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Abstract: In recent years, the development of convolutional neural networks (CNNs) has promoted
continuous progress in scene classification of remote sensing images. Compared with natural image
datasets, however, the acquisition of remote sensing scene images is more difficult, and consequently
the scale of remote sensing image datasets is generally small. In addition, many problems related
to small objects and complex backgrounds arise in remote sensing image scenes, presenting great
challenges for CNN-based recognition methods. In this article, to improve the feature extraction
ability and generalization ability of such models and to enable better use of the information contained
in the original remote sensing images, we introduce a multitask learning framework which combines
the tasks of self-supervised learning and scene classification. Unlike previous multitask methods,
we adopt a new mixup loss strategy to combine the two tasks with dynamic weight. The proposed
multitask learning framework empowers a deep neural network to learn more discriminative features
without increasing the amounts of parameters. Comprehensive experiments were conducted on four
representative remote sensing scene classification datasets. We achieved state-of-the-art performance,
with average accuracies of 94.21%, 96.89%, 99.11%, and 98.98% on the NWPU, AID, UC Merced,
and WHU-RS19 datasets, respectively. The experimental results and visualizations show that our
proposed method can learn more discriminative features and simultaneously encode orientation
information while effectively improving the accuracy of remote sensing scene classification.
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1. Introduction

The aim of remote sensing scene classification is to assign a meaningful land cover type to each
patch segmented from a remote sensing image [1–5]. In recent years, with the continuous development
of satellite techniques, several remote sensing scene datasets have emerged, and scene classification
for remote sensing images has received widespread attention. Compared with natural datasets like
ImageNet [6], the acquisition of remote sensing scene images is more difficult, and consequently the
scale of the available remote sensing scene datasets is much smaller. Moreover, many problems related
to small objects and complex backgrounds arise in remote sensing scenes, presenting serious challenges
for classification. As shown in Figure 1, features that contain semantic information may lie within a
small area against a complex background. Remote sensing scene classification can play an important
role in tasks such as global pollution detection [7,8], land use planning [9], image segmentation [10],
object detection [11], and change detection [12]. Therefore, scene classification for remote sensing
images has important theoretical research significance as well as important application prospects.
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Figure 1. Two main problems exist: (a) Compared with datasets of natural images, the total numbers
of images in remote sensing image datasets are much smaller. (b) Compared with natural images, it
is difficult to find discriminative semantic features in remote sensing scene images because features
containing semantic information may lie within a small area against a complex background.

The methods introduced for remote sensing scene classification in the past two decades can be
roughly divided into two types: methods based on manual features and methods based on feature
encoding. Manual feature methods include local binary patterns (LBP) [13], histograms of oriented
gradients (HOG) [14], and the scale-invariant feature transform (SIFT) [15]. Feature encoding methods
include the bag-of-visual-words (BOVW) method [16], the vector of locally aggregated descriptors
(VLAD) method [17], and the Fisher vector (FV) method [18]. These methods extract low-level and
intermediate-level features of an image. Although these features exhibit rotational invariance and high
tolerance to noise, the methods used to extract them require manual parameter adjustment, and their
classification accuracy is not sufficiently high.

Recently, deep learning methods have undergone rapid development in the field of computer
vision, and several classical convolutional neural network (CNN) models and improved CNN-based
network models have emerged. Compared with the previous methods, these models offer stronger
feature extraction and generalization abilities [19]. Among them, He et al. [20] proposed the residual
network (ResNet) architecture to overcome the difficulty of training a CNN model with many layers
and achieved improved classification results on the ImageNet dataset. Huang et al. [21] introduced the
dense convolutional network (DenseNet) architecture, in which each layer is connected to every other
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layer in a feedforward fashion. Woo et al. [22] proposed the convolutional block attention module
(CBAM), a simple and very effective attention module that can be integrated into any feedforward
CNN backbone. Experimental results obtained on the ImageNet and CIFAR datasets demonstrate the
effectiveness of these methods.

Much progress has been made in the field of remote sensing scene classification based on deep
learning methods [23–27]. Wang et al. [28] proposed an improved oriented response network (IORN)
model based on oriented response networks (ORNs), which can be used for scene classification for
remote sensing images and can extract features with a certain degree of rotational invariance. Inspired
by spatial transformation networks, Chen et al. [29] proposed recurrent transformer networks (RTNs),
which can learn regional feature representations based on latent relationships. Wang et al. [30]
proposed the attention recurrent convolutional network (ArcNet) model, which uses long short-term
memory (LSTM) to generate cyclic attention maps and classifies remote sensing scene datasets by
weighting these attention maps with high-level CNN-based features. Xue et al. [31] proposed a
classification method based on multi-structure deep features fusion(MSDFF). Petrovska [32] used
the adoption of transfer learning by fine-tuning pretrained CNNs for end-to-end scene classification.
However, although the above methods have achieved good scene classification performance on remote
sensing images, they do not make full use of the information contained in the data, and the extracted
features are still not sufficiently distinguishable.

