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Abstract: Mapping the distribution of forest resources at tree species levels is important due to their
strong association with many quantitative and qualitative indicators. With the ongoing development
of artificial intelligence technologies, the effectiveness of deep-learning classification models for high
spatial resolution (HSR) remote sensing images has been proved. However, due to the poor statistical
separability and complex scenarios, it is still challenging to realize fully automated and highly accurate
forest types at tree species level mapping. To solve the problem, a novel end-to-end deep learning
fusion method for HSR remote sensing images was developed by combining the advantageous
properties of multi-modality representations and the powerful features of post-processing step
to optimize the forest classification performance refined to the dominant tree species level in an
automated way. The structure of the proposed model consisted of a two-branch fully convolutional
network (dual-FCN8s) and a conditional random field as recurrent neural network (CRFasRNN),
which named dual-FCN8s-CRFasRNN in the paper. By constructing a dual-FCN8s network,
the dual-FCN8s-CRFasRNN extracted and fused multi-modality features to recover a high-resolution
and strong semantic feature representation. By imbedding the CRFasRNN module into the network as
post-processing step, the dual-FCN8s-CRFasRNN optimized the classification result in an automatic
manner and generated the result with explicit category information. Quantitative evaluations on
China’s Gaofen-2 (GF-2) HSR satellite data showed that the dual-FCN8s-CRFasRNN provided a
competitive performance with an overall classification accuracy (OA) of 90.10%, a Kappa coefficient
of 0.8872 in the Wangyedian forest farm, and an OA of 74.39%, a Kappa coefficient of 0.6973 in the
GaoFeng forest farm, respectively. Experiment results also showed that the proposed model got
higher OA and Kappa coefficient metrics than other four recently developed deep learning methods
and achieved a better trade-off between automaticity and accuracy, which further confirmed the
applicability and superiority of the dual-FCN8s-CRFasRNN in forest types at tree species level
mapping tasks.
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1. Introduction

Forest classification at tree species’ levels is important for the management and sustainable
development of forest resources [1]. Mapping the distribution of forest resources is important due
to their strong association with qualitative monitoring indicators such as spatial locations, as well as
with many quantitative indicators like forest stocks, forest carbon storage, and biodiversity [2].
Satellite images have been widely used to map forest resources due to their efficiency and increasing
availability [3].

With more accurate and richer spatial and textural information, high spatial resolution (HSR)
remote sensing images can be used to extract more specific information of forest types [4]. In the recent
past, a growing number of studies have been conducted on this topic [5,6]. Important milestones
have been achieved, but there remain limitations [7,8]. One of the key limitations is that there is poor
statistical separability of the images spectral range as there are a limited number of wavebands in
such images [9]. As a result, in the case of forests with complex structures and more tree species,
the phenomenon of “same objects with different spectra” and “different objects with the same spectra”
can lead to serious difficulties in extracting relevant information. Thus, it raises the requirements for
advanced forest information extraction methods.

Deep learning models are a kind of deep artificial neural network methods that have attracted
substantial attention in recent years [10]. They have been successfully applied in land cover classification
as they can adaptively learn discriminative characteristics from images through supervised learning, in
addition to extracting and integrating multi-scale and multi-level remote sensing characteristics [11–14].
Compared with traditional machine learning methods, these models are capable of significantly
improving the classification accuracy of land cover types, especially in areas with more complicated
land cover types [15–17].

With the ongoing development of artificial intelligence technologies, several efficient
deep-learning-based optimization models for the classification of land cover types have been
proposed [18]. According to several recent studies, fusion individual deep-learning classifiers such as
a convolutional neural network (CNN) into a multi-classifier can further improve the classification
capacity of each classifier [19–21]. At the same time, other studies have shown that a CNN designed
with a two-branched structure can extract panchromatic and multispectral information in remote
sensing images individually, ensuring better classification quality compared to single structures [22].
In addition, some related research also indicated that the combination of a CNN and traditional image
analysis technology such as conditional random fields (CRF) [23] is conducive to further improve the
classification accuracy [24].

In recent years, to explore the classification effectiveness of deep-learning models for mapping
forest types at tree species level, some scholars have attempted to apply advanced deep-learning
classification methods to HSR satellite images. Guo (2020) proposed a two-branched fully convolutional
network (FCN8s) method [25] and successfully extracted forest type distribution information at the
dominant tree species level in the Wangyedian forest farm of Chifeng City [26] with China’s GF2 data.
The study revealed that the deep characteristics extracted by the two-branch FCN8s method showed
a certain diversity and can enrich the input data sources of the model to some degree. Thus, it is a
simple and effective optimization method. At the same time, compared with the traditional machine
learning algorithms such as support vector machine and so on, there is a significant improvement in
the resultant overall classification accuracy (OA). However, the classification accuracy of some forest
types or dominate tree species, such as White birch (Betula platyphylla) and Aspen (Populus davidiana) in
the study area, needs to be improved further.

Relevant studies have shown that when classifying forest types using FCN8s, the use of CRF
as an independent post-processing step can further improve the classification accuracy [27,28].
However, even though the CRF method can improve the results of classification to some extent as a
post-processing step independent of the FCN8s training, the free structures are unable to fully utilize
CRF’s inferential capability. This is because the operation of the model is separated from the training
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of the deep neural network model. Consequently, the model parameters cannot be updated with the
iterative update of weights in the training phase. To address this limitation, Zheng (2015) has proposed
a conditional random field as recurrent neural networks (CRFasRNN) model in which the CNN and
CRF are constructed into a recurrent neural network (RNN) structure. Then, training the deep neural
network model and operation of the CRF post-processing model can be implemented in an end-to-end
manner. The advantages of the CNN and CRF models are thus fully combined. At the same time,
the parameters of the CRF model can also be synchronously optimized during the whole network
training, resulting in significant improvements in the classification accuracy [29].

In the paper, we proposed a novel end-to-end deep learning fusion method for mapping the
forest types at tree species level based on HSR remote sensing data. The proposed model based on the
previous published two-branch FCN8s method and imbedded a CRFasRNN layer into the network as
the post-processing step, which is named dual-FCN8s-CRFasRNN in the paper.

