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Abstract: Remote sensing image scene classification, which consists of labeling remote sensing images
with a set of categories based on their content, has received remarkable attention for many applications
such as land use mapping. Standard approaches are based on the multi-layer representation of
first-order convolutional neural network (CNN) features. However, second-order CNNs have
recently been shown to outperform traditional first-order CNNs for many computer vision tasks.
Hence, the aim of this paper is to show the use of second-order statistics of CNN features for remote
sensing scene classification. This takes the form of covariance matrices computed locally or globally
on the output of a CNN. However, these datapoints do not lie in an Euclidean space but a Riemannian
manifold. To manipulate them, Euclidean tools are not adapted. Other metrics should be considered
such as the log-Euclidean one. This consists of projecting the set of covariance matrices on a tangent
space defined at a reference point. In this tangent plane, which is a vector space, conventional
machine learning algorithms can be considered, such as the Fisher vector encoding or SVM classifier.
Based on this log-Euclidean framework, we propose a novel transfer learning approach composed
of two hybrid architectures based on covariance pooling of CNN features, the first is local and the
second is global. They rely on the extraction of features from models pre-trained on the ImageNet
dataset processed with some machine learning algorithms. The first hybrid architecture consists of
an ensemble learning approach with the log-Euclidean Fisher vector encoding of region covariance
matrices computed locally on the first layers of a CNN. The second one concerns an ensemble learning
approach based on the covariance pooling of CNN features extracted globally from the deepest layers.
These two ensemble learning approaches are then combined together based on the strategy of the
most diverse ensembles. For validation and comparison purposes, the proposed approach is tested
on various challenging remote sensing datasets. Experimental results exhibit a significant gain of
approximately 2% in overall accuracy for the proposed approach compared to a similar state-of-the-art
method based on covariance pooling of CNN features (on the UC Merced dataset).

Keywords: transfer learning; covariance matrices; log-euclidean metric; ensemble learning;
remote sensing scene classification; fisher vector

1. Introduction

The aim of a supervised classification algorithm consists of labeling an image with the
corresponding class according to its content. Conventional approaches are based on encoding
handcrafted features with, for example, the bag of words model (BoW) [1], the vector of locally

Remote Sens. 2020, 12, 3292; doi:10.3390/rs12203292 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-9553-4034
https://orcid.org/0000-0001-9036-3988
https://orcid.org/0000-0002-5586-6536
https://orcid.org/0000-0002-7559-0602
https://orcid.org/0000-0002-3097-8283
http://dx.doi.org/10.3390/rs12203292
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 3292 2 of 19

aggregated descriptors (VLAD) [2,3] or the Fisher vectors (FV) [4–6]. These latter strategies have proved
successful results in a wide range of applications such as image classification [4,7,8], text retrieval [9],
action and face recognition [10], etc.

Recently, the emergence of deep learning algorithms has been demonstrated to outperform
benchmark machine learning methods in many situations. In fact, neural networks are constructed
to model the human brain, where each layer is responsible for automatically extracting and
learning specific features from the input images [11]. One of the most popular neural networks
is the convolutional neural network (CNN), which has become a standard for image classification
problems [12,13]. CNN is built from various hidden layers performing different kinds of
transformation, such as convolutions, pooling, and activation functions.

In recent years, in order to benefit from both CNN architectures and encoding methods, many
authors have focus on proposing hybrid architectures that consist of combining deep neural network
architecture with FV/VLAD descriptors. For example, Perronnin et al., have introduced, in [14] a
network of fully connected layers trained on the FV descriptors. Inspired by the multi-layer structure
of neural networks, Simonyan et al., proposed, in [15], the Fisher network, which is composed of
several stacked FV layers. In the same spirit, the NetVLAD layer has been proposed in [16] to mimick a
VLAD layer. To benefit of multi-layer representation, other strategies include the FV or VLAD encoding
of CNN features from different layers of the network [17–20]. Nevertheless, all these strategies do
not exploit second-order statistics, i.e., dependencies between features, which have been shown to be
important in the human visual recognition process [21].

To this aim, some authors have dedicated their works to exploiting the information behind
second-order statistics using covariance matrix features. These have proved to be highly effective
in diverse classification tasks, including person re-identification, texture recognition, material
categorization or EEG classification in brain–computer interfaces to cite a few of them [10,22–24].
Several works have been proposed to extend the encoding formalism to covariance matrix descriptors.
Therefore, since covariance matrices are symmetric positive definite (SPD) matrices, conventional
Euclidean tools are not adapted. To deal with covariance matrices geometry, two Riemannian
metrics are usually considered: the log-Euclidean and the affine-invariant Riemannian metrics.
Since then, some authors have proposed to extend the usual coding methods to these two metrics,
yielding to the proposition of the following approaches: the log-Euclidean bag of words (LE
BoW) [25,26], the bag of Riemannian words (BoRW) [27], the log-Euclidean vector of locally aggregated
descriptors (LE VLAD) [10] and the intrinsic Riemannian vector of locally aggregated descriptors
(RVLAD) [10]. Recently, FV descriptors extended to SPD matrices have been proposed. This has
involved the log-Euclidean Fisher vectors (LE FV) [28] and the Riemannian Fisher vectors (RFV) [29–31].
When analyzing those two metrics, log-Euclidean and affine-invariant Riemannian metrics offer several
invariance properties and can obtain comparable results for a large variety of applications [31,32]
compared to the Euclidean metric. However, the log-Euclidean approach is much more straightforward.
To model covariance matrices that lie in a Riemannian manifold, it merely consists in projecting them
in a tangent space of a reference point classically chosen equal to the identity matrix.