In this paper, we introduce a multitask learning framework that combines the tasks of
self-supervised learning and classification to enable more efficient use of the original image information
and further improve the feature extraction ability of network models. To the best of our knowledge,
self-supervised learning has rarely been applied in the field of remote sensing scene classification At the
same time, to better combine these two different tasks, we present a new combination mechanism that
introduces more randomness to enhance the generalization ability of CNNs. Figure 2 shows a flowchart
of the proposed framework. We have conducted extensive tests on current representative remote
sensing scene classification datasets and have achieved state-of-the-art results. Our experiments
suggest that the combination of these two tasks improves the ability of a CNN model to encode
orientation information and helps it learn more discriminative features. The main contributions of this
article are as follows:

1. We propose a multitask learning framework that combines the tasks of self-supervised learning
and classification to enhance the generalization ability of CNN models. This framework offers
easy model training and can be easily incorporated into other methods.

2. Different from previous multitask weight adjustment methods, we adopt a dynamic multitask
learning weight adjustment strategy called the mixup loss, which not only improves the
classification performance but also is not sensitive to the parameter settings.

3. Comprehensive experiments have been carried out on four remote sensing image datasets to
demonstrate the effectiveness of the proposed framework. We have achieved state-of-the-art
results on various remote sensing scene classification datasets.
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Figure 2. Flowchart of the proposed framework.
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The remainder of this paper is structured as follows. Section 2 presents related works on modern
CNN architectures, multitask learning and self-supervised learning. Section 3 introduces the details
of our proposed method. In Sections 4 and 5, the experimental results are reported and discussed.
We draw conclusions in Section 6 along with a discussion of future research directions.

2. Related Works

In this section, we will briefly review existing related works on modern CNN architectures,
self-supervised learning, and multitask learning.

2.1. Modern CNN Architectures

Since the development of AlexNet [6], deep CNNs have dominated the task of image classification.
Recently, the focus of related research has shifted from engineering handcrafted features to engineering
network architectures [21,33,34]. VGG-Net [35] was proposed as a modular network design strategy,
in which network blocks of the same type are repeatedly stacked, which simplifies the workflow of
network design and transfer learning for downstream applications. ResNet [20] introduced the concept
of identity skip connections to alleviate the vanishing gradient problem in deep neural networks and
allow networks to learn deeper feature representations. Wide residual networks [36] have been
proposed as a novel architecture in which the depth of residual networks is decreased while increasing
their width. Building on the success of these pioneering works, Xie et al. [37] proposed a class of deep
neural networks for computer vision called ResNeXts based on aggregated residual transformations.

2.2. Self-Supervised Learning

Self-supervised learning is a general learning framework that relies on pretext tasks that can be
formulated using only unsupervised data [38,39]. It is a new paradigm that lies between unsupervised
and supervised learning. It can reduce the need for large amounts of annotated data, which can be
challenging to obtain these annotated data. A pretext task is designed such that solving it will require
the learning of a useful image representation. For example, patch-based methods [40–42] predict the
relative locations of multiple randomly sampled image patches. In addition to patch-based methods,
there are self-supervised techniques that employ image-level losses. Zhang et al. [43] proposed
grayscale image colorization as a pretext task. The authors of [44] designed a pretext task that involves
predicting the angle of a rotation transformation that has been applied to an input image.

2.3. Multitask Learning

Multitask learning (MTL) is a learning paradigm in machine learning with the aim of leveraging
useful information inferred from multiple related tasks to help improve the generalization performance
for all tasks [45,46]. MTL improves generalization by leveraging the domain-specific information
contained in the training signals for related tasks. This is achieved by training a model for all tasks
in parallel while using a shared representation. Many deep MTL methods [47–49] assume that the
first several hidden layers are shared among the different tasks, while the subsequent layers contain
task-specific parameters. The powerful representation capabilities of deep networks provide increased
space for deep MTL.

3. Methods

In this section, we will introduce the implementations and details of the proposed MTL
framework for remote sensing scene classification. Training for the primary task is performed based
on ground-truth labels, whereas training for the auxiliary task is performed based on geometric
transformation labels.
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3.1. Self-supervised Learning Task

Recent self-supervised learning studies have shown that high-level semantic representations
can be learned by predicting labels that can be obtained from the input signals without any human
annotation [38,50,51]. Intuitively, a good CNN model should learn to recognize the orientations
of different scenes in remote sensing scene images. In the framework proposed in this paper,
we implement self-supervised learning by producing four copies of a single remote sensing image by
rotating it by 0, 90, 180, and 270 degrees and using a single network to predict the rotation angle as a
4-class classification task. As shown in Figure 3, the basic idea behind using these image rotations as
the set of geometric transformations is founded on the simple fact that it is essentially impossible for a
CNN model to effectively perform the above rotation recognition task unless it has first learned to
recognize and detect classes of objects as well as their semantic features in images.