The main contributions of this paper are listed as follows:

1. An end-to-end deep fusion dual-FCN8s-CRFasRNN network was constructed to optimize the
forest classification performance refined to the tree species level in an automated way by combining
the advantageous properties of multi-modality representations and the powerful features of
post-processing step to recover a high-resolution feature representation and to improve the
pixel-wise mapping accuracy in an automatic way.

2. A CRFasRNN module was designed to insert into the network to comprehensively consider the
powerful features of post-processing step to optimize the forest classification performance refined
to the dominant tree species level in an end-to-end automated way.

The remainder of the paper was structured as follows. The Materials and Method are presented
in detail in Section 2. The Results are given in Section 3. Section 4 then discusses the feasibility of the
optimized model. Finally, Section 5 concludes the paper.

2. Materials and Method

2.1. Study Areas

In this research, two study areas in China were selected, namely the Wangyedian forest farm and
the GaoFeng forest farm, which are located in the North and South of China respectively (Figure 1).
The reason why the Wangyedian forest farm and the GaoFeng forest farm were chosen as study areas
was that both of them represented typical forest plantations in North and South China, respectively.
Among them, the coniferous and broad-leaved tree species in the Wangyedian forest farm had clear
spectral differences; however, the tree species in the GaoFeng forest farm belonged to the evergreen
species, which made the spectral characteristics less affected by the seasonal changes and had more
challenging for the classifier. Thus, the validation of the two above test areas could better illustrate the
effectiveness and limitations of the proposed method.

The Wangyedian forest farm was founded in 1956. The geographical location is 118◦09′E~118◦30′E,
41◦35′N~41◦50′N, which lies to the southwest of Harqin Banner, Chifeng City, Inner Mongolia
Autonomous Region, China, at the juncture of the Inner Mongolia, Hebei, and Liaoning provinces. The
altitude is 800–1890 m, and the slope is 15–35◦. The annual average temperature is 7.4 ◦C and the annual
average precipitation is 400 mm, the climate zone belongs to moderate-temperate continental monsoon
climate. The area of the forest farm is 2.47 ha with the forest area covers 2.33 ha, of which the plantation
is 1.16 ha and the forest coverage rate 92.10%. The tree species of the plantation are mainly Chinese
pine (Pinus tabuliformis Carrière) and Larix principis (Larix principis-rupprechtii Mayr); the dominant
tree species in natural forests includes White birch (Betula platyphylla) and Aspen (Populus davidiana).

The GaoFeng forest farm was established in 1953. Its geographical location is 108◦20′E~108◦32′E,
22◦56′~23◦4′N (Figure 1), which is in Nanning City, Guangxi Zhuang Autonomous Region, China.
The relative height of the mountain is generally 150–400 m and the slopes are 20–30◦. It is in the humid
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subtropical monsoon climate area, with an average annual temperature of 21.6 ◦C and an average
annual rainfall of 1300 mm. The total area of the forest land under management is 8.70 ha and forest
coverage is 87.50%. Eucalyptus (Eucalyptus robusta Smith) and Chinese fir (Cunninghamia lanceolate) are
the main plantations. It should be noted that the GaoFeng forest farm test area in our study is part of
the GaoFeng forest farm. This is because after we searched all China’s Gaofen-2 (GF-2) images within
the GaoFeng Forest Farm in recent three years, only the DongSheng and JieBei sub-forest farms were
cloud-free during this period. Therefore, these two sub-forest farms were selected in the research.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 23 
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2.2. Test Data

2.2.1. Land Cover Types, Forest and Tree Species Definition

The land cover, forest, and tree species classification used in this study mainly refer to the
regulation of forest resources planning, design, and measurement [30], which are the technical
standards of national forest resources planning and design survey. Based on the analysis of potential
land classification results through pre-classifications from China’s GF-2 images, the classification system
of this study was determined as shown in Tables 1 and 2. The classes were divided into 11 categories
for the Wangyedian forest farm (Table 1), including Chinese pine (Pinus tabulaeformis), Larix principis
(Larix principis-rupprechtii), Korean pine (Pinus koraiensis), White birch and Aspen (Betula platyphylla
and Populus davidiana, respectively), Mongolian oak (Quercus mongolica), Shrub land, Other forest land,
Cultivated land, Grassland, Construction land, and Other non-forest lands. For simplicity, the above
categories were abbreviated as CP, LP, KP, WA, MO, SL, OFL, CUL, GL, COL, ONFL as shown in Table 1.

For the GaoFeng forest farm test area (Table 2), it was divided into 7 categories, including Eucalyptus
(Eucalyptus spp.), Chinese fir (Cunninghamia lanceolata Hook.), Masson pine (Masson pine Lamb.), Star anise
(Illicium verum Hook.f.), Miscellaneous wood, Logging site, and Other non-forest lands. Here, Eucalyptus,
Chinese fir, Masson pine, Star anise, and Miscellaneous wood belong to the subdivision category of
forest land; Other non-forest lands mainly include construction land, water, and so on. For simplicity,
the above types were abbreviated as EP, CF, MP, SA, MW, LS, ONFL as shown in Table 2.
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Table 1. Classification system of the Wangyedian study areas.

Test Area Level One Level Two Level Three

The Wangyedian forest farm

Forest land

Woodland

Chinese pine (CP)
Larix principis (LP)
Korean pine (KP)

White birch and aspen (WA)
Mongolian oak (MO)

Shrub land(SL) /

Other forest land Include part of Mixed Broadleaf-conifer Forest
and part of Mixed Broadleaf Forest (OFL)

Non-forest land

Cultivated land (CUL) /

Grassland (GL) /

Construction land (COL) /

Other non-forest land (ONFL) /

Table 2. Classification system of the GaoFeng study areas.