On the other hand, traditional CNN models capture only first-order statistics. To benefit from
both second-order statistics and deep learning architectures, different second-order convolutional
neural networks architectures have recently emerged [33–40] for many applications including
fine-grained classification. One first attempt was the pooled covariance matrix from CNN outputs [33].
Later, He et al. presented in [35] a multi-layer version: the multi-layer stacked covariance
pooling (MSCP). One other way to exploit second-order statistics in a deep neural network is the
Riemannian SPD matrix network (SPDNet) [36]. The idea behind this network is to mimick the
classical CNN fully connected convolution-like layers and rectified linear units (ReLU)-like layers
to data, which do not lie in an Euclidean space. For that, the bilinear mapping (BiMap) layers and
eigenvalue rectification (ReEig) layers were proposed. Inspired by this work, Yu et al. have introduced
in [37] a second-order CNN (SO-CNN), which is trained in an end-to-end manner. However, for these
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models, second-order representation is introduced only for the deepest layers. To overcome this issue,
Gao et al. [39] have proposed the global second-order pooling (GSoP) convolutional networks which
permit to introduce higher-order representation in earlier layers. Nevertheless, training such a deep
CNN model from scratch requires a huge labeled training set. Recently, the remote sensing community
has started to build large scale datasets that can serve as pre-training, such as the BigEarthNet
composed by Sentinel-2 image patches [41]. However, for many practical applications, most of the
remote sensing datasets are quite small.

Many authors have proposed several ideas to overcome this issue such as using a new kind
of neural network called capsule network [42] which has the ability to work with a small amount
of training data. Compared to convolutional neural network, capsule network allows to address
the “Picasso problem" in image recognition, i.e., images that show the right components but have
not the right spatial relationships. For example, for a face image, the location of the eye and ear are
swapped. For our application of remote sensing scene classification, this is not critical. For instance,
in an harbour scene, the location of the scene elements (boats, pontoon, . . . ) in the image is not
so important. The key point is that the network is able to recognize them. Another effective solution
for limited training set consists of transfer learning. In that case, CNN models are considered as
feature extractors. Classically, deep CNN models pre-trained on the ImageNet dataset are used.
Then, features are extracted from a single or multiple layers and processed with some machine learning
algorithms. This technique has been proved to be efficient and permits outperforming traditional
handcrafted feature-based methods [13]. In a recent paper, Pires de Lima et al. have shown that transfer
learning strategies based on feature extraction are among the best approaches for remote sensing scene
classification, especially for the dataset with a low number of training samples [43]. In this context,
in order to the benefit of pre-trained deep neural networks and second-order representations, this
work aims at proposing a novel ensemble learning approach based on covariance pooling of CNN
features for remote sensing scene classification. It consists of a combination of two hybrid architectures
exploiting second-order features. The former is based on the log-Euclidean Fisher vector encoding of
region covariance matrices computed locally on the first layers of a CNN [28] and its extension to the
use of an ensemble learning strategy to combine multiple classifiers. The latter concerns an ensemble
learning approach based on the covariance pooling of CNN features extracted from deeper layers [44].

In summary, second-order representation (i.e., covariance pooling) has been shown to be useful for
many signal and image processing tasks. Recently, in the remote sensing community, some works have
shown interest in these second-order features for various remote sensing applications (e.g., remote
sensing scene classification, texture recognition) [35,40,45,46]. Motivated by these works and the
success of deep neural networks, we have recently proposed two hybrid transfer learning approaches
based on covariance pooling of CNN features [28,44]. These two methods use either local or global
second-order representation of CNN features. The main motivation of this journal paper is to unify
these works by presenting a transfer learning approach which benefit of these approaches. The main
contributions of the paper can be summarized as follows:

• We propose a transfer learning approach, which efficiently combine local and global second-order
representation of CNN features. For the local one, an ensemble learning extension of our
log-Euclidean Fisher vector encoding of region covariance matrices [28] is introduced. For the
global one, our covariance pooling of deepest CNN features is considered [44].

• An ensemble learning approach based on the most diverse ensembles is proposed to combine
these decisions and enhance the classification performance.

• This transfer learning is validated on different labeled remote sensing datasets to illustrate
its efficiency. Three are publicly available, namely UC Merced Land Use, SIRI-WHU and AID
datasets. Two others are internal datasets, oyster racks and maritime pine forest datasets, which are
manually labeled by thematic experts.
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The paper is structured as follows. Since the second-order representation of CNN features is at the
core of the paper, Section 2 gives the mathematical background for the log-Euclidean representation
of a covariance matrix. Next, Section 3 introduces the proposed ensemble learning approach based
on the log-Euclidean Fisher vector encoding of region covariance matrices. Then, Section 4 recalls
our ensemble learning approach based on covariance pooling (ELCP) of CNN features. In order to
combine these two methods, Section 5 presents the fusion scheme based on the most diverse ensembles.
Next, Section 6 summarizes a series of experiments performed on remote sensing scene classification.
And finally, Section 7 provides the main conclusions and perspectives of this work.