0° rotation 90° rotation 180° rotation 270° rotation

Figure 3. Example images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees).
The core intuition of self-supervised learning is that if the CNN model is not aware of the concepts of
the objects depicted in the images, it cannot recognize the rotation that was applied to them.

The purpose of the whole self-supervised learning task is to train a CNN model F(.) to estimate
the geometric transformation applied to an image. Specifically, we first define G as a set of K discrete
geometric transformations:

G = {g(·|y)}K
y=1 (1)

where g(·|y) is the operator that is applied to image X and the geometric transformation with label y
yields the transformed image Xy = g(X|y).

The CNN model F(.) takes as input an image Xy∗ (where the label y∗ is unknown to the model)
and yields as output a feature descriptor over all possible geometric transformations:

F(Xy∗|θ) = {Fy(Xy∗|θ)}K
y=1 (2)

where Fy(Xy∗|θ) is the feature descriptor for the geometric transformation with label y and θ represents
the learnable parameters of model F(.).

Therefore, given a set of N training images X = {Xi}N
i=0, as an auxiliary task, the loss function LA

for the self-supervised learning task is calculated as follows,

f = Favg(F(Xy∗|θ)) (3)

p̂ = softmax(W1 f + B1) (4)

loss(Xi, θ) = − 1
K

K

∑
i

yilog( p̂i) (5)
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LA(X, θ, W1, B1) =
1
N

N

∑
i=i

lossi (6)

where Favg denotes the global average pooling (GAP) operator, f is a feature vector learned after the
CNN model F and the GAP operator (e.g., for ResNet and ResNeXt, f is a 2048-dimensional feature
vector), W1 denotes the weights of the final layer, and B1 refers to the corresponding bias.

As shown in Figure 4, in this paper, we define the set of geometric transformations G as all
image rotations by multiples of 90 degrees, i.e., 2D image rotations by 0, 90, 180, and 270 degrees.
More formally, if Rotate(X, φ) is an operator that rotates image X by φ degrees, then our set of
geometric transformations consists of the K = 4 image rotations G = {g(X|y)}4

y=1, where g(X|y) =
Rotate(X, (y− 1)90).

Image X

g(X,y=0)

g(X,y=1)

g(X,y=2)

g(X,y=4)

CNN
model F(.)

Classifier
Rotate 0 degrees
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Figure 4. Illustration of the self-supervised learning task that we propose for semantic feature learning.
Given four possible geometric transformations, i.e., rotations by 0, 90, 180, and 270 degrees, we train a
CNN model F(.) to recognize the rotation that has been applied to the image that it receives as input.

3.2. Classification Task

We use the cross-entropy loss as the classification loss for label prediction. For the classification
loss LP,

p̃ = softmax(W2 f + B2) (7)

LP(X, θ, W2, B2) = −
1
N

N

∑
i=i

yilog( p̃i) (8)

where f is a 2048-dimensional feature vector, W2 denotes the weights of the final layer, and B2 refers to
the corresponding bias.

3.3. Combination of the Two Tasks

Combining the self-supervised learning and classification tasks can help a baseline CNN model
improve its ability to encode orientation information and speed up optimization during training.
The common approach for utilizing self-supervised labels for another task is to optimize the losses for
the two tasks considering a shared feature space; that is, a model is trained for both tasks in the MTL
framework [38,52,53]. Thus, in a fully supervised setting, one can formulate the multitask objective
with self-supervision as follows,

LMT(X, θ, W1, B1, W2, B2) = LP + LA (9)
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where LP denotes the loss for the classification task and LA denotes the loss for the self-supervised
learning task. The above loss also forces the primary classifier σ( f (·; θ); u) to be invariant
with respect to the transformations {tj}. Thus, for the aforementioned reason, the usage of
additional self-supervised labels does not guarantee performance improvement, especially in the
fully supervised setting.

Another common approach for combining two tasks is to specify two fixed parameters: λ1 and
λ2. However, determining the specific values of these parameters is very challenging. In some cases,
if the appropriate parameters cannot be determined, the classification performance may even decrease.

LMT(X, θ, W1, B1, W2, B2) = λ1 ∗ LP + λ2 ∗ LA (10)

Motivated by these issues and inspired by methods of data augmentation [54,55], we introduce
a simple and useful combination strategy called the mixup loss. This method does not require the
determination of parameter values, can introduce more randomness into the network model, and can
improve the feature representation ability of the model.

LMT(X, θ, W1, B1, W2, B2) = λ ∗ LP + (1− λ) ∗ LA (11)

where the parameter λ is a random float number from 0 to 1. And it is generated from the Beta(α, α)

distribution for α ∈ (0, ∞).
In probability theory and statistics, the beta distribution is a family of continuous probability

distributions defined on the interval [0, 1] parameterized by two positive shape parameters, denoted
by α and β, that appear as exponents of the random variable and control the shape of the distribution.
The beta distribution has been applied to model the behavior of random variables limited to intervals
of finite length in a wide variety of disciplines. To simplify the setting, we set α = β in this paper
so that we need to set only α. The corresponding probability densities for different values of the
parameter α are shown in Figure 5. Specifically, when α = 1, the Beta(1, 1) distribution is equivalent to
a uniform distribution.
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Figure 5. The probability density functions for the beta distribution with different values of α.

