains (Figure 2a) and Texas (Figure 2b)
soil moisture and GPP show a pattern of an almost linear reduction in covariance, i.e., the degree of
similarity between the values of each variable at two given points becomes significantly lower as the
distance between the points increases.

(a) (b)

Figure 2. Covariogram of SIF, precipitation, soil moisture, and GPP data over (a) the Great Plains and
(b) Texas.

Contrastingly, SIF covariogram is represented by a relatively straight line, which is characterized
by a greater number of smaller scale fluctuations. As can be inferred from Figure 2, SIF generally
demonstrates less variability over the same spatial extent compared to precipitation, soil moisture,
and GPP itself, at least in part due to the coarseness of the satellite SIF data. One important aspect
in GPP and SIF relationship, as seen from the covariogram analysis, lies in the fact that GPP and
SIF covariance changes do not go hand in hand, and GPP covariance trends are similar to those of
precipitation and soil moisture, not SIF. Since spatial variability is more significant in GPP, using SIF
that is less prone to variations over the same spatial domain might lead to larger errors in GPP values
if they are predicted based solely on SIF.
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Figure 3 demonstrates the lead–lag relationship between precipitation and SIF, soil moisture
and precipitation, and SIF and soil moisture for US-Ne3 and US-KFS stations, respectively. It can be
inferred that for US-Ne3 station with the dominant crop vegetation, the lag between precipitation
and corresponding SIF is on the scale of 4 weeks (Figure 3a), while over US-KFS station, where grass
is prevalent, this lag is about 2 weeks (Figure 3b). There is no significant lag between precipitation
and soil moisture values for both US-Ne3 and US-KFS stations (Figure 3c,d), which is also expected.
Similar temporal relationships between SIF, precipitation and soil moisture have also been found for
the remaining FLUXNET stations used in this research (not shown).

Figure 3. Lead–lag correlation between SIF and precipitation (a,b), precipitation and soil moisture (c,d),
and SIF and soil moisture (e,f) for US-Ne3 (a,c,e) and US-KFS (b,d,f) stations respectively. Dashed lines
denote the 95% confidence level.

Figure 4 illustrates the temporal relationship between plant water, expressed as soil moisture
index based on ESA soil moisture, and SIF data. The soil moisture index calculations are similar
to those used in the parameterization scheme for soil moisture limitation to transpiration in land
surface models, e.g., Noah-Multiparameterization Land Surface Model (Noah-MP LSM) [87]: when the
index approaches 1, the plant water need reaches its maximum; when the index is equal to 0, the need
is at its minimum. As can be inferred from Figure 4, water need has a peak towards mid June–end
of July, which roughly coincides with the timing of pollination and kernel development in corn, and the
beginning of pod development in soybean—the most important periods for corn and soy plants to have
an adequate water supply. This peak in water need, as expressed by soil moisture index, is followed
by a peak in SIF, which is indicative of high photosynthetic rates and potentially mass gain and GPP in
crops by this later time in the growing season. NDVI generally follows a dynamic similar to that of
SIF: both show a peak after the highest water need is noted. NDVI demonstrates a wider peak during
the growth season, which is probably due to the difference in the temporal resolution of SIF and NDVI
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data products used in this study. These findings show that water availability at the developmental
stage of plant lifecycle is likely to affect plant SIF and GPP at later stages: when a plant does not have
enough water available to meet evapotranspiration demands during the late development stage (i.e.,
when a plant is typically most sensitive to water stress), this can lead to a significant reduction in plant
production [40,88,89], which is reflected in SIF and GPP.
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Figure 4. Lead–lag relationship between SIF and plant water need based on soil moisture index
calculated from ESA soil moisture data. Soil moisture index is calculated as 1− SM−SMmin

SMmax−SMmin
, where SM

is soil moisture value at any given day of the growing season, SMmax and SMmin are the highest and
lowest soil moisture values during the growing season, respectively. The soil moisture index and SIF
values are averaged over the study period of 2007–2012. Day 0 corresponds to April 1st, which is
considered the beginning of the growing season. SIF, soil moisture and NDVI values are estimated
from grids of size 0.5 × 0.5°, 0.25 × 0.25° and 1 × 1 km, respectively, surrounding US-Ne3 FLUXNET
station (41.1797 °N, –96.4396 °E). US-Ne3 station has rotated crop assignments: soybean at even years
and corn at odd years [90].