2. Log-Euclidean Framework for Second-Order Statistics of CNN Features

In the literature, second-order statistics have been proved to play an important role in the
human visual recognition process [21]. In practice, the covariance matrix of handcrafted descriptors,
textural or deep convolutional features is computed and integrated into the classification algorithm.
Since covariance matrices are symmetric positive definite (SPD) matrices, they have a specific geometry,
and standard Euclidean tools are not adapted. The present section aims at explaining the geometry of
SPD matrices and classical metrics used to manipulate these data. In fact, these datapoints lie inside
the cone of positive definite matrices that is a Riemannian manifold.

Therefore, applying standard Euclidean operations on covariance matrices, for instance,
computing the Euclidean distance between two covariance matrices, may lead to undesirable results
such as the swelling effect as observed in [47]. Many authors have raised the need of intrinsic tools
to analyze SPD matrices [32,48]. As pointed out by Pennec et al., the log-Euclidean and the affine
invariant Riemannian metrics enjoy desirable invariance properties compared to the Euclidean metric.
The affine invariant Riemannian distance has the property of being invariant by affine transformations.

Even if the log-Euclidean metric does not yield full affine invariance, it is invariant by similarity
(orthogonal transformation and scaling). The computations using this metric could be invariant
with respect to a change of coordinates obtained by a similarity. From a practical point of view,
Arsigny et al., have shown in [32] that affine invariant and log-Euclidean frameworks perform better
than the Euclidean one for the interpolation and regularization of their synthetic and clinical 3D
diffusion tensor magnetic resonance imaging (DT-MRI) data. This has the advantage of more accurately
capturing the underlying scatter of the data points (that are covariance matrices) than is possible with
methods that treat data points as elements in a vector space. For many applications, the log-Euclidean
framework has shown competitive results compared to the affine invariant Riemannian one [31,32].
This log-Euclidean framework is considered in this paper for its efficiency and ease of use. The basic
principle is the following. Each covariance matrix Mn is mapped on the tangent space, as illustrated
in Figure 1 that locally flattens the manifold via the tangent space approximation. This consists of
projecting covariance matrices onto a common tangent space of this manifold at the reference point
Mre f via the log map operator [26,32,45] defined as:

m
TMre f
n = LogMre f

Mn (1)

= Mre f log
(

M−1
re f Mn

)
. (2)

m
TMre f
n means that covariance matrix Mn is projected on the tangent space at the reference point Mre f .

Then, to get the vector representation, a vectorization operation Vec() is performed such that:

Vec(X) =
[

X11,
√

2X12, . . . ,
√

2X1d, X22,
√

2X23, . . . , Xdd

]
, (3)

with Xij the elements of X at row i and column j. Those two operations yield to the
definition of the log-Euclidean vector representation of Mn computed at the reference point Mre f ,

denoted m
TMre f
n ∈ R

d(d+1)
2 where :
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m
TMre f
n = Vec

(
LogMre f

(Mn)
)

. (4)

These covariance matrices are projected on the tangent space at Mre f ; they lie in a vector space
where conventional image processing and machine learning methods can be used. Within this
framework, the tangent space is computed at a reference point Mre f as shown in (1). Different choices
can be made for this reference point, such as the identity matrix, the center of mass or the median.
The use of the identity matrix Id for this latter is undoubtedly the simplest and the most usual way to
map covariance matrices on the tangent space. This choice will be made for the following. In that case,
the log map operator in Equation (1) vanishes to:

LogId
(Mn) = log(Mn). (5)

This consists of computing the ordinary matrix logarithm. Let A = VDVT be the eigenvalue
decomposition of an SPD matrix, the logarithm is defined as: log(A) = V log(D)VT . Since D is the
diagonal matrix of eigenvalues, log(D) is also a diagonal matrix whose diagonal elements are the
logarithm of the eigenvalues. In the next two sections, this log-Euclidean framework is employed for
two hybrid architectures where the covariance matrix is computed for CNN features.

Figure 1. Manifold of symmetric positive definite (SPD) matrices and projection to the tangent space
at Mre f .

3. Local Covariance Pooling: Ensemble Log-Euclidean Fisher Vector Architecture

A scene image is composed by a set of visual elements. For example, an harbour scene is formed
by many objects such as boat, water, pontoon, . . . In this context, coding based methods such as FV or
VLAD descriptors have reached the state-of-the-art at the beginning of the 2000’s [2–4]. These methods
relies on the creation of a codebook where codewords represent meaningful object parts of the scene.
More recently, deep learning models (and CNN in particular) have shown to outperform these coding
methods by a significant margin. For instance, on the ImageNet large scale visual recognition challenge,
deep learning based methods have won since 2012 [13]. In order to benefit from both strategies, in the
recent literature on scene classification, many authors have introduced hybrid architectures that
combine CNN with some coding methods. For example, Perronnin et al. [14] have proposed a network
of fully connected layers trained on the FV descriptors. Simonyan et al. introduced in [15] the Fisher
network, which is composed of several stacked FV layers. Later, Arandjelovic et al. [16] proposed
the NetVLAD layer, which mimicks the VLAD layer. Building on the success of those latter hybrid
architectures, more attention is given to a particular approach introduced in [20]. In that paper,
Li et al. have proposed a hybrid structure, which consists of encoding each output of the convolutional
layers of a pre-trained neural network with FV. This technique has demonstrated competitive results
for remote sensing scene classification. To capture various scale phenomenons when applying the
FV encoding, a Gaussian pyramid is considered. This permits generating multiscale images by
using a Gaussian smoothing and sub-sampling at different scales as detailed in [20]. Classification
results have demonstrated the interest of using multiscale images compared to a single input image.
Therefore, a pyramid of three scale levels is retained in the following. Those multiscale images are fed
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into the CNN model, allowing the extraction of convolutional features which are then concatenated
before being encoded with FV. Note that CNN models are used only to extract deep features without
any retraining from scratch or fine-tuning. In fact, once the multiscale features are extracted from
each convolutional layer, an individual codebook is generated. In this approach, the dimension
K of the codebook is the same for all the layers. The CNN features are then encoded with the
improved FV [5]. Next, those FVs are fused to represent the mid-level feature vectors of a scene
image. Therefore, this approach does not consider second-order features, which have proved to be
efficient in many classification problems and have shown to outperform first-order features for many
image processing applications, including material recognition and person re-identification. To this
aim, we have proposed in [28] a novel hybrid architecture named Hybrid LE FV, which integrates
second-order features in the classification algorithm, as illustrated in Figure 2. This consists of the
log-Euclidean Fisher Vector (LE FV) encoding of the covariance matrices of CNN features computed
locally on layers output. The next Section 3.1 presents in details the principle of this Hybrid LE FV
approach starting from the extraction of region covariance matrices to the FV encoding with the
learned codebook [28]. Then, aiming at improving the classification performance, a proposition of an
ensemble learning version of Hybrid LE FV strategy is detailed in Section 3.2.