3.4. MTL Framework

The MTL framework is illustrated in Figure 6. The inputs to the proposed method are obtained
from images X ∈ RC×H×W . Then, the inputs X are geometrically transformed using the K = 4
image rotations G = {g(X|y)}4

y=1, where g(X|y) = Rot(X, (y− 1)90). After geometric transformation,
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the inputs have become X ∈ R4C×H×W . Then, the inputs are fed into the backbone F, through the GAP
operator [56], to obtain the feature description f , which has different sizes for different backbones, e.g.,
for ResNet, f is a 2048-dimensional feature vector.

The network is trained on two tasks. The primary task is the classification task, of which the aim is
to identify a determinate category for each remote sensing scene. The auxiliary task is a self-supervised
learning task in which the aim is to predict the rotation label. The cross-entropy losses for both tasks
are combined using the mixup loss strategy. Finally, in our MTL framework, a model is trained to
minimize the two losses jointly. This method of combination forces the model to learn a discriminative
feature representation with good rotational invariance and robustness.

... Mixup Loss

Input Images
With Rotation

Parameter Sharing

Self-supervised
Learning Task

Classification
Task

Primary Task
Prediction

Auxiliary Task
Prediction

Airplane?

rotate 90?

Classification
Loss

Self-supervised
Loss

Backpropagation

Figure 6. Architecture of the proposed multitask learning (MTL) framework. Multiple input images
are generated from a single image by rotating by 90, 180, and 270 degrees. The network is trained on
two tasks. The main task is the classification task, of which the aim is to identify a determinate category
for each remote sensing scene. The auxiliary task is a self-supervised learning task in which the aim is
to obtain the rotation label. The two tasks are combined using the mixup loss strategy.

Regarding the backbone, three representative CNN architectures (VGG, ResNet, and ResNeXt) that
have been fully trained on the ImageNet dataset are chosen as feature map extractors, considering their
popularity in the field of remote sensing scene classification. If the input image size is 256× 256 pixels,
the output feature maps of VGG, ResNet, and ResNeXt have dimensions of 8× 8× 512, 8× 8× 2048,
and 8× 8× 2048, respectively. The different building blocks of these three CNN architectures are
shown in Figure 7. The influence of the three pretrained CNN backbones on the classification results is
discussed in Section 4.3. In addition, brief introductions to these models follow.

• VGG: Simonyan et al. [35] presented a thorough evaluation of networks of increasing depth
using an architecture with very small (3× 3) convolutional filters, and the results showed that a
significant improvement over prior state-of-the-art configurations could be achieved by increasing
the depth to 16–19 convolutional weight layers. The most common network configuration used in
remote sensing scene classification is VGG-16 (containing 13 convolutional layers and three fully
connected layers).

• ResNet: Deeper neural networks are more difficult to train [20]. To solve the problem of network
degradation caused by an increase in depth, the layers of deep ResNets are reformulated to learn
residual functions with reference to the layer inputs. The residual learning framework can ease
the training of networks that are substantially deeper than those used previously. ResNet-50 and
ResNet-101 are widely used as backbones in many tasks.

• ResNeXt: Based on ResNet [20] and Inception [19], Xie et al. [37] introduced a new hyperparameter
called the cardinality (the size of the set of transformations) as an essential factor in addition to the
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dimensions of depth and width. These authors empirically showed that even under the restricted
condition of maintaining the model complexity, it is possible to improve the classification accuracy
of a model by increasing the cardinality.
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paths
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（a） （b） （c）

Figure 7. Three different network building blocks: (a) A VGG block. (b) A ResNet block. (c) A ResNeXt block.

3.5. Aggregation of Information

During the test phase, inspired by ensemble learning [57,58], we rotate a single test image by 90,
180, and 270 degrees. By means of the CNN model and the GAP operator, we can then obtain four
feature maps, f1, f2, f3, and f4. Intuitively, we can aggregate the different information contained in
these feature maps by taking the mean of the four descriptors as follows (see Figure 8),

fmean = ( f1 + f2 + f3 + f4)/4 (12)

where f1, f 2, f3, f4, fmean ∈ RC and f1, f2, f3, and f4 are generated from image X by rotating it by 0, 90,
180, and 270 degrees.

Compared with single-image prediction, our experiments show that by aggregating the feature
descriptors in this way, a gain in accuracy can be achieved, thus indicating the effectiveness of
such aggregation.

ConvNet
model F(.)