3.1. Assessing the Relationships between the Predictors for Different Vegetation Types

First, we looked into (1) how satellite-retrieved SIF itself correlates with GPP from ground-based
flux tower stations. Then, as shown in Figures 5–9, we estimated correlation and root-mean-square
error (RMSE) for the following cases: (2) SIF-based GPP, (3) SIF- and precipitation-based GPP,
(4) SIF-, precipitation- and soil-moisture-based GPP (i.e., MLR-based GPP). For the final case (5),
we explored the SIF–precipitation–soil-moisture relationship using the lead–lag correlation analysis
and its application for GPP quantification

Figure 5 demonstrates correlation between GPP measured at the FLUXNET stations with C3 crop
vegetation and GPP calculated with the use of the above-mentioned five combinations of predictors,
over the entire vegetation period of a year, for 2007–2012. It can be noted that satellite SIF has
a moderately strong relationship with FLUXNET GPP (Figure 5a), but the approach producing
GPP estimates based on varying sets of predictors tends to yield better results, as expressed by
improvements in the correlation coefficient R: e.g., from 0.65 when SIF connection to FLUXNET
GPP is considered (Figure 5a) to 0.68 for the case when SIF-based GPP and FLUXNET GPP are used
(Figure 5b). One curious feature is related to the existence of a “jump” in GPP quantification quality
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when precipitation data are taken into consideration: with the introduction of precipitation into
MLR calculation, correlation coefficient R demonstrates an increase of 0.11 (from 0.68 to 0.79) as
compared to the case using SIF data only (compare Figure 5b and Figure 5c); further addition of soil
moisture leads to a relatively small increase in R (Figure 5d). However, the most significant rise in R is
noted when the MLR equation is enhanced by the introduction of lead–lag: R increases from 0.82 to
0.98 (Figure 5e).
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Figure 5. Relationship of mean monthly GPP (gC/m2/day) measured at FLUXNET stations with
C3 crop vegetation (Table 1) used in this study and (a) GOME-2 SIF; (b) SIF-based GPP; (c) SIF-
and precipitation-based GPP; (d) MLR-based GPP (SIF, precipitation, soil moisture as predictors);
(e) MLR-based GPP with lead–lag. The Spearman’s correlation coefficient R and root-mean-square
error RMSE (gC/m2/day) are shown.

Figure 6 illustrates changes in the tightness of the correlation between FLUXNET GPP and
C3 grass GPP calculated with the use of the same methods as in Figure 5. Similarly to Figure 5,
calculated GPP estimates and FLUXNET GPP become more significantly correlated as the independent
variables are introduced; it is also shown that, initially, the correlation between SIF and FLUXNET GPP
without any ancillary data is relatively high (R = 0.77, Figure 6a) while that for the case of C3 crops was
only 0.65 (Figure 5a). A similar pattern of increasing correlation and decreasing RMSE is also noted
for C4 grasses (Figure 7a–e); the MLR-based equation with the inclusion of the lead–lag relationship
yields the maximum correlation (R = 0.99) between estimated and FLUXNET GPP values. One can
also notice that grass and crop vegetation cases exhibit a slightly different response to the addition
of predictor variables: C3 non-arctic and C4 grasses GPP values demonstrate a rather monotonic
increase in correlation with FLUXNET GPP, with small incremental steps, and one significant increase
when lead–lag is considered (compare Figure 6a–d and Figure 6e; Figure 7a–d and Figure 7e). C3 crop
vegetation GPP, on the other hand, is characterized by two significant correlation improvements:
one when precipitation is introduced into GPP quantification (Figure 5c) and the other related to the
addition of lead–lag (Figure 5e).
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Figure 6. Relationship of mean monthly GPP (gC/m2/day) measured at FLUXNET stations with C3
non-arctic grass vegetation (Table 1) used in this study and (a) GOME-2 SIF; (b) SIF-based GPP; (c) SIF-
and precipitation-based GPP; (d) MLR-based GPP (SIF, precipitation, soil moisture as predictors);
(e) MLR-based GPP with lead–lag. The Spearman’s correlation coefficient R and root-mean-square
error RMSE (gC/m2/day) are shown.
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Figure 7. Relationship of mean monthly GPP (gC/m2/day) measured at FLUXNET stations with
C4 grass vegetation (Table 1) used in this study and (a) GOME-2 SIF; (b) SIF-based GPP; (c) SIF-
and precipitation-based GPP; (d) MLR-based GPP (SIF, precipitation, soil moisture as predictors);
(e) MLR-based GPP with lead–lag. The Spearman’s correlation coefficient R and root-mean-square
error RMSE (gC/m2/day) are shown.
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Overall, GPP estimates derived with the use of MLR while taking the lead–lag relationship into
consideration are close to those from FLUXNET network: at the crop stations peak mean monthly
GPP can be up to 20 gC/m2/day, while for the grass sites mean monthly GPP does not exceed
10 gC/m2/day. These findings agree well with those reported by Guanter et al. [22].