Figure 2. Principle of the proposed log-Euclidean Fisher vector encoding of region covariance matrices
(Hybrid LE FV).

3.1. Hybrid Log-Euclidean Fisher Vector (Hybrid LE FV)

3.1.1. Region Covariance Matrices

The first step is to extract the region covariance matrices computed on a sliding window on the
feature map of a CNN. Hence, each image is represented by a setM = {Mn}n=1:N of covariance
matrices Mn ∈ Pd. As the size of the output CNN layer depends on layer depth, only the first and
second layers of a CNN are considered for computing local covariance matrices. Indeed, for the
deepest layers, the feature maps are of small spatial dimension which does not allow the extraction
of a large set of covariance matrices. For this purpose, a particular attention is given to the choice
of the CNN model. Here, the employed CNN model is a very deep convolutional network named
vgg-vd-16 [49]. It is composed of 16 weight layers and is characterized by using a simple 3 × 3
convolutional layer stack with a stride fixed to 1 pixel and a spatial padding of 1 pixel. Therefore, the
size of the output feature map is preserved through the first two layers that permit the extraction of a
sufficient set of region covariance matrices. Then, according to the log-Euclidean framework detailed
in Section 2, these region covariance matrices are encoded with the LE FV. For that, a codebook is first
learned by considering a Gaussian mixture model on the manifold of SPD matrices.

3.1.2. Gaussian Mixture Model and Codebook Creation

Let’s consider the following GMM model :

p(M|ω, M̄, Σ) =
K

∑
k=1

ωk p(M|M̄k, Σk), (6)
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where p(M|M̄k, Σk) is a multivariate Gaussian distribution defined on the tangent space of the identity
matrix. Its probability density function is given by:

p(M|M̄k, Σk) =
exp

{
− 1

2 (Vec (log(M))−Vec (log(M̄k)))
T Σ−1

k (Vec (log(M))−Vec (log(M̄k)))
}

(2π)
d(d+1)

4 |Σk|1/2
. (7)

ωk ∈ [0, 1], M̄k ∈ Pd and Σk ∈ P d(d+1)
2

are respectively the weight, mean and covariance matrices for

the kth component of the GMM model. In addition, the classical assumption of diagonal covariance

matrices Σk is made, i.e., σ2
k = diag(Σk) ∈ R

d(d+1)
2 is the variance vector [4].

Moreover, Equation (7) can be rewritten as:

p(M|M̄k, Σk) = p(mTId |µk, Σk) =
exp{− 1

2 (m
TId − µk)

TΣ−1
k (mTId − µk)}

(2π)
d(d+1)

4 |Σk|1/2
, (8)

where µk = Vec (log(M̄k)) ∈ R
d(d+1)

2 is the log-Euclidean mean vector for the kth component of
the GMM model, and mTId is the LE vector representation of M given by Equations (4) and (5).
Since covariance matrices are projected into the tangent space and represented by their corresponding
LE vectors, all the algorithms developed on a vector space can be used. In particular, the EM algorithm
for parameter estimation of a GMM model is used to estimate the weights, means, and dispersion
parameters. The set of these estimated parameters represents the codebook that will further be used to
encode the set of region covariance matrices extracted from each image.

3.1.3. Log-Euclidean Fisher Vector Encoding

Considering X = (m
TId
1 , m

TId
2 , . . . , m

TId
N ) be a set of d(d + 1)/2-dimensional log-Euclidean

vectors extracted locally from the first convolutional layers of an image. The LE FV encoding consists
of projecting these local features onto the codebook defined in the previous subsection. The LE FV
descriptor assigned to X is obtained by computing the gradient of the log-likelihood with respect to
GMM model parameters, scaled by the inverse square root of the Fisher Information Matrix (FIM)
Fλ [4]:

GX
λ = F−

1
2

λ ∇λ log p(X |λ). (9)

Here, λ represents each of the distribution parameters (ωk, µk and σk). In practice, the derivatives
with respect to the mean µk(j) and standard deviation σk(j) have been found to be the most useful [4].
Hence, the following two FVs are obtained after deriving with respect to these two elements