Aggregation

Label

f1

f2

f3

f4

fmean

Figure 8. In the test stage, fmean is obtained by aggregating the four different feature descriptors f1, f 2,
f3, and f4. Then, fmean is used for prediction.
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4. Experimental Results

4.1. Datasets

To prove the effectiveness of the framework proposed in this paper, experiments carried out on
four datasets commonly used in remote sensing scene classification are reported. Table 1 shows the
details of the four datasets. Figure 9 presents example images from the different datasets.

Airport BaseField Center DenseResidential Farmland Industrial Meadow

Agricultural Buildings Forest GolfCourse Harbor Intersection Mediumresidential

Beach Commercial Farmland Mountain Park RailwayStation Viaduct

Airplane Bridge Church Desert Forest Harbor Wetland

Figure 9. Example images from the four remote sensing scene classification datasets. From the top row
to the bottom row: NWPU-RESISC45, AID, UC Merced, and WHU-RS19.

The NWPU-RESISC45 dataset [4] is currently the largest publicly available benchmark dataset
for remote sensing scene classification. It contains 45 classes of scene images. Each class contains
700 images with dimensions of 256× 256 pixels, and the spatial resolution of the images varies from
approximately 0.2 to 30 m. From each class, images were randomly selected at ratios of 10:90 and 20:80
to obtain the training and test sets.

The Aerial Image Dataset (AID) [59] contains 30 classes of scene images; each class contains
approximately 200 to 400 samples, for a total of 10,000 images, and each image is 600× 600 pixels in
size. From each class, images were randomly selected at ratios of 20:80 and 50:50 to obtain the training
and test sets.

The UC Merced land use dataset [60] is composed of 2100 overhead scene images divided into
21 land use scene classes. Each class consists of 100 aerial images measuring 256× 256 pixels, with a
spatial resolution of 0.3 m per pixel in the red-green-blue color space. To date, this dataset has been very
popular and has been widely used for scene classification and retrieval tasks on remote sensing images.

The WHU-RS19 dataset [61] contains 19 classes of scene images, each containing approximately
50 samples, for a total of 1005 images, and each image is 600× 600 pixels in size. This dataset has also
been widely adopted to evaluate various scene classification methods.

Table 1. Comparison of the four different remote sensing scene datasets.

Dataset Images per Class Scene Classes Total

NWPU-RESISC45 700 45 31,500
AID 200–480 30 10,000

UC Merced 100 21 2100
WHU-RS19 50 19 1005
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4.2. Implementation Details

We tested our method on the four datasets. The backbone networks, including VGG-16, ResNet-50,
ResNet-101, ResNeXt-50, and ResNeXt-101, were pretrained on ImageNet and then fine-tuned on the
different datasets. We implemented our proposed architecture with the MXNet framework. We resized
all the images to 256 × 256 pixels using the Nesterov accelerated gradient (NAG) optimization
method with a learning rate of 0.005. The learning rates were adjusted in accordance with a cosine
schedule [21,54]. The experiments were implemented on a workstation with two 2.2 GHz ten-core
CPUs and 64 GB of memory. Training under our MTL framework was implemented with two NVIDIA
RTX Titan GPUs for acceleration. To ensure fair comparisons, all networks were trained for 100 epochs.
It should be noted that in the last 20 epochs, we trained the networks only on the classification task for
better convergence. To obtain reliable results on all four datasets, we repeated the experiment 5 times
for each training ratio with randomly selected training samples; the means and standard deviations of
the results are reported. Considering the results on all four datasets, we set α to 1 for all subsequent
experiments.

In addition, we used the currently popular data augmentation strategy called AutoAugment [62].
AutoAugment is a strategy for augmenting training data with transformed images in which the
transformations are learned adaptively. Sixteen different types of image jittering transformations
are introduced, and from these, one augments the data based on 24 different combinations of two
consecutive transformations, such as shift and color jittering. In our experiments, we used the
AutoAugment strategy trained on ImageNet.

4.3. Ablation Study

To validate the effectiveness of our proposed framework, we conducted ablation experiments on
the four datasets. Table 2 presents the results of the ablation study of models under two settings:

• Base Network: As the baselines for these experiments, we adopted three representative backbone
architectures: VGG, ResNet, and ResNeXt. For VGG, we chose VGG-16 as the backbone. For
ResNet, we chose ResNet-50 and ResNet-101 as the backbones. For ResNeXt, we chose ResNeXt-50
and ResNeXt-101 as the backbones.

• Base Network+MTL: We fine-tuned the backbones with our proposed MTL framework.

Table 2. Comparison of model performance with and without MTL. The bold results are obtained by
our proposed method.