We have also explored how the inclusion of lead–lag into the relationship between predictors
influences GPP estimates for individual plant species. Alfalfa and rice, both C3 crop species, cultivated
at US-Tw3 and US-Twt stations, respectively, were selected for this purpose. Figures 8a and 9a reveal
that the correlation between SIF and flux tower GPP estimates demonstrates a moderate strength of
relationship (0.57 and 0.41 for alfalfa and rice, respectively).
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Figure 8. Relationship of mean monthly GPP (gC/m2/day) measured at US-Tw3 FLUXNET station
characterized by alfalfa vegetation (Table 1) and (a) GOME-2 SIF; (b) SIF-based GPP; (c) SIF-
and precipitation-based GPP; (d) MLR-based GPP (SIF, precipitation, soil moisture as predictors);
(e) MLR-based GPP with lead–lag.The Spearman’s correlation coefficient R and root-mean-square error
RMSE (gC/m2/day) are shown.

It can be seen that for the rice station, the addition of precipitation (compare Figure 9b and
Figure 9c) into the GPP equations has played a substantial role in the improvement of the correlation
between MLR GPP estimates and respective FLUXNET GPP values, while such a change in R is not
noted for alfalfa vegetation. These results imply that the sensitivity of crop production to various
environmental parameters such as precipitation is an essential factor to consider when investigating
crop production. Moreover, it is necessary to analyze the interplay between such sensitivities: e.g., rice,
which is often planted during the tropical rainy season, has a water demand of 450–700 mm/total
growing season while alfalfa water need is about two times higher and comprises 800–1600 mm/total
growing season. However, rice is known to be less drought-resistant than alfalfa [40] and also to be
more significantly impacted by precipitation levels than other crops such as wheat and maize [91],
which might explain why the addition of precipitation to the MLR GPP equation leads to the
pronounced improvement in GPP estimates for rice but not for alfalfa.
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Figure 9. Relationship of mean monthly GPP (gC/m2/day) measured at US-Twt FLUXNET station
with rice as a characteristic plant species (Table 1) and (a) GOME-2 SIF; (b) SIF-based GPP; (c) SIF-
and precipitation-based GPP; (d) MLR-based GPP (SIF, precipitation, soil moisture as predictors);
(e) MLR-based GPP with lead–lag. The Spearman’s correlation coefficient R and root-mean-square
error RMSE (gC/m2/day) are shown.

Overall, as in the previous cases with C3/C4 grasses and C3 crops considered as a whole,
GPP estimates for individual plant types demonstrate an analogous response to the introduction
of more predictor variables: the correlation between predicted and observed GPP becomes more
significant with the addition of predictors, and especially lead–lag connection.