GX
µk(j) =

1√
ωk

N

∑
n=1

γk(m
TId
n )

(
m
TId
n (j)− µk(j)

σk(j)

)
, (10)

GX
σk(j) =

1√
2ωk

N

∑
n=1

γk(m
TId
n )

([m
TId
n (j)− µk(j)

]2

(σk(j))2 − 1

)
, (11)

where µk(j) (resp. σk(j)) is the jth element of vector µk (resp. σk) and γk(m
TId
n ) is the occupancy

probability of m
TId
n to the kth Gaussian component of the GMM, also named the posterior probability,

and is defined as:

γk(m
TId
n ) =

ωk pk(m
TId
n |µk, Σk)

∑K
k=1 ωk pk(m

TId
n |µk, Σk)

. (12)
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Once FV descriptors are obtained, a post-processing step is conventionally used to enhance the
classification accuracy [5,8]. This consists of a power and an `2 normalization. Furthermore, to avoid
the curse of the dimensionality phenomenon when the dimensionality of the FV descriptor is high,
a dimension reduction step can be used. In the following, the Kernel Discriminant Analysis (KDA) is
considered [50]. Finally, a classification with a linear SVM is performed to make the decision for each
test image depending on the information contained in the FV vector representation.

3.1.4. Sensitivity Analysis

As explained in the previous subsection, two parameters have to be tuned for the proposed
Hybrid LE FV method, namely the number of components K in the GMM model and the dimension d
of the covariance matrices. To evaluate the influence of each parameter on classification accuracy, some
experiments are carried out on the UC Merced Land Use Land Cover dataset [51]. This dataset
is composed of 21 classes where each class contains 100 remote sensing images of dimension
256 × 256 pixels. Figure 3 shows some examples of the UC Merced dataset image classes. In order to
prove the efficiency of the proposed approaches in challenging conditions, only a small set of p = 10%
images is retrained for training for all experiments and the remaining images are used for testing.
Classification results are evaluated in terms of overall accuracy averaged on five runs.

Airplane Forest Tennis court Parking

Figure 3. Samples from the UC Merced dataset.

Figure 4 draws the evolution of the classification accuracy of the proposed Hybrid LE FV
approach for the first convolutional layer as a function of the dimension d of the covariance matrix.
Here, the number of GMM components is fixed equal to 30. The dimension d is the number of
selected principal components. If d is too small, a low number of principal components is retained.
All the variability is not well explained, which leads to low classification accuracy. When d increases,
more variability is explained, and the classification performance also increases. But after a certain value
(d = 5 in our experiments), the variance gain is not so important and the classification performance
remains quite stable. Hence, it is recommended to consider a covariance matrix size greater than a
value of d = 5.

To evaluate the sensitivity of the proposed approach to number of GMM components, Table 1
shows the classification accuracy using three values of K in the GMM model. As observed, the approach
isn’t sensitive to the codebook dimension.

Table 1. Classification accuracy of Hybrid LE FV using three codebook dimensions K.

Method K = 10 K = 30 K = 60

Hybrid LE FV (conv 1) 60.5 ± 1.0% 61.2 ± 0.8% 61.2 ± 0.8%
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Figure 4. Influence of dimension d of covariance matrices for Hybrid LE FV (conv 1) on the UC
Merced dataset.

3.2. Ensemble Hybrid Log-Euclidean Fisher Vector (Ens. Hybrid LE FV)

In machine learning, ensemble learning strategies have become more and more popular [52,53].
They rely on the combination of multiple weak classifiers to form a stronger one, hence allowing
improvements to the classification performance. Inspired by this idea, we introduce an ensemble
learning approach for the hybrid log-Euclidean Fisher vector presented in the previous subsection.
The workflow of this method named “Ens. Hybrid LE FV”, is shown in Figure 5. As observed, for
each convolutional layer (conv 1 and/or conv 2), N′ subsets are considered. For each subset, d feature
maps are randomly selected with replacement. Then, the hybrid log-Euclidean Fisher vector presented
before is applied to obtain a decision for this subset. In the end, a majority vote over these decisions is
considered to obtain the final prediction.

Figure 5. Ensemble Hybrid LE FV workflow.

A first experiment is conducted in order to evaluate the sensitivity of the proposed approach.
This consists of evaluating the influence of the number of subsets N′. Table 2 shows the
classification accuracy of the “Ens. Hybrid LE FV” strategy regarding the first convolutional layer
of Vgg-vd-16 model. Five values of N′ are experimented (5, 7, 9, 11, and 13) for p = 10% of training
images of the UC Merced dataset.
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Table 2. Classification accuracy of ”Ens. Hybrid LE FV" using different number of subsets N′.

Method N′ = 5 N′ = 7 N′ = 9 N′ = 11 N′ = 13

Ens. Hybrid LE FV 63.7 ± 0.6% 64.0 ± 0.3% 64.0 ± 0.3% 63.9 ± 0.1% 64.0 ± 0.5%

One can observe that results remain quite stable of the considered subsets N′. For further
experiments, the number of subsets N′ will be fixed to 7. Table 3 highlights the classification results
obtained on the UC Merced dataset for the first (conv 1) and second (conv 2) convolutional layers of
vgg-vd-16 network. The proposed ensemble learning approach, “Ens. Hybrid LE FV”, is compared to
two closely related state-of-the-art strategies. The first one, named “Hybrid FV”, consists of encoding
the output of the convolutional layers with FV [20]. Note that this approach considers only first-order
statistics. The second one, named “Hybrid LE FV” is the one presented in Section 3.1. It exploits
second-order statistics but not in an ensemble learning approach [28].