Method NWPU (0.2) AID (0.5) UC Merced (0.8) WHU-RS19 (0.6)

VGG-16 90.36± 0.18 94.64± 0.51 97.14± 0.56 97.06± 0.48
VGG-16+MTL (ours) 91.50± 0.27 94.78± 0.43 98.29± 0.44 98.37± 0.39

ResNet-50 91.86± 0.19 95.96± 0.17 98.69± 0.49 98.61± 0.41
ResNet-50+MTL (ours) 92.71± 0.12 96.22± 0.13 98.78± 0.38 98.73± 0.33

ResNet-101 92.52± 0.17 96.34± 0.22 98.91± 0.27 98.92± 0.36
ResNet-101+MTL (ours) 93.93± 0.16 96.61± 0.19 98.91± 0.49 99.06± 0.31

ResNeXt-50 92.66± 0.14 96.29± 0.31 98.73± 0.46 98.75± 0.41
ResNeXt-50+MTL (ours) 93.83± 0.21 96.55± 0.14 99.02± 0.35 99.13± 0.39

ResNeXt-101 93.68± 0.31 96.52± 0.23 98.96± 0.31 98.88± 0.36
ResNeXt-101+MTL (ours) 94.21± 0.15 96.89± 0.18 99.11± 0.25 98.98± 0.26

From the results, we can see that as the model becomes increasingly complex, the classification
results improve. Our MTL framework enables performance improvements of the three different
backbones on the four different datasets. In addition to these performance improvements, we can also
see that our method results in small standard deviations, indicating that models trained using our
framework are generally more stable and robust than the base networks.
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4.4. Evaluation of Aggregation Prediction

In Table 3, we compared aggregation prediction with single-image prediction (see Section 3.5 for
details). It should be noted that these experiments were conducted on the NWPU-RESISC45 dataset
under training ration of 20%. As can be seen from the results, using aggregation of prediction can
perform better results than singe-image prediction. This conforms that this way of aggregation can
make more effective use of the original input images.

Table 3. Comparisons of aggregation prediction and single-image prediction. The bold results are
obtained by our proposed method.

Methods Prediction Methods Accuracy(%)

ResNext-50+MTL
single-image 93.52± 0.29

aggregation 93.83± 0.21

ResNext-101+MTL
single-image 93.92± 0.25

aggregation 94.21± 0.15

4.5. Results on Different Datasets

We conduct experiments on four representative remote sensing scene classification datasets
including NWPU, AID, UC Merced, and WHU-RS19. Tables 4–7 show the results obtained on the
four datasets. We compare our method with several state-of-the-art methods on these datasets. For
WHU-RS19, as there are fewer methods conducted on this dataset, the methods for comparison are
different from the other three datasets. Note that the relevant results are referred to the original papers.

4.5.1. Results on NWPU-RESISC45

Table 4 compares the classification performance of CNNs trained under our MTL framework and
existing state-of-the-art methods on the highly challenging NWPU-RESISC45 dataset with training
proportions of 10% and 20%. This dataset is more challenging because the model needs to predict
labels of many testing data by utilizing few training samples. We show the classification results
produced by some state-of-the-art methods such as Recurrent Transformer Network (RTN) [29]
and Multi-Granularity Canonical Appearance Pooling (MG-CAP) [63]. It can be observed that the
combination of ResNet-101 and MTL yields a top-1 accuracy of 94.21%, representing state-of-the-art
performance compared with other methods. The good performance of the proposed method further
verifies the effectiveness of combining self-supervised learning with pretrained CNN models.

Table 4. Results of our proposed method and other methods considered for comparison in terms
of overall accuracy (%) and standard deviation (%) on the NWPU-RESISC45 dataset for training
proportions of 10% and 20%. The bold results are obtained by our proposed method.

Method
Training Proportion

10% 20%

GoogLeNet+SVM 82.57± 0.12 86.02± 0.18
D-CNN with GoogLeNet [64] 86.89± 0.10 90.49± 0.15

RTN [29] 89.90 92.71
MG-CAP (Log-E) [63] 89.42± 0.19 91.72± 0.16

MG-CAP (Bilinear) [63] 89.42± 0.19 91.72± 0.16
MG-CAP (Sqrt-E) [63] 90.83± 0.12 92.95± 0.11

ResNet-101 89.41± 0.16 92.51± 0.17
ResNet-101+MTL (ours) 91.61± 0.22 93.93± 0.16

ResNeXt-101 91.18± 0.29 93.68± 0.31
ResNeXt-101+MTL (ours) 91.91± 0.18 94.21± 0.15
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Figure 10 shows the confusion matrix generated from the best classification results obtained by
ResNeXt-101+MTL with a training proportion of 20%. As seen from the confusion matrix, classification
accuracies greater or equal to 90% are achieved for 38 of the 45 categories, with the accuracy for the
“cloud” category being 100%. The greatest confusion is observed between the “palace” and “church”
categories; thus, we infer that scenes in these categories possess similar features.
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Figure 10. Confusion matrix of the proposed method on the NWPU dataset with a training proportion
of 20%.

4.5.2. Results on AID

Our proposed framework was also tested on AID to demonstrate its effectiveness compared with
other state-of-the-art methods on the same dataset. The results are shown in Table 5. It can be seen
that the combination of the self-supervised learning and classification tasks again results in the best
performance, with accuracies of 96.89% and 93.96% resulting from training using 50% and 20% of the
samples, respectively.