It is apparent from our findings that knowledge of plant lifecycle, lead–lag relationships, and the
sensitivity of different plants to various environmental parameters is crucial for the purpose of plant
production quantification. In order to provide more support for the proposed framework aimed at
better MLR GPP estimation, we have calculated mean values and errors for the predicted GPP (MLR
equation with lead–lag), and the reference datasets, MOD17A2 and FLUXNET GPP, within the CLM
grid box surrounding US-ARM, US-AR1 and US-AR2 stations. Figure 10 shows that our mean monthly
(for JJA of all the years) total (grass and crops combined) GPP within the grid box (315 gC/m2/month)
is consistent with FLUXNET stations’ observations (394 gC/m2/month). Although MODIS captures
the drought trend, the observed values of GPP within the grid box surrounding the stations are only
123 gC/m2/month. This shows that our predicted, i.e., MLR-based with lead–lag, GPP estimates are
the closest to the actual plant production, as inferred from FLUXNET flux tower observations.
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Figure 10. Mean total GPP (gC/m2/month) within a CLM grid box surrounding US-ARM, US-AR1
and US-AR2 stations in JJA 2007–2012. Total GPP is calculated as a sum of C3 non-arctic grass GPP,
C4 grass GPP and C3 crop GPP.

3.2. Quantifying GPP over Texas and the Great Plains Using the Multiple Linear Regression Approach

Figures 11 and 12 show total predicted GPP over Texas and the contiguous US, respectively.
As mentioned in the data and methodology section, we have calculated GPP from the MLR equation
using GOME-2 SIF, TRMM precipitation, and ESA CCI soil moisture data, with the inclusion of lead–lag
relationship between SIF and precipitation. Figure 11 shows that predicted GPP over Texas (within
30–36 °N/95–105 °W grid box) in 2011 is significantly lower than that of 2007. The area with GPP
values higher than 75 gC/m2/month decreased significantly from 2007 to 2011, and specifically from
June 2011 to August 2011, which is not typical for a normal yielding year. Figure 11d–f demonstrate
that in 2011 drought conditions were limited to Texas as there was no significant change in GPP over
the Great Plains (Figure 12d–f). These findings indicate that our MLR-based approach with lead–lag is
able to capture the drought-related reduction in GPP over Texas in 2011.

Figure 12 shows that maximum GPP values found over the Great Plains (Figure 12a–c) in the
normal yielding year amount to ∼500 gC/m2/month, which agrees well with FLUXNET data [22].
Predicted GPP indicates that 2012 was a severe drought year over the Great Plains as compared to 2007.
The impact of the drought is clearly seen in 2012, as GPP decreased significantly compared to 2007 and
2011 (Figure 12g–h). Figures 11 and 12 show that our predicted GPP estimates are capable of capturing
the 2011 Texas drought effect and also the progression of the drought over the Great Plains region
(along with Texas) in 2012. These results demonstrate the robustness of the approach presented in this
research study, both in terms of the magnitude of GPP values and their trend.
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gC/m2/month

Figure 11. Spatial patterns of monthly total (C3/C4 grass plus C3 crop) predicted GPP based on SIF,
precipitation and soil moisture over Texas in summer 2007, chosen as reference year (a–c), and summer
2011—drought year in Texas) (d–f).

gC/m2/month

Figure 12. Spatial patterns of monthly total (C3/C4 grass plus C3 crop) predicted GPP based on SIF,
precipitation and soil moisture for summer 2007, chosen as reference year (a–c); summer 2011—drought
year in Texas (d–f); and summer 2012—the Great Plains drought (g–i).

We have also compared our results with MODIS observational reference data: Figure 13 shows
that MODIS GPP values are about 50% lower than those of predicted gross primary production.
GPP values based on MODIS satellite data range between 200 and 300 gC/m2/month over the Great
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Plains. MODIS is able to detect a drought signal over the Great Plains in 2012 (Figure 13g–i) and Texas
in 2011 (Figure 13d–f), as areas with GPP < 100 gC/m2/month spread to the north and east, towards
the Great Plains. MODIS observations also provide evidence of no reduction in GPP over the Great
Plains in 2011, which is expected and also confirmed by monthly US Drought Monitor reports for
JJA in 2011. Moreover, MODIS GPP over the Great Plains in August 2011 was higher than that in
August 2007 and is consistent with the trend we observed in the predicted GPP (Figure 12c,f). Thus,
our predicted GPP agrees well with MODIS GPP values in terms of capturing the drought conditions
effect on plant production. Our MLR-based approach with lead–lag consideration can be used to
provide GPP estimates that are more accurate in terms of absolute values than MODIS reference data.