Table 3. Classification results on the UC Merced dataset for the first and second convolutional layers of
the vgg-vd-16 network (p = 10%).

Method Conv 1 Conv 2

Hybrid FV [20] 41.4 ± 0.2% 43.7 ± 1.1%

Hybrid LE FV [28] 61.2 ± 0.8% 65.1 ± 1.6%

Ens. Hybrid LE FV 62.4 ± 0.9% 68.1 ± 1.7%

As observed in Table 3, the benefit of exploiting second-order statistics is clearly demonstrated
for the first and second CNN convolutional layers. A significant gain of 20% to 25% is reported for
the proposed “Hybrid LE FV” and “Ens. Hybrid LE FV” methods compared to the conventional
“Hybrid FV” approach. In addition, for these first two layers, a significant gain is observed when
exploiting an ensemble learning strategy compared to the use of a single classifier. In this approach,
only covariance matrices computed on the first layers of a CNN have been encoded with the LE
FV. Indeed, as the deepest convolutional layers of the vgg-vd-16 network are of relatively small
spatial dimensions, it is irrelevant to compute a sufficient number of region covariance matrices.
Nevertheless, the deepest layers may provide useful features for the classification. To alleviate this
issue, instead of considering a local approach, the covariance matrix will be computed globally for the
deepest feature maps. For that, Section 4 introduces our ensemble learning approach based on a global
covariance pooling of CNN features [44].

4. Global Covariance Pooling: Ensemble Learning Based on Covariance Pooling of CNN
Features (ELCP)

4.1. Main Motivations and Global Principle

Willing to exploit second-order statistics on deep convolutional layers of a CNN, He et al., have
proposed in [35] a strategy named multilayer stacked covariance pooling (MSCP). The originality
lies in the replacement of the usual first-order pooling (i.e., average or max pooling) in a CNN by a
second-order pooling (i.e., covariance pooling). Note also that, in contrast with the ensemble hybrid
LE FV method introduced in Section 3.2, where each layer is presented by a set of covariance matrices
computed locally on the feature maps, a single covariance matrix is computed for MSCP, which can
significantly speed up the computation time. MSCP has successfully been validated for remote sensing
scene classification, but it suffers from two main drawbacks. First, it does not exploit an ensemble
learning approach. A single decision is obtained at the end. Second, and probably the main drawback,
is that the averaging operator used before the covariance pooling may lead to a not well-conditioned
covariance matrix. There is no practical reason that the average descriptor obtained on one subset
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should be different from the one calculated on another subset. To overcome these problems, we have
introduced in [44] a novel hybrid approach named ELCP, which consists of an ensemble learning
approach based on covariance pooling of CNN features. The global principle is shown in Figure 6.

Figure 6. Ensemble learning approach based on covariance pooling of CNN features (ELCP) workflow.

First, the features M1, M2 and M3 produced by three deep convolutional layers (conv3−3, conv4−3

and conv5−3) are considered. Commonly, CNN layers have different spatial dimensions. For example,
for the vgg-vd-16 model, dimensions are M1 ∈ R56×56×256, M2 ∈ R28×28×512 and M3 ∈ R14×14×512.
A downsampling to the smallest spatial dimension is performed using a bilinear interpolation to
stack the feature maps of these latter layers. Furthermore, for each image, an ensemble learning
approach is considered where the stacked feature maps generated by the convolutional layers are split
into N subsets of k features each. This splitting is achieved by random sampling with replacement.
Then, for each subset n, a covariance pooling strategy is adopted. It consists in computing the k× k
covariance matrix Cn. The log-Euclidean framework presented in Section 2 is then adopted to represent

Cn in the tangent plane of the identity matrix by c
TId
n according to Equation (4). Then, for each subset,

these log-Euclidean vectors are fed to a base linear SVM classifier allowing them to obtain a decision.
The final prediction is obtained as the most represented decision among the N subsets.

For more details on the sensitivity of ELCP to its input parameters, the interested reader is referred
to [44]. Since the classification results for this method are stable and not so sensitive to parameter
tuning, the number of subsets N and the number of feature maps k per subset retained in the following
will, respectively be equal to 20 and 170 as suggested on [44].

4.2. Experimental Results

This subsection presents some comparison of the proposed ELCP approach with some standard
and recent state-of-the-art approaches on the UC Merced dataset where 10% (p = 10%) of the samples
are used for training. A first approach is the FV encoding of handcrafted SIFT features (FV SIFT) [5].
The next approaches are transfer learning methods based on the vgg-vd 16 pre-trained CNN model on
the ImageNet dataset. A fine-tuning of this model is first considered (CNN (vgg-vd-16 fine-tuned)).
For that, the convolutional layers are frozen, and a fully connected layer is added and trained on the
UC Merced dataset. The second transfer learning approach (vgg-vd-16 feat. extraction + SVM) consists
in considering the CNN model as a feature extractor. CNN features are then fed to an SVM classifier.
Finally, the two second-order based methods, namely MSCP and the proposed ELCP approaches,
are compared. Table 4 summarizes the classification results obtained for these five methods.
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Table 4. Classification performance of the proposed multi-layer architecture compared to the
state-of-the-art on the UC Merced dataset (p = 10%).

