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Abstract: Land cover changes, especially excessive economic forest plantations, have significantly
threatened the ecological security of West Dongting Lake wetland in China. This work aimed to
investigate the spatiotemporal dynamics of forests in the West Dongting Lake region from 2000 to 2018
using a reconstructed monthly Landsat NDVI time series. The multi-type forest changes, including
conversion from forest to another land cover category, conversion from another land cover category
to forest, and conversion from forest to forest (such as flooding and replantation post-deforestation),
and land cover categories before and after change were effectively detected by integrating Breaks
For Additive Seasonal and Trend (BFAST) and random forest algorithms with the monthly NDVI
time series, with an overall accuracy of 87.8%. On the basis of focusing on all the forest regions
extracted through creating a forest mask for each image in time series and merging these to produce
an ‘anytime’ forest mask, the spatiotemporal dynamics of forest were analyzed on the basis of the
acquired information of multi-type forest changes and classification. The forests are principally
distributed in the core zone of West Donting Lake surrounding the water body and the southwestern
mountains. The forest changes in the core zone and low elevation region are prevalent and frequent.
The variation of forest areas in West Dongting Lake experienced three steps: rapid expansion of
forest plantation from 2000 to 2005, relatively steady from 2006 to 2011, and continuous decline since
2011, mainly caused by anthropogenic factors, such as government policies and economic profits.
This study demonstrated the applicability of the integrated BFAST method to detect multi-type
forest changes by using dense Landsat time series in the subtropical wetland ecosystem with low
data availability.

Keywords: dense Landsat time series; BFAST; random forest; multi-type change detection;
spatiotemporal dynamics of forests

1. Introduction

Dramatic changes have occurred in many wetland ecosystems in the previous decades and have
been attributed to the influence of climatic changes and human activities [1]. Research demonstrated that
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wetland conversion and loss on the global scale has exceeded 50% since 1990 [2]. As the second largest
freshwater lake in China, Dongting Lake is also one of the important wetland ecosystems. However,
the land cover changes, such as land reclamation for developing agriculture and industry, and rapid
urbanization have significantly threatened the ecological security of Dongting Lake wetland [3]. With
the drop in grain prices and profitable papermaking, a variety of land cover categories, such as paddy
fields and bottomland, especially water body, have been transformed to plant the economic forests (i.e.,
Populus euramericana) for papermaking since the late 1990s. A large number of Populus plantations
have accelerated the desiccation of wetland [4], resulting in a decrease of the wetland area [5–7]. This
situation leads to the death of wetland vegetation [8]; induces biodiversity loss [7]; and influences
the community composition [4], structure [7] and function [4] of the wetland ecosystem. Therefore,
accurately detecting the land cover changes related to forests and then monitoring spatiotemporal
dynamics of forests in the Dongting Lake region are critical for protecting wetland ecosystems.

With the accessibility and accumulation of remotely sensed images on the spatiotemporal scale,
remote sensing is a valid alternative for monitoring ecosystem changes. For monitoring spatiotemporal
dynamics of forests in the Dongting Lake region with remote sensing, there are the following questions
need to be answered: (1) how to accurately detect land cover change? (2) how to acquire the process
information of ecosystem change, including land cover change, not just the final results? (3) how to
distinguish land cover change from other change types? and (4) how to get the detailed “from what, to
what” information on the premise that the land cover change has been identified?

The early common methods, which are quite simple and straightforward, include image
differencing, principal component analysis, tasseled cap transform, post-classification comparison, and
change vector analysis [9–11]. The ideas of these methods are that the changes are generally detected
through comparing the difference between the images in two different time phases. Nevertheless,
the accuracy of change detection using these methods is dependent on the set threshold [11,12], the
availability of ideal images in the same season or the classification accuracy of two images. Another
disadvantage of these methods is that the changes are generally detected through comparing the
difference between the images in two different time phases without considering the context information
in the time dimension, lacking change law and process research [13,14]. Therefore, these methods
based on two-temporal images cannot answer questions 1 and 2.