Test Area Level One Level Two Level Three

The GaoFeng forest farm test area

Forest land
Woodland

Eucalyptus (EP)
Chinese fir (CF)

Masson pine (MP)
Star anise (SA)

Miscellaneous wood (MW)

Logging site (LS) /

Non-forest land Other non-forest land (ONFL) Include part of Construction land
and part of Water

2.2.2. Remote Sensing Data

Launched on 19 August 2014, China’s GF-2 was the first sub-meter HSR satellite successfully
launched by the China High-resolution Earth Observation System (CHEOS). The GF-2 satellite is
equipment with two panchromatic and multispectral (PMS) cameras which can provide pan and
multispectral data with nadir resolutions of 1 m and 4 m, respectively, across an imaging swath of
45 km. Radiometric resolution of GF-2 is 10 bit. The GF-2 multispectral remote sensing images include
the blue band(B) (0.45 µm–0.52 µm), green band(G)(0.52 µm–0.59 µm), red band (R) (0.63 µm–0.69 µm),
and near infrared band(NIR)(0.77 µm–0.89 µm).The study used China’s GF-2 panchromatic and
multispectral (PMS) remote sensing imagery, which comprised a panchromatic band (1-m resolution)
and four multispectral bands (4-m resolution). The WYD study area was covered by four scenes and
the GaoFeng study area by one scene (specific image information is shown in Table 3).

Table 3. Parameter information for Gaofen-2 (GF-2) remote sensing images in the two study areas.

Research Area Scenery Serial
Number Image Time Solar Elevation

Angle (◦) Solar Azimuth (◦) Cloud Cover (%)

Wangyedian (WYD)

4074551 5 September 2017 36.139 163.305 2%
4074552 5 September 2017 35.978 163.166 2%
4082058 5 September 2017 36.039 163.724 0%
4082059 5 September 2017 35.878 163.586 0%

GaoFeng (GF) 2835829 21 September 2016 26.133 147.107 0%

The imaging time was September 5, 2017 for the Wangyedian forest farm and September 21, 2016
for the GaoFeng forest farm test area. The preprocessing procedure of the satellite images comprised
four steps, which were radiometric calibration, atmospheric correction, ortho-rectification, and image
fusion. The radiometric calibration was the first step. The pixel brightness values of satellite observations
were converted to apparent radiance by using the absolute radiometric calibration coefficients released
by China Resources Satellite Data and Application Center [31]. Then, the fast line-of-sight atmospheric
analysis of hypercube method [32] was used to perform atmospheric correction of multi-spectral and
panchromatic data. In the next step, the parameters of the multi-spectral and panchromatic images
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and one digital elevation model (DEM) of 5 m resolution were used to perform ortho-rectification
aided by the ground control points automatically extracted by image to image registration using
a scale invariant feature transformation algorithm [33] with ZY-3 digital ortho-photo map (DOM)
in 2 m spatial resolution [34] as reference. Finally, by using the nearest-neighbor diffusion-based
pan-sharpening algorithm [35], the multi-spectral and panchromatic images were fused to obtain a
0.8 m high spatial resolution multi-spectral remote sensing image.

2.2.3. Ground Reference Data

Being aided by multi-temporal high-resolution remote sensing imagery and forest
sub-compartment map and field survey data, 154 samples for the Wangyedian forest farm (Figure 2) and
136 samples for the GaoFeng forest farm test area (Figure 3) were constructed by visual interpretation.
Each sample was composed of a pre-processed remote sensing image block and a matching image
interpretation block at pixel levels. The size of each sample was 310 × 310 pixels.
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At the same time, to verify the classification accuracy of the deep learning model, field surveys
were carried out in September 2017 in the Wangyedian forest farm and January 2018 in the GaoFeng
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forest farm test area. A total of 404 samples in the Wangyedian forest farm and 289 samples in the
GaoFeng forest farm test area were collected, as shown in Figure 4. It should be noted that the selected
time of remote sensing image used in GaoFeng Forest Farm test area was inconsistent with that of
field survey. This was because the cloud cover of China’s GF-2 data in 2018 is large, which affected
the classification accuracy. After the search of the data in experimental area during recent three years,
we chose the cloud-free data in 2016. By the comparison among the multi-period data, the land cover
types during that period had little changes, which was classified into logging sites.
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Figure 4. Spatial distribution map of the field survey sample points and some of the training samples
in (a) the Wangyedian forest farm; (b) the GaoFeng forest farm test area, (i) Chinese pine, (ii) Larix
principis, (iii) White birch and aspen, (iv) Mongolian oak, (v) Korean pine, (vi) Eucalyptus, (vii) Chinese
fir, and (viii) Masson pine.

2.3. Workflow Description

In this study, a novel dual-fcn8s-crfasrnn method was developed to classify forest type at tree
species level for HSR images. The network consisted with a two-branch FCN8s model with the ResNet50
network [36] as the backbone and a CRFasRNN model as a post-processing module. The classification
process was shown in Figure 5: 310 × 310 image blocks were cut from the entire image and the real
feature categories were labeled as training samples. During the training process, it was divided into
the training samples and the validation samples according to the proportion of 80% and 20%. Then the
dual-fcn8s-crfasrnn method was built. The test image contained eleven and seven feature types for
Wangyedian forest farm and the GaoFeng forest farm, respectively. The same method was used to label
the true feature types. The image block instead of the pixel unit was sent to the network for training,
and the model loss was obtained after training. The model parameters were updated by using the
back-propagation algorithm [37] until the optimal parameters were obtained. In the classification stage,
the test image was sent to the trained network to obtain the final classification map.
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2.4. Network Structure

The proposed dual-FCN8s-CRFasRNN model is a kind of deep learning fusion model. It bases on
a two-branched fully convolutional network, which predicts pixel-level labels without considering
the smoothness and the consistency of the label assignments, followed by a CRFasRNN stage,
which performs CRF-based probabilistic graphical modelling for structured prediction. The general
workflow of the model is shown in Figure 6.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 23 
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2.4.1. Two-Branched Fully Convolutional Network

The two-branched fully convolutional network (FCN8s) was proposed recently for the forest
type classification at a dominant tree species level using HSR remotely sensed imagery [26], and the
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FCN8s [25] is the basic structure of the network which has showed impressive performance in terms of
accuracy and computation time with many benchmark datasets. The architecture of FCN8s consists of
down-sampling and up-sampling parts. The down-sampling part has convolutional and max-pooling
layers to extract high-level abstract information, which is widely used in the classification related tasks
in CNN. The convolutional and deconvolutional layers are contained in the up-sampling part which
up-samples feature maps to output the score masks.