Figure 13. Gross primary production (gC/m2/month) from MOD17A2 data product in summer
2007 (a–c), summer 2011 (d–f), and summer 2012 (g–i).

Figure 14 indicates that BESS GPP values are typically lower than MLR GPP presented in this
study and are slightly higher than MODIS GPP, which is likely related to the fact that the BESS
algorithm considers the differences in C3/C4 photosynthetic pathways, while MODIS algorithm
uses the same LUEmax across all vegetation types [92]. BESS is also capable of capturing the drought
propagation in water stress years. It can be noted that in 2011 Texas experienced a significant decrease
in GPP (below 100 gC/m2/month), which is also noticeable in 2012. GPP over the Great Plains in 2012
demonstrated a decrease, which is especially pronounced in July–August 2012 as compared to 2007
and 2011 (Figure 14h,i).

FLUXNET GPP observations in a time series at select stations have also been included in the
comparison (Figure 15). Oklahoma-based US-ARM, US-AR1 and US-AR2 stations show a characteristic
decline in GPP over the second half of 2011 and recovery in 2012. US-Ne3 station located in Nebraska
(central portion of the Great Plains) demonstrates an opposite pattern: an increase in GPP is noted in
summer of 2011, with a decrease in summer 2012, which agrees well with the MLR GPP.
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Figure 14. Gross primary production (gC/m2/month) from BESS data product in summer 2007 (a–c),
summer 2011 (d–f), and summer 2012 (g–i).
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Figure 15. Gross primary production (gC/m2/day) over select FLUXNET stations in 2007–2012.
More detailed information about the stations can be found in Table 1.

4. Discussion

This research study aims specifically at investigating how already existing satellite SIF products
(on the example of GOME-2) can be complemented by other parameters, such as precipitation and
soil moisture, in order to produce reasonable GPP estimates. To our knowledge, this is also the
first study to quantitatively assess the lead–lag relationship between water availability in the critical
plant development period and its reflection in GPP and SIF at later stages of the plant lifecycle.
In this research, we have derived separate equations quantifying relationships between SIF and GPP
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based on the differences in grass and crop plant functional types and taking into account precipitation
and soil moisture conditions over the contiguous US.

In this regard, a factor that has the potential to complicate the relationship between SIF itself and
GPP is the sun-satellite view observation geometry, which could introduce unwanted variation in
observational SIF and cause large uncertainties in the SIF–GPP relationship. He et al. [93] demonstrated
that angular normalization of SIF by hot spot direction could improve the correlation between SIF
and GPP by 0.04 ± 0.03–0.07 ± 0.04 on average, especially in deciduous broadleaf forests. The angular
normalization as a prerequisite step in using satellite SIF products will be addressed in future studies.

We have used well established MODIS products as an observational reference along with more
recent BESS data. Other newly available GPP products such as Vegetation Photosynthesis Model
(VPM) [71] and FLUXCOM [94] can potentially serve as additional benchmarks for the evaluation
of GPP estimates and might be useful for future research. Near-infrared reflectance of vegetation
(NIRv, [95]) will also be used in future studies, as it has demonstrated a strong relationship with both
measured and modeled GPP and mostly resolves the mixed-pixel problem arising from the need to
disentangle the contribution of vegetation to the observed spectral signal in remotely sensed data.

We have performed GPP estimation and employed precipitation and soil moisture datasets
pertinent to the contiguous US only. Similarly, as seen from this study, FLUXNET measurements from
other regions such as Europe, East and Southeast Asia, South America can be used, depending on
prevalent biome types, precipitation, and soil moisture content to establish such SIF–GPP relationships.

The lead–lag relationship discussed in this study is likely to differ for various biomes represented
by different PFTs, as shown in our analysis. This fact is to be taken into account if similar research is
to be conducted for vegetation that cannot be classified as crops or grasses. For example, deciduous
trees might exhibit more resistance to drought conditions compared to crops due to their trunk water
storage, which may result in a longer delay between precipitation and fluorescence levels. Hence,
there might be a different lead–lag relationship between tree production and precipitation, which
warrants further investigation.