Method OA (Mean± sd)

FV (SIFT) [5] 62.3 ± 1.1%

CNN (vgg-vd-16 fine-tuned) 62.7 ± 1.8%

CNN (vgg-vd-16 feat. extraction + SVM) [54] 82.7 ± 0.6%

MSCP (vgg-vd-16) [35] 86.3 ± 1.0%

ELCP (vgg-vd-16) 88.4 ± 1.4%

As observed in Table 4, several conclusions can be drawn. First, deep learning-based methods
outperform traditional handcrafted based ones. Second, since a low number of samples is used
for training in this experiment, a fine-tuning strategy does not provide the best results. It is
better to consider a pre-trained CNN model as the feature extractor [43,55]. A gain of more than
20% is observed between these strategies. Third, among the transfer learning strategies based on
feature extraction, methods exploiting second-order statistics of CNN features (MSCP and ELCP)
outperform the first-order one. Fourth, by exploiting an ensemble strategy, the proposed ELCP
significantly outperform MSCP. A gain of about 2% is observed.

5. Decision Combination

5.1. Comparison Between Ens. Hybrid LE FV and ELCP Methods

Two transfer learning approaches have been presented, namely Ens. Hybrid LE FV in Section 3
and ELCP in Section 4. There are some similarities between these two methods. Both are based
on covariance pooling of CNN features, where the log-Euclidean framework presented in Section 2
is adopted. They also exploit an ensemble learning approach. The main difference is that second-order
statistics of CNN feature maps are computed locally on the first layers for Ens. Hybrid LE FV, while they
are computed globally on deeper layers for ELCP. Unsurprisingly, as observed in Tables 3 and 4,
ELCP has better classification performance than Ens. Hybrid LE FV since it exploits deeper CNN
features. A gain of 26% and 20% are, respectively, observed for ELCP compared to the first and second
layers of Ens. Hybrid LE FV. However, by looking closely at the classification results, it is possible
to find some images that are well classified only by Ens. Hybrid LE FV, whereas ELCP fails at this
task. Figure 7 shows some images from the UC Merced dataset with the predicted class by these
methods. As observed, the first two ones are correctly classified only by Ens. Hybrid LE FV, while for
the last two ones, only ELCP succeeds. By taking a closer look at these results, it can be observed that,
for the first two images which belong to the baseball diamond class, ELCP seems to focus on the road
and building located at the top of the images. Since it exploits deeper layers of a CNN, ELCP learns
high-level features that are not so useful for these particular images. Low-level features are sufficient
for these images. On the other hand, the third and fourth images of Figure 7, are well classified only
by ELCP; since the scene is more complex, high-level features are helpful. It therefore seems natural to
combine Ens. Hybrid LE FV and ELCP in order to benefit from both low-level and high-level features.
Based on the principle of the most diverse ensembles, the next subsection presents a simple fusion
scheme between these two approaches.
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Ground truth Baseball diamond Baseball diamond Airplane River
Ens. Hybrid LE FV (conv 1) Baseball diamond Baseball diamond Runway Forest
Ens. Hybrid LE FV (conv 2) Baseball diamond Baseball diamond Runway Forest

ELCP Intersection Building Airplane River

Figure 7. Samples from the UC Merced dataset. Below, ground truth and class prediction by Ens.
Hybrid LE FV and ELCP approaches.

5.2. Fusion Scheme

As previously mentioned, Ens. Hybrid LE FV and ELCP methods can be complementary since
they exploit features extracted from different layers. To benefit from both strategies, many multiple
classifier systems have been proposed in the literature, such as dynamic selection techniques [56].
However, the goal here is not to provide the best way to combine Ens. Hybrid LE FV and ELCP
methods but rather to show the potential of their fusion. For that, we will focus on two standard
and straightforward strategies. The first one, denoted as Fusion Ens. Hybrid LE FV-ELCP (MV), is
simply a majority vote on the decision obtained on the output of each subset of Ens. Hybrid LE FV
and ELCP. The second one, denoted as Fusion Ens. Hybrid LE FV-ELCP (MDE+MV), selects the most
diverse ensembles (MDE) from these methods according to the disagreement diversity measure and
greedy optimization [53]. In the end, a majority vote on these selected ensembles is performed. Table 5
summarizes the main results obtained on the UC Merced dataset for the original Ens. Hybrid LE FV
and ELCP approaches and their fused versions. As observed, since the classification performances
are significantly better for ELCP than Ens. Hybrid LE FV, a simple majority vote is not adapted.
The accuracy of this fusion scheme (MV) is profoundly affected by the Ens. Hybrid LE FV scheme.
However, by selecting the most diverse ensembles (MDE+MV), a slight gain is observed compared to
ELCP, illustrating its potential.

Table 5. Classification accuracy on UC Merced dataset obtained using Ens. Hybrid LE FV, ELCP and
their fusion version Ens. LE FV - ELCP methods (p = 10%).

Database Method OA (Mean± sd)

Ens. Hybrid LE FV (conv1) 62.4 ± 0.9%

UC Merced Ens. Hybrid LE FV (conv2) 68.1 ± 1.7%

p = 10% ELCP 88.4 ± 1.4%

Fusion Ens. Hybrid LE FV-ELCP (MV) 88.2 ± 1.2%

Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) 88.7 ± 1.1%

6. Experiments on Other Datasets

In this section, experiments on other remote sensing scene classification datasets are conducted to
evaluate the effectiveness of the proposed approach. For that, the SIRI-WHU Google dataset [57],
the AID dataset and two real texture datasets, respectively, for maritime pine forest and on oyster
fields [58,59] were tested. In order to prove the efficiency of the proposed approaches in challenging
conditions, only 10% of images were considered for training.
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SIRI-WHU:

This is a 12-class Google image dataset, where each class contains 200 images of 200 × 200 pixels,
with a 2-m spatial resolution. This dataset was acquired from Google Earth and covers urban areas
in China. Figure 8 shows some image examples of the dataset.