The structure of the two-branched FCN8s method contains two FCN8s sub-models which used
Resnet50 [36] as its base classifier. Among them, one of the FCN8s sub-model used the RGB band
information of image with fine-tuning strategy to construct the network by using the pre-trained weights
of ImageNet dataset [38] and another sub-model made full use of the original 4-band information and
the Normalized Difference Vegetation Index (NDVI) to build the model.

In the study, the two-branched FCN8s model was used to extract multi-modality features, with
each FCN8s sub-model associated to one specific modality. For the model’s output, each FCN8s
sub-model was separated into five blocks according to the resolution of the feature maps, and the
features with the identical resolution from different branches were combined using convolutional
blocks. Then, the combined features from different branches gradually up sampled to the original
resolution of the input image. The whole model can be defined as the minimum total loss between
the prediction results of the training data and the ground truth value during the training process.
Meanwhile, the parameters of the network can be iteratively updated by using a stochastic gradient
descent (SGD) algorithm [39].

2.4.2. Conditional Random Field as Recurrent Neural Networks

CRFasRNN is an end-to-end deep learning model to solve the problem of pixel level semantic
image segmentation. This approach combines the advantages of the CNN and CRF based graphics
model in a unified framework. To be more specific, the model formulates mean-field approximate
inferences for the dense CRF with Gaussian pairwise potentials as an RNN model. Since the parameters
can be learnt in the RNN setting using the standard back-propagation, the CRFasRNN model can
refine coarse outputs from a traditional CNN in the forward pass, while passing error differentials
back to the CNN during training. Thus, the whole network can be trained end-to-end by utilizing the
usual back-propagation algorithm [37].

2.4.3. Implementation Details

The implementation details of the proposed dual-FCN8s-CRFasRNN model were as follows.
During the training procedure, we first trained a two-branched FCN8s architecture for semantic
segmentation and the error at each pixel can be computed using the standard SoftMax cross-entropy
loss [40] with respect to the ground truth segmentation of the image. Then, a CRFasRNN layer was
inserted into the network and continued to train with the network. The detailed structure of the model
is shown in Figure 7.

For more detail, once the computation enters the CRFasRNN model in the forward pass, it takes
five iterations for the data to leave the loop created by the RNN. Neither the two-branched FCN8s
that provides unary values nor the layers after the CRFasRNN need to perform any computations
during this time since the refinement happens only inside the RNN’s loop. Once the output Y leaves
the loop, the next stages of the deep network after the CRFasRNN can continue the forward pass.
During the backward pass, once the error differentials reach the CRFasRNN’s output Y, they similarly
spend five iterations within the loop before reaching the RNN input. In each iteration inside the loop,
error differentials are computed inside each component of the mean-field iteration. After the CRFasRNN
block, the output probability graph was obtained by using a softmax layer. Then, the probability
output was thresholded to generate a classification result for each pixel.

Based on this, the complete system unifies strengths of both two-branched FCN8s and CRFs and
is trainable end-to-end using the back-propagation algorithm [40] and the SGD procedure [41]. It is
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important to mention that in all of the convolutional block, we use a batch normalization layer [42]
followed by a rectifier linear unit activation function [43].
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In our all experiments, we initialized the first part of the network using the publicly available
weights of the two-branched FCN8s network [26]. The compatibility transform parameters of the
CRFasRNN were initialized using the Potts model [29]; the kernel width and weight parameters
were obtained from a cross-validation process. During the training phase, the parameters of the
whole network were optimized end-to-end using the back-propagation algorithm. We used full image
training with the learning rate fixed at 10−9 and momentum set to 0.99. The loss function used was the
standard SoftMax loss function, that is, the log-likelihood error function described in [40].

The proposed model was implemented in the Python language using Keras [44] with a
TensorFlow [45] backend. All of the experiments were performed on a Nvidia Tesla K40C GPU.
To optimize the network weights and early stopping criterion, the training set was divided into
subsets (training and validation). We trained the proposed model using the Adam optimizer [46]
with minibatches of size 16. The maximum number of training epochs was fixed to 10,000 for all
experiments, and the training computation time was approximately 36 h.

2.5. Accuracy Evaluation Index

The evaluation index includes the OA, Kappa coefficient, as well as the user’s (UA) and producer’s
accuracy (PA) values. OA is calculated as a percentage of correctly classified samples relative to
all verified samples. The Kappa coefficient measures the consistency between classification results.
The UA is expressed as the proportion of the total number of correctly classified samples for a specific
class with respect to the total number of reference sample. The PA is calculated by the proportion of a
specific class of accurate classification reference samples to the whole reference samples of that class
and is a supplement of the omission error. The confusion matrix represents the number of pixels which
are classified into a specific class.

3. Results

3.1. Classification Results of the Dual-FCN8s-CRFasRNN

3.1.1. The Wangyedian Forest Farm

The results of the dual-FCN8s-CRFasRNN approach showed a high level of agreement with
the forest status on the ground in the Wangyedian forest farm. The OA was 90.10% and the Kappa
coefficient was 0.8872 (Table 4). Among the individual forest type or tree species, it showed better
results for the coniferous tree species compared to the broad-leaved tree species. For the three coniferous
tree species, Larix principis and Korean pine performed well reaching PA and UA values above 90%,



Remote Sens. 2020, 12, 3324 11 of 23

respectively. In contrast, the classification of the broad-leaved tree species (White birch and Aspen,
and Mongolian Oak), performed worse than the coniferous trees. The accuracy obtained with PA and
UA was only above 80%. For White birch and aspen, the UA was 90.91%, and the PA was only 80.65%
with ten samples being assigned to the coniferous forest and two samples to the other forest lands
category. Mongolian Oak had better accuracies (UA:86.67%; PA:92.86%). However, the mixed class
called the other forest lands had a UA of 58.33% and a PA of 48.75% with some misclassification of the
Cultivated land class, Mongolian Oak, and Chinese pine class. This was probably due to the similarity
of the spectrum in the reference dataset.