Our findings indicate that SIF–GPP relationships tend to vary not only between vegetation types,
but also between crop species specifically. This is reflected in a significant improvement in agreement
between FLUXNET and predicted MLR GPP when precipitation is considered for rice, but not for alfalfa.
These results imply that differing sensitivity of crop production to various environmental parameters
such as precipitation is an important factor to be taken into account when examining and quantifying
crop production.

It is also important to examine possible differences in GPP quantification related to the fact that
most plants follow C3 or C4 photosynthetic pathways. For instance, C3 plants are expected to be more
sensitive to precipitation than C4 vegetation [96]: such a differential plant response might need to
be accounted for in further research focused on plant production, especially in the light of the global
climate change, which might have implications for plant productivity.

5. Conclusions

In this study, we have modeled gross primary production with the use of solar-induced
chlorophyll fluorescence, precipitation and soil moisture, while considering differences in grass
and crop plant functional types over the contiguous US. Our results show that correlation
(root-mean-square error) between the FLUXNET and modeled gross primary production increases
(decreases) from 0.41 (8.97 gC/m2/d) to 0.99 (0.13 gC/m2/d) with the addition of extra parameters
such as precipitation and soil moisture and inclusion of the lead–lag relationship. Mean monthly GPP
values calculated for summers in 2007–2012 with the use of the multiple linear regression approach
and lead–lag are comparable to the FLUXNET measurements, while reference MODIS and BESS
datasets demonstrate a tendency to underestimate GPP by approximately 50%. GPP values calculated
with the use of the MLR approach and lead–lag also capture the drought trends successfully and
are consistent with the observational trends from MODIS and BESS. In 2011, modeled GPP over
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Texas is approximately 50–75 gC/m2/month lower than in a normal yielding year of 2007; over the
Great Plains, such a departure is comparable to that over Texas, as the area with production greater
than 400 gC/m2/month was reduced significantly in July and August 2012.

Our results demonstrate that GPP values based on various combinations of predictors, i.e., SIF,
precipitation and soil moisture, have lower correlation coefficients and higher RMSE until and unless
lead–lag relationship between the above mentioned predictors is considered. Since a plant is most
vulnerable to water stress in its development period, we expect that plant production later in the season
would depend on precipitation and soil moisture during the development stage. This study highlights
the importance of water availability for plants during their development stage and its influence on
plant production later in the season. It is also the first one to demonstrate that incorporation of
plant physiological variations associated with water availability and demand at different stages of
its lifetime can play an important role in estimation of plant production [97–100], especially under
drought conditions that are likely to increase in frequency and severity in future.

This study further supports the claim that relationships between SIF and GPP are different for
crops and grasses; using the statistically justified inclusion of regional precipitation and soil moisture,
such relationships can be derived and used to improve GPP estimates.
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Abbreviations

The following abbreviations are used in this manuscript:

AMSR-E Advanced Microwave Scanning Radiometer
APAR absorbed photosynthetically active radiation
ASCAT Advanced Scatterometer
BESS Breathing Earth System Simulator
BPLUT biome property look-up table
CLM Community Land Model
ERS European Remote Sensing
ESA CCI SM European Space Agency Climate Change Initiative Soil Moisture
FPAR fraction of absorbed photosynthetically active radiation
GOME-2 Global Ozone Monitoring Experiment 2
GPP gross primary production
IGBP International Geosphere-Biosphere Program
JJA June, July, August
LAI leaf area index
LUE light use efficiency
MLR multiple linear regression
MODIS Moderate Resolution Imaging Spectroradiometer
MPI-BGC Max Planck Institute for Biogeochemistry
NDVI Normalized Difference Vegetation Index
NIRv near-infrared reflectance of terrestrial vegetation
Noah-MP LSM Noah-Multiparameterization Land Surface Model
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NPP net primary production
NPQ non-photochemical quenching
PAR photosynthetically active radiation
PFT plant functional type
RMSE root-mean-square error
SIF solar-induced chlorophyll fluorescence
SMM/I Special Sensor Microwave Imager
SMMR Scanning Multichannel Microwave Radiometer
TMI Tropical Rainfall Measuring Mission Microwave Imager
TRMM Tropical Rainfall Measuring Mission
USDA US Department of Agriculture
VPD vapor pressure deficit
VPM Vegetation Photosynthesis Model
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