As seen from an analysis of the confusion matrix, shown in Figure 11, classification accuracies
greater or equal to 90% are achieved for 28 of the 30 categories, with the accuracies for
the “baseballfield”, “bridge”, “forest”, “meadow”, “pond”, and “viaduct” classes being 100%.
These findings indicate that the MTL framework enables the model to learn the differences in spatial
information among these scene classes with the same image distribution and effectively distinguish
them. Meanwhile, the “school” class is easily confused with the ‘commercial’ class because they have
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the same image distribution. In addition, the “resort” class is commonly misclassified as ‘park’ due to
the presence of certain similar objects, such as green belts and ponds.

Table 5. Results of our proposed method and other methods considered for comparison in terms
of overall accuracy and standard deviation (%) on AID. The bold results are obtained by our
proposed method.

Method
Training Proportion

20% 50%

GoogLeNet+SVM 87.51± 0.11 95.27± 0.10
D-CNN with GoogLeNet [64] 86.89± 0.10 90.49± 0.15

RTN [29] 92.44 -
MG-CAP (Log-E) [63] 90.17± 0.19 94.85± 0.16
MG-CAP (Sqrt-E) [63] 90.83± 0.12 92.95± 0.11

MG-CAP (Bilinear) [63] 92.11± 0.15 95.14± 0.12
MG-CAP (Sqrt-E) [63] 93.34± 0.18 96.12± 0.12

ResNet-101 93.31± 0.19 96.34± 0.22
ResNet-101+MTL (ours) 93.67± 0.21 96.61± 0.19

ResNeXt-101 93.11± 0.22 96.52± 0.23
ResNeXt-101+MTL (ours) 93.96± 0.11 96.89± 0.18
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Figure 11. Confusion matrix of the proposed method on AID with a training proportion of 50%.

4.5.3. Results on UC Merced

To further evaluate the classification performance of the proposed method, a comparative
evaluation against several state-of-the-art classification methods on the UC Merced land use dataset
is shown in Table 6. We can see that due to the relative lack of image variations and diversity in
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this dataset, the overall accuracy is almost saturated. In addition, due to the limited dataset scale,
the standard deviations are larger than those on NWPU and AID.

Table 6. Results of our proposed method and other methods considered for comparison in terms of
overall accuracy and standard deviation (%) on the UC Merced dataset (training proportion of 80%).
The bold results are obtained by our proposed method.

Method Accuracy

GoogLeNet+SVM 96.82± 0.20
D-CNN with GoogLeNet [64] 97.07± 0.12

RTN [29] 98.60± 0.26
MG-CAP (Log-E) [63] 98.45± 0.12

MG-CAP (Bilinear) [63] 98.60± 0.26
MG-CAP (Sqrt-E) [63] 99.0± 0.10

ResNet-101 98.91± 0.27
ResNet-101+MTL (ours) 99.02± 0.35

ResNeXt-101 98.96± 0.31
ResNeXt-101+MTL (ours) 99.11± 0.25

Figure 12 shows the confusion matrix generated from the best classification results obtained by
ResNeXt+MTL with a training proportion of 80%. As shown, accuracies greater or equal to 90% are
achieved for all 21 categories, with the majority showing accuracies of 100%. Indeed, an accuracy as
low as 90% is seen only for the “dense residential” and “medium residential” classes, which can be
easily confused with each other. We infer that it is difficult to distinguish these classes because of their
similar building structures and densities.
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Figure 12. Confusion matrix of the proposed method on the UC Merced land use dataset with a
training proportion of 80%.

4.5.4. Results on WHU-RS19

Finally, to validate the performance of the proposed method on a small dataset, we conducted
experiments on the WHU-RS19 dataset, which has the smallest scale among the four datasets. Due to
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the very few available training samples, the accuracy of different network models tends to be saturated.
Nevertheless, compared with advanced ensemble learning methods, our method still achieves a
slight improvement.

Table 7. Results of our proposed method and other methods considered for comparison in terms of
overall accuracy and standard deviation (%) on the WHU-RS19 dataset (training proportion of 60%).
The bold results are obtained by our proposed method.

Method Accuracy

DCA by concatenation [65] 98.70± 0.23
Fusion by addition [65] 98.65± 0.43

ResNet-101 98.62± 0.27
ResNet-101+MTL (ours) 98.96± 0.31

ResNeXt-101 98.88± 0.36
ResNeXt-101+MTL (ours) 98.98± 0.26

Figure 13 shows the confusion matrix generated from the best classification results obtained by
ResNeXt+MTL with a training ratio of 60%. As shown, accuracies greater or equal to 90% are achieved
for 18 categories, the majority of which show accuracies greater than 95%. An accuracy below 90% is
achieved only for the “forest” class, which is easily confused with “mountain” and “river” and thus
shows an accuracy of 88%. This result is easily explained by the fact that there are usually trees next to
mountains and rivers, making it difficult to distinguish these scenes.
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Figure 13. Confusion matrix of the proposed method on the WHU-RS19 dataset with a training
proportion of 60%.