Table 4. Confusion Matrix of Classification Result of Dual-FCN8s-CRFasRNN for the Wangyedian
forest farm.

CP LP KP WA MO OFL CUL COL SL GL ONFL Total UA (%)

CP 70 3 0 10 0 0 0 2 0 0 0 85 82.35
LP 1 63 0 0 0 0 0 1 0 0 0 65 96.92
KP 1 0 15 0 0 0 0 0 0 0 0 16 93.75
WA 1 2 0 50 2 0 0 0 0 0 0 55 90.91
MO 0 0 0 0 26 1 0 2 1 0 0 30 86.67
OFL 0 0 0 0 0 32 0 3 1 1 0 37 86.49
CUL 0 0 0 0 0 0 40 0 0 0 0 40 100.00
COL 1 1 0 2 0 1 0 7 0 0 0 12 58.33
SL 0 0 0 0 0 2 0 1 21 0 0 24 87.50
GL 0 0 0 0 0 0 0 0 0 11 0 11 100.00

ONFL 0 0 0 0 0 0 0 0 0 0 29 29 100.00
Total 74 69 15 62 28 36 40 16 23 12 29 404

PA (%) 94.59 91.30 100.00 80.65 92.86 88.89 100.00 43.75 91.30 91.67 100.00
Overall accuracy: 90.10%; Kappa coefficient: 0.8872

3.1.2. The GaoFeng Forest Farm Test Area

The quantitative evaluation of this test site is shown in Table 5. It showed that the OA was 74.39%
and the Kappa coefficient was 0.6973. Compared to the non-forest lands, the classification effect of the
dual-FCN8s-CRFasRNN model on single tree species or forest land was better. The Eucalyptus type
had the highest classification accuracy (PA:93.33%; UA: 70.89%). In addition to the good extraction
effect on Eucalyptuses, the classification accuracy on other four types of tree species or forests was
also about 70%. In these four tree species or forest types, the classification effect of the Chinese fir tree
species was good, which may be related to the wide distribution of this tree species in the test site.
The Other non-forest lands type performed poor and a large amount of Other non-forest lands was
misclassified as Eucalyptus, which may be due to the sample size involved in modeling.

Table 5. Confusion Matrix of Classification Result of Dual-FCN8s-CRFasRNN for the GaoFeng
forest farm.

EP CF MP SA MW LS ONFL Total UA (%)

EP 56 1 5 6 3 3 5 79 70.89
CF 0 35 3 0 4 0 0 42 83.33
MP 1 5 26 2 2 3 1 40 65.00
SA 1 1 0 25 2 0 1 30 83.33

MW 1 5 4 3 25 3 2 43 58.14
LS 1 0 0 0 1 27 3 32 84.38

ONFL 0 0 0 0 0 2 21 23 91.30
Total 60 47 38 36 37 38 33 289

PA (%) 93.33 74.47 68.42 69.44 67.57 71.05 63.64
Overall accuracy: 74.39%; Kappa coefficient: 0.6973
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3.1.3. The Complementarity of the Case Study

It could be seen from the result of Table 4, the OA of the dual-FCN8s-CRFasRNN model
in the Wangyedian forest farm was 90.10%; however, it was only 43.75% for the less distributed
broad-leaved tree species or mixed forest (such as White birch and Aspen). To verify the effect of
the model for broad-leaved tree species or forest, this study further carried out the experiment in the
GaoFeng forest farm. The main forest type in this area was broad-leaved mixed forest represented
by Eucalyptus. The results showed that (Table 5), the OA of the dual-FCN8s-CRFasRNN model was
74.39%; however, it was 93.33% for the Eucalyptus species with wide distribution. This indicated that
the classification effect of the model was not restricted by tree species, but rather by the distribution
of tree species. It also could be seen from the results of the two test areas that (Tables 4 and 5)
the dual-FCN8s-CRFasRNN model performed well to extract the plantation with the accuracy all
above 90%.

3.2. Impact of Adding NDVI and Using Fine-Tuning Strategy on Performance

According to the conclusion presented in [27], the two-branched FCN8s model can optimize the
classification results after including NDVI features and using the fine-tuning strategy. Based on their
conclusion, this paper further analyzed the influences of the use of NDVI features and fine-tuning
strategies on the classification effect of the dual-FCN8s-CRFasRNN model.

In the follows, we will firstly analyze the classification effects of the dual-FCN8s-CRFasRNN model
on the two test sites using the fine-tuning strategy without NDVI features, of which the results will be
denoted as dual-FCN8s-noNDVI-CRFasRNN. Then, we will analyze the classification performance
of the dual-FCN8s-CRFasRNN model with NDVI features but not using the fine-tuning strategy,
whose results will be denoted as dual-FCN8s-noFinetune-CRFasRNN.

3.2.1. Impact of Adding NDVI on Performance

The classification results of the dual-FCN8s-noNDVI-CRFasRNN model on the two test sites were
shown in Tables 6 and 7. It can be seen from Table 6 that the OA of this model on the Wangyedian
forest farm was 88.37%, and the Kappa coefficient was 0.8678. Its classification accuracy decreased by
1.73% compared with the dual-FCN8s-CRFasRNN model. The classification accuracy of this model on
the GaoFeng forest farm test area is shown in Table 7. It can be found that the OA of the model in this
test site was 71.63%, and the Kappa coefficient was 0.6645. Its classification accuracy deceased by 2.76%
compared with the dual-FCN8s-CRFasRNN model. From the further analysis of the results, it can be
known that the dual-FCN8s-CRFasRNN model could optimize the effect on broad-leaved trees after
adding NDVI. From the comparative analysis of Tables 6 and 7, it can be found that after including
NDVI, the classification accuracies of the two broad-leaved mixed tree species of White birch and Aspen
and Mongolian Oak were both improved. Especially for White birch and Aspen, the classification
accuracy was improved by approximately 10%. The comparison results of the GaoFeng forest farm
test site showed that, after the including of NDVI, the classification performance of broad-leaved forest
was also improved.