Agricultural Industrial Park Overpass

Figure 8. Samples from the Google image dataset of SIRI-WHU.

Maritime pine forest:

This dataset comprises four classes of panchromatic Pléiades satellite images with a spatial
resolution of 50 cm, which represent a monitoring of growing maritime pine tree stands. Figure 9
illustrates one image from each age class.

Clear-cut 1–9 years 10–19 years >19 years

Figure 9. Samples from the maritime pine forest dataset.

Oyster racks:

This five-class dataset is also formed from panchromatic Pléiades satellite high-resolution images.
It is comprised, in particular, of images representing cultivated oyster racks and abandoned fields.
Figure 10 shows one image of each class of the oyster dataset.

Foreshore Oyster racks Disused fields Sand Salt-meadow

Figure 10. Samples from the oyster racks dataset.

AID:

This dataset contains 10,000 aerial images of dimension 600× 600 pixels partitioned into 30 classes,
with a 2-m spatial resolution. Figure 11 illustrates some dataset images.



Remote Sens. 2020, 12, 3292 15 of 19

Center Forest Stadium Port

Figure 11. Samples from the AID dataset.

Table 6 below summarizes the main characteristics of the considered datasets.

Table 6. Remote sensing scene dataset properties

Dataset Resolution (m) Classes Images Image Size Image Type

SIRI-WHU 2 12 2400 200 × 200 Aerial

Maritime pine forests 0.5 4 471 256 × 256 Satellite (Pléiades)

Oyster racks 0.5 5 371 128 × 128 Satellite (Pléiades)

AID 2 30 10,000 600 × 600 Aerial

The experiments carried out consist of validating the proposed fusion scheme of the two proposed
ensemble learning approaches, namely the Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) strategy.

Table 7 summarizes the main results. As observed, a similar conclusion can be draw from these
four datasets. Firstly, the ELCP approach performs better than Ens. Hybrid LE FV on first and second
CNN convolutional layers due to the considered convolutional layer depth. This clearly illustrates the
interest of exploiting deep feature maps from CNN model, which characterizes high-level features
compared to the first ones. Secondly, a similar conclusion can be drawn to the one obtained from the
UC Merced dataset: the fusion of both local and global second-order statistics computation strategies
permits enhancing classification performance, which illustrates the multi-layer fusion efficiency.

Table 7. Classification accuracy on different datasets obtained using Ens. Hybrid LE FV, ELCP and
their fusion version Ens. LE FV - ELCP methods (p = 10%).

Database Method OA (Mean± sd)

Ens. Hybrid LE FV (conv1) 70.0 ± 0.8%

SIRI-WHU Ens. Hybrid LE FV (conv2) 79.1 ± 0.9%

p = 10% ELCP 88.3 ± 1.2%

Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) 89.9 ± 1.6%

Ens. Hybrid LE FV (conv1) 86.5 ± 2.2%

Maritime pine forest Ens. Hybrid LE FV (conv2) 85.7 ± 0.4%

p = 10% ELCP 87.8 ± 2.3%

Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) 89.1 ± 1.3%

Ens. Hybrid LE FV (conv1) 84. 1 ± 2.4%

Oyster racks Ens. Hybrid LE FV (conv2) 86.1 ± 1.1%

p = 10% ELCP 85.7 ± 1.4%

Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) 86.4 ± 1.4%

Ens. Hybrid LE FV (conv1) 67.4 ± 0.4%

AID Ens. Hybrid LE FV (conv2) 70.9 ± 0.2%

p = 10% ELCP 87.6 ± 0.2%

Fusion Ens. Hybrid LE FV-ELCP (MDE+MV) 88.7 ± 0.3%
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7. Conclusions

This paper has introduced a new transfer learning approach based on the covariance pooling
of CNN features maps. The proposed ensemble learning approach consists of the fusion of two
hybrid architectures. These two strategies use features extracted from models pre-trained on the
ImageNet dataset. The former exploits low-level features extracted from the first and second layers.
It consists of the log-Euclidean Fisher vector encoding of region covariance matrices computed
locally, while the latter uses high-level features issued from deeper layers that are pooled together by
computing their covariance matrix. These two strategies share many similarities. They are ensemble
learning strategies based on the log-Euclidean representation of the covariance matrix of these CNN
features. However, since they exploit feature maps extracted from different layers, they can be
considered as complementary. These two ensemble learning strategies were hence combined together
using the strategy of the most diverse ensembles. The proposed approach was then successfully
validated on various dataset for remote sensing scene classification, illustrating its efficiency and the
interest of second-order features. Competitive results have been obtained, with a gain of about 1 to 2%
in term of overall accuracy, compared to the recent state-of-the-art.

Since the proposed approach is based on covariance pooling of CNN features, any deep
convolutional neural network can be used as backbone. Future works will concerns the adaptation of
the proposed strategy to multispectral or hyperspectral images dataset, where a CNN will be used for
this kind of data [60,61].
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