5. Discussion

5.1. Result Analysis

Our proposed method achieves accuracies of 94.21%, 96.89%, 99.11%, and 98.98% on the NWPU,
AID, UC Merced, and WHU-RS19 datasets, respectively. The networks trained with our proposed
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MTL framework significantly outperform all the baselines, demonstrating that our framework can
generalize well to various models for remote sensing scene classification. Compared with other
methods, our method achieves state-of-the-art results. The following can be seen from the results.

• When trained under our MTL framework, the network models yield significantly improved
experimental results without an increase in the number of parameters compared to the baselines.

• Due to the lack of image variations and diversity in the UC Merced and WHU-RS19 datasets,
the overall accuracy on these datasets is almost saturated using deep CNN features. By contrast,
the NWPU-RESISC45 dataset and AID are more challenging due to their rich image variations,
large within-class diversity, and high between-class similarity.

• Compared with the baselines, our framework helps CNN models achieve considerable
improvements with little increase in model complexity and training time.

• The proposed MTL framework yields better performance than the baselines when the number
of training samples is small. This is because by combining the self-supervised learning and
classification tasks, data can be used more effectively.

5.2. Parameter Sensitivity

This mixup loss can introduce more randomness into the model, and can improve the feature
representation ability of the model. The important parameter λ of mixup loss is a random number
generated from the Beta(α, α) distribution. The value of α is very important, so we need to evaluate
whether this parameter is sensitive to the experimental results.

In order to compare the effects of different α values, we conducted comparative experiments
based on ResNet-50 on the four datasets, considering values of α from the set {0.5,1,3}. Figure 14 reports
the detailed results. As seen, the different values of α have very little effect on the results, and the
different results across the four datasets fluctuate within a very small range. The results suggest that
our proposed MTL framework is insensitive to the choice of α.
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Figure 14. Overall accuracy (%) of the proposed method with and without MTL on the four datasets.

5.3. Qualitative Analysis and Visualizations

Gradient-weighted class activation mapping (Grad-CAM) [66] is a popular visualization method
in which gradients are used to calculate the importance of spatial locations in CNNs. Because the
gradients are calculated with respect to a single class, the Grad-CAM results can clearly show attended
regions. To visualize whether the networks had learned discriminative features, we applied Grad-CAM
to various networks using images from the NWPU-RESISC45 validation set after training with a
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training proportion of 20%. By observing the regions that the networks considered important for
predicting a class and the confidence scores of the decisions, we attempted to determine which network
was able to learn more discriminative features.

Specifically, we compared the confidence scores and visualization results obtained using
an MTL-trained network (ResNeXt-101+MTL) with those of the corresponding baseline model
(ResNeXt-101). As Figure 15 shows, the model trained using our framework has stronger feature
extraction abilities in that it better captures the details that represent semantic features in images
with complex backgrounds, and it achieves higher confidence in the classification of some difficult
objects than the baseline model does. The visualizations suggest that our MTL framework is capable
of removing cluttered backgrounds and gradually focusing on discriminative parts of the remote
sensing images.

Stadium Tennis court

Input 
image

Airplane Sea lake

ResNext-101

P=0.301 P=0.827 P=0.465 P=0.664

P=0.987 P=0.965P=0.883P=0.958

ResNext101+
MTL(Ours)

Figure 15. Grad-CAM [66] visualization results. We compare the visualization results obtained
using an MTL-trained network (ResNeXt-101+MTL) with those of the corresponding baseline model
(ResNeXt-101). The Grad-CAM visualization was calculated for the last convolutional outputs.
The ground-truth labels are shown above each input image, and P denotes the softmax score of
each network for the ground-truth class.

6. Conclusions

In this paper, to improve the feature extraction ability of CNN models and allow them to use
information from samples more effectively when the sample size is insufficient, we propose an MTL
framework that combines the tasks of self-supervised learning and classification. Our proposed MTL
framework utilizes the mixup loss strategy to dynamically adjust the weights for MTL, thereby not only
improving the classification performance, but also avoiding sensitivity to particular parameter settings.

The proposed MTL framework can help CNN models extract important feature information
more effectively and further mitigate the challenges for classification presented by the presence of
many small objects and complex backgrounds in images. By introducing image rotation, more image
information can be utilized, and more discriminative feature representations can be learned from a
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limited amount of data. Our proposed framework can help ResNext-101 achieve accuracies of 94.21%,
96.89%, 99.11%, and 98.98% on the NWPU, AID, UC Merced, and WHU-RS19 datasets, respectively.

Extensive experiments show that features extracted by our multitask learning framework are
effective and robust compared with state-of-the-art methods for remote sensing scene classification.
Due to the rapid development of self-supervised learning, we have not tried to combine multiple
self-supervised learning tasks. In the future work, we will explore more self-supervised learning tasks
to further improve the representation ability of network models. We hope that our approach can be
applied for other downstream tasks of remote sensing image interpretation.
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