3.2.2. Impact of Using a Fine-Tuning Strategy on Performance

The classification results of the dual-FCN8s-noFinetune-CRFasRNN model are shown in Table 6
Table 7. It can be seen from the Table 4 that the classification accuracy decreased by 4.95% and 12.8%
on the Wangyedian forest farm and the GaoFeng forest farm test area, respectively, compared with the
dual-FCN8s-CRFasRNN model. Through the further analysis of the results, it can be known that after
applying the fine-tuning strategy, the dual-FCN8s-CRFasRNN model can optimize the classification
effect of most types in the classification systems of these two test sites. From the comparative analysis
of Table 6, after the fine-tuning strategy was used, the optimization effect of broad-leaved forests was
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significant in the Wangyedian forest farm. From the comparative analysis of the GaoFeng forest farm
shown in Table 7, the classification accuracy of Chinese fir improved significantly.

Table 6. Impact of NDVI Features and Fine-tuning Strategy on Classification Accuracy of
Dual-FCN8s-CRFasRNN for the Wangyedian forest farm.

dual-FCN8s-noNDVI-CRFasRNN dual-FCN8s-noFinetune-CRFasRNN
PA (%) UA (%) PA (%) UA (%)

CP 94.59 81.4 93.24 77.53
LP 91.30 96.92 89.86 88.57
KP 100.00 93.75 100.00 100.00
WA 70.97 89.80 62.90 92.86
MO 89.29 100.00 85.71 85.71
OFL 81.25 72.22 68.75 47.83
CUL 88.89 84.21 94.44 79.07
COL 100.00 100.00 100.00 100.00
SL 95.65 75.86 82.61 100.00
GL 83.33 76.92 83.33 76.92

ONFL 79.31 92.00 72.41 95.45
OA (%) 88.37 85.15

Kappa coefficient 0.8678 0.831

Table 7. Impact of NDVI Features and Fine-tuning Strategy on Classification Accuracy of
Dual-FCN8s-CRFasRNN for the Gaofeng forest farm test area.

dual-FCN8s-noNDVI-CRFasRNN dual-FCN8s-noFinetune-CRFasRNN
PA (%) UA (%) PA (%) UA (%)

EP 91.67 68.75 91.67 76.39
CF 61.7 76.32 46.81 78.57
MP 60.53 48.94 68.42 55.32
SA 69.44 89.29 72.22 81.25

MW 59.46 56.41 64.86 48.98
LS 84.21 91.43 78.95 85.71

ONFL 63.64 95.45 63.64 80.77
OA(%) 71.63% 70.59%

Kappa coefficient 0.6645 0.6538

3.3. Impact of Using a CRFasRNN Post-Procedureon Performance

For clearly observing the difference before and after the CRFasRNN post-processing, we compared
the results of the proposed dual-FCN8s-CRFasRNN and the two-branched FCN8s, as well as the results
obtained from comparing the FCN8s model with the CRFasRNN module called FCN8s-CRFasRNN
with the FCN8s.

3.3.1. The Wangyedian Forest Farm

The comparison of the results of the dual-FCN8s-CRFasRNN model and the two-branched FCN8s
model on the Wangyedian forest farm are shown in Table 8. It can be found that after the embedding
of the CRFasRNN post-processing module, the OA of the two-branched FCN8s model increased from
87.38% to 90.1%, and the Kappa coefficient increased from 0.8567 to 0.8872. The classification result of
single category showed that the Grassland had the best improvement effect, followed by White birch
and Aspen.

In addition, the results in Table 8 show the OA of the FCN8s model increased from 86.63%
to 88.12%, and the Kappa coefficient increased from 0.8482 to 0.8646 after the inserting the
CRFasRNNpost-processing module. The classification result of single category showed that White
birch and aspen had the best improvement effect.
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Table 8. Classification accuracies of the FCN8s, FCN8s-CRFasRNN, Dual-FCN8s and Dual-FCN8s-CRF
for the Wangyedian forest farm.

FCN8s FCN8s-CRFasRNN Dual-FCN8s Dual-FCN8s-CRF
PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

CP 90.54 81.71 86.49 81.01 95.95 86.59 95.71 84.81
LP 94.20 87.84 89.86 96.88 86.96 92.31 94.20 94.20
KP 100.00 93.75 100.00 100.00 100.00 93.75 100.00 100.00
WA 56.45 92.11 79.03 77.78 67.74 93.33 60.53 88.46
MO 100.00 82.35 92.86 81.25 92.86 92.86 92.86 96.30
OFL 50.00 40.00 31.25 83.33 62.50 43.48 62.50 55.56
CUL 97.22 87.50 97.22 83.33 94.44 75.56 90.44 80.95
COL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
SL 86.96 95.24 95.65 91.67 91.30 87.5 95.65 95.65
GL 83.33 100.00 83.33 90.91 50.00 85.71 83.33 83.33

ONFL 93.10 93.10 96.55 100.00 96.55 96.55 86.21 100.00
OA (%) 86.63 88.12 87.38 89.63

Kappa coefficient 0.8482 0.8646 0.8567 0.882

Furthermore, the classification performance of the dual-FCN8s-CRFasRNN and the
FCN8s-CRFasRNN models were better than the two-branched FCN8s model and FCN8s models.
These results indicate that the learned features obtained by the CRFasRNN post-procedure achieve a
level of performance that is complementary to the deep features extracted by the original model.

3.3.2. The GaoFeng Forest Farm Test Area

The comparison of the classification results of the dual-FCN8s-CRFasRNN model and the
two-branched FCN8s model on the GaoFeng forest farm is shown in Table 9. After the embedding of
the CRFasRNN post-processing module, the OA of the two-branched FCN8s model increased from
72.32% to 74.39%, and the Kappa coefficient increased from 0.6735 to 0.6973. The classification result of
single category showed that the classification effect of Chinese fir, Masson pine, and Logging site were
all improved.

Table 9. Classification accuracies of the FCN8s, FCN8s-CRFasRNN, Dual-FCN8s and Dual-FCN8s-CRF
for the GaoFeng forest farm test area.

FCN8s FCN8s-CRFasRNN Dual-FCN8s Dual-FCN8s-CRF
PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

EP 95.00 66.28 93.33 78.87 93.33 76.71 86.67 89.66
CF 59.57 66.67 55.32 81.25 63.83 73.17 70.21 68.75
MP 50.00 70.37 78.95 55.56 63.16 61.54 63.16 61.54
SA 72.22 76.47 58.33 84.00 69.44 75.76 72.22 86.67

MW 67.57 40.32 70.27 54.17 72.97 54 62.16 43.40
LS 63.16 88.89 73.68 90.32 65.79 89.29 78.95 85.71

ONFL 27.27 81.82 75.76 89.29 66.67 88.00 78.79 100.00
OA (%) 65.05% 73.36% 72.32% 74.05%

Kappa coefficient 0.5857 0.6863 0.6735 0.695

In addition, the results in Table 9 reveal the OA of the FCN8s model increased from 65.05% to
73.36%, and the Kappa coefficient increased from 0.5857 to 0.6863 after embedding the CRFasRNN
post-processing module. The classification result of single category showed that the classification effect
of Masson pine has the most obvious improvement.

From the OA results of the two test sites, the embedding of the CRFasRNN post-processing
module can optimize the classification effect of the two-branched FCN8s and FCN8s models. At the
same time, the results showed that the FCN8s model with the CRFasRNN post-processing module had
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better optimization effects on the classification results compared with the optimization of the dual
structure on the FCN8s model.

3.4. Benchmark Comparison for Classification

In order to further investigate the validity of the proposed method, this study compared
the classification accuracy of the dual-FCN8s-CRFasRNN method with the performances of
other four models: the two-branched FCN8s model using CRF as post processing method
(named dual-FCN8s-CRF); the two-branched FCN8s model without any post-processing procedure
(named dual-FCN8s); the traditional FCN8s method (named FCN8s); and the FCN8s inserted with a
CRFasRNN layer (named FCN8s-CRFasRNN). Both study areas were tested with the above models
(Tables 8 and 9).

The backbone network of the FCN8s model mentioned in the four above approaches was
Resnet50 [36]. The input features for the four above approaches were four-band spectral information and
the NDVI feature. It can be seen from the classification results of the two test sites that among the above
models that the dual-FCN8s-CRFasRNN model had the best classification performance; the FCN8s
model had the poorest accuracy. Among the remaining three models, the classification accuracy of
the dual-FCN8s-CRF model was better than that of the FCN8s-CRFasRNN model. The classification
performance of the FCN8s-CRFasRNN model was better than that of the dual-FCN8s model. From the
perspective of a single category classification, the accuracy of the dual-FCN8s-CRFasRNN model on
the White birch and Aspen in the Wangyedian forest farm test site and the Chinese fir in the GaoFeng
forest farm test site were better than those of other models.

Figures 8 and 9 present the land cover type derived from the above five models at a more detailed
scale. After post processing by the CRF and CRFasRNN algorithms, the classification result images are
refined. The algorithms both reduce the degree of roughness of the image; the boundaries of Larix
principis and White birch and Aspen become smoother, and the land cover shapes become clearer
during the segmentation process. However, due to the excessive expansion of certain land covers during
the CRF post-processing, some small land covers are incorrectly classified by the surrounding land
covers, which is inferior to the CRFasRNN as the post-processing method. From the visual comparison
of the model with and without the CRFasRNN post-procedure, we observed classes that tend to
represent large homogeneous areas benefit substantially from the post-procedure. For the dual-FCN8s
method, some small objects are easily misclassified as the surrounding categories because they are
merged with surrounding pixels into the same objects during the segmentation phase. In addition,
the local inaccurate boundaries generated by the segmentation method also caused deviation from the
real edges. The result also shows that some details were missing from the land cover border. Small land
cover areas tend to be round, and some incorrect classifications are exaggerated by directly applying
the common-structure FCN8s to the image classification problem.
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4. Discussion

The study showed that the deep learning fusion model has great potential in the classification of
forest types and tree species. The proposed dual-FCN8s-CRFasRNN method indicated its applicability
for forest type classification at a tree species level from HSR remote sensing imagery. The experimental
results showed that, the dual-FCN8s-CRFasRNN model could extract the dominant tree species or
forest types which were widely distributed in two study areas, especially for the extraction of the
plantation species such as Chinese pine, Larix principis, and Eucalyptus which all had an OA above
90%. However, for the other forest land types in the Wangyedian forest farm and the other category in
the GaoFeng forest farm, the classification accuracy was poor. That may be because the above two
categories included many kinds of surface features, presenting spectral characteristics that are complex
and difficult to distinguish.

Through the comparative analysis of the research results of the two experimental areas, it could
be seen that the classification accuracy of the GaoFeng forest farm in Guangxi was relatively low
compared with the classification results of the Wangyedian forest farm in North China. The PA of
Masson pine, Star anise, and Miscellaneous wood were less than 70%. This may have been caused by
two reasons. Firstly, the spectral is similar among these forest land types, which inevitably increased
the difficulty of distinguishing them. Secondly, the number of collected samples of these forest land
types compared to Eucalyptus was relatively small, which leads to an under-fitting phenomenon of
the model.

To verify the effectiveness of the proposed method and clarify the optimization effect of
embedding CRFasRNN layer in the model published earlier, the paper not only compared the
dual-FCN8s-CRFasRNN model with the deep learning model published earlier, but also compared
the results of post-processing with CRF. The results showed that the optimal classification results
were obtained after adding CRFasRNN layer in both experimental areas compared with the above
two methods. The classification effect was improved obviously especially for the category with less
distribution range.

To further prove that embedding CRFasRNN layer into deep learning model is a general and
effective optimization method. This study further compared and analyzed the optimization effect of
embedding CRFasRNN layer in the classic FCN8s model. The results showed that the model with
CRFasRNN layer got better classification accuracy than the classic FCN8s model and the previously
published two branch fcn8s model. At the same time, in terms of processing efficiency, it also reduced
the processing time compared with using CRF post-processing method.

For including NDVI indices and using a fine-tuning strategy, the proposed method outperformed
those without NDVI feature and fine-tuning strategy in terms of the OA and the Kappa coefficient
achieved. To further clarify the effectiveness of the use of NDVI index, this study further replaced the
NDVI index with green NDVI (GNDVI) [47] index in two experimental areas as showed in Tables 10
and 11. The results showed that the accuracy of the dual-FCN8s-CRFasRNN model with GNDVI index
was with OA of 89.47% and 73.70% and Kappa coefficient of 0.8804 and 0.6898 for Wangyedian and
GaoFeng forest farm, respectively, which was very similar with the model using NDVI index and the
difference between them was less than 1%. From the classification results of a single category, the use
of GNDVI index improved the effect of broad-leaved mixed forest, such as the other forest types in
Wangyedian forest farm and the Miscellaneous in GaoFeng forest farm.

Compared with the previous research results of the fine classification of forest types using HSR
data, the method proposed in the study got better performance. Immitzer et al. (2012) carried out tree
species classification with random forest using WorldView-2 satellite data and the overall accuracy for
classifying 10 tree species was around 82% [48]. Adelabu et al. (2015) employed ground and satellite
based QuickBird data and random forest to classify five tree species in a Southern African Woodland
with OA of 86.25% [49]. Waser et al. (2014) evaluated the potential of WorldView-2 data to classify tree
species using object-based supervised classification methods with OA of 83% [50]. Cho et al. (2015)
based on WorldView-2 data performed tree species and canopy gaps mapping in South Africa with
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OA of 89.3% [51]. Sun et al. (2019) optimized three different deep learning methods to classify the
tree species, the results showed that VGG16 had the best performance, with an overall accuracy of
73.25% [52]. Cao (2020) based on the airborne charge coupled device (CCD) orthophoto proposed an
improved Res-UNet model for tree species classification in GaoFeng forest farm. The result showed that
the proposed method got an OA of 87% which was higher than this study; however, the experimental
area of this study was smaller, and the accuracy of Eucalyptus classification is 88.37%, which is lower
than this paper [53]. Xie (2019) based on multi-temporal ZY-3 data, carried out the classification of
tree species, forest type, and land cover type in the Wangyedian forest farm [54], which is same test
area utilized in our research. The OA (84.9%) was much low than our result, but the accuracy of
broad-leaved tree species such as White birch and Aspen (approximately 85%) was a little bit higher
than ours. This may be due to the use of multi-temporal data to optimize the performance. The effect
of using multi-temporal data for the fine classification of forest types had also been proven by other
studies. For example, Ren et al. based on multi-temporal SPOT-5 and China GF-1 data achieved
the fine classification of forest types with an accuracy of up to 92% [55]. Agata (2019) classified tree
species over a large area based on multi-temporal Sentinel-2 and DEM with a classification accuracy of
94.8% [56]. Based on these results, studies are planned to combine multi-temporal satellite data with
the deep learning method for forest type fine classification as the next step in the research. In addition,
the proposed method also needs to be assessed in other forest areas to evaluate the effect of different
forest structures and other tree species.

Table 10. Classification accuracy of dual-FCN8s-CRFasRNN with the green NDVI index in the
Wangyedian forest farm.

PA (%) UA (%)

CP 95.89 86.42
LP 91.30 96.92
KP 100.00 88.24
WA 68.42 86.67
MO 89.29 100.00
OFL 81.25 72.22
CUL 88.89 84.21
COL 100.00 100.00
SL 95.65 75.86
GL 83.33 83.33

ONFL 80.00 96.00
OA(%) 89.4737

Kappa coefficient 0.8804

Table 11. Classification accuracy of dual-FCN8s-CRFasRNN with GNDVI index in the GaoFeng
forest farm.

PA (%) UA (%)

EP 93.33 75.68
CF 61.70 76.32
MP 57.89 52.38
SA 69.44 83.33

MW 70.27 56.52
LS 81.58 91.18

ONFL 72.73 96.00
OA(%) 73.7024%

Kappa coefficient 0.6898
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5. Conclusions

As an effort to optimize the forest mapping performance refined to the tree species level
in an automated way, this study developed a novel end-to-end deep learning fusion method
(dual-FCN8s-CRFasRNN) for HSR remote sensing images by combining the advantageous properties
of multi-modality representations and the powerful features of post-processing step, and verified its
applicability for the two areas which are located in the North and South of China respectively. With an
overall accuracy of 90.1% and 74.39% for two test areas, respectively, we could demonstrate the high
potential of the model for forest mapping at tree species level. The results also showed that it could
get a remarkable result for some plantation tree species, such as Chinese pine and Larix principis in
the northern test area, and Eucalyptus in the southern test area. The embedding of the CRFasRNN
post-processing module could effectively optimize the classification result. Especially for the tree
species with small distribution range, the improvement effect is obvious. Through comprehensive
comparison of classification accuracy and processing time, embedding CRFasRNN layer in deep
learning model not only automatically completed post-processing operation in an end-to-end manner,
but also improved classification effect and reduced processing time.

Given the importance of mapping forest resources, the proposed dual-FCN8s-CRFasRNN model
provided a feasible optimized idea for mapping the forest type at tree species levels for HSR image,
and will substantially contribute to the improvement for the management and sustainable development
of forest resources in the country.

In the future, we will further exploit the potentials of deep learning based on multi-temporal data,
as well as investigating the means to build the model with limited number of training samples for the
forest type classification at tree species level of high-spatial-resolution images.
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