Thus, some change-detection methods based on change trajectories of time series, including
Vegetation Change Tracker and Landtrendr, have been developed for studying the change law and
process [15,16] and have been widely used for forest disturbances and regrowth monitoring and
land cover change detection [17–19]. For example, Griffiths et al. employed the LandTrendr and an
annual Landsat time series to derive annual forest disturbance maps along with recovery dynamics
for answering the question of how the drastic institutional and socio-economic transformation after
the collapse of socialism in Romania affected forestry [17]. Kennedy et al. utilized the LandTrendr to
detect change and then employed the random forest (RF) classifier (RFC) to label agents of change
including urbanization, forest management, and natural change for monitoring habitat in the Puget
Sound region, USA [18]. The frequency of time series within these methods is typically one image per
year in the same season to minimize seasonal variation and sun angle differences. However, these
methods developed at yearly resolution have failed in accurately capturing the timing of the change at
the sub-annual scale. This situation results in the detected timing delay of land cover change. Therefore,
the optimal result that these methods could provide is generally annual or biennial change [20,21].
Similarly, these methods based on multi-temporal images also cannot answer question 2.

Only the time series with high frequency (e.g., monthly) could describe the entire process of land
cover change over shorter time intervals because of the abrupt characteristic of land cover change.
Therefore, only change detection with dense satellite time series indeed satisfies the requirement
of dynamic monitoring of land cover change [22]. One of the major challenges of change detection
with dense time series is to distinguish land cover change from other change types on the premise
of minimizing the influences of seasonal phenological variation. The Breaks For Additive Seasonal
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and Trend (BFAST) meet the challenge through the iterative decomposotion of the time series into
trend, seasonal and remainder components [12,23]. The breaks detected in the trend component
represent an ephemeral disturbance [24,25], while the breaks detected in the seasonal component
represent a land cover change because of the seasonal pattern (phenology) difference between different
land cover categories [25,26]. BFAST has been applied in many different land cover categories, such
as wetland [24], wildlife nature reserve [25], city [26], tropical dry forest [27], vegetation [28,29],
agriculture [30], and abandoned energy development sites [31]. Although BFAST can identify land
cover changes (question 1), acquire the process information of land cover change (question 2), and
distinguish land cover change from other change types (question 3), it still cannot provide the detailed
“from what, to what” information (question 4). Therefore, the land cover categories should be classified
before and after abrupt changes while finding the timing and location of land cover change [14,32].
Zhu and Woodcock proposed a continuous change detection and classification (CCDC) algorithm for
land cover change detection and land cover categories classification after change detection by using all
available Landsat images [21]. The advantage of CCDC is that the coefficients of the fitting time series
model and the root mean square error (RMSE) of it are treated as the input parameters of the RFC for
land cover classification before and after abrupt changes (question 4).

The Dongting Lake region, in which farmland is one of the major land use categories, is one of the
important grain production bases in China. The inter-conversion between farmland and other land cover
categories, including forest, frequently occurred because of the policy orientation and economic profit
motivation in recent decades. Therefore, the phenological trajectory of all kinds of land cover categories,
including farmland with complex intra-annual variations (such as double- or even triple-crop patterns
within a year), must be well described for land cover change detection and classification before and
after abrupt change. However, the CCDC just adopted a simple sinusoidal model for the phenological
trajectory description for a variety of land cover categories, which means it cannot answer any one of four
questions in Dongting Lake region with complex change processes [21,33]. Although the BFAST algorithm
exhibits difficulty in interpreting the land cover categories before and after the detected abrupt changes, a
multi-harmonic model adopted in BFAST could be satisfactory for the complex shape of phenological
trajectory and could be applied in the Dongting Lake region. Therefore, BFAST may be feasible for not
only detecting the land cover changes related to forest but also classifying the land cover categories before
and after abrupt changes by integrating BFAST and classification algorithm.

BFAST is initially proposed to detect change based on high temporal resolution MODIS data,
which means it needs dense time series images. However, MODIS data with coarse spatial resolution
have the limitation of detecting small changes because of the high fragmentation degree of land cover
in the West Dongting Lake region [34]. Lots of medium-resolution data could be freely captured
with the Landsat data archive’s opening in 2008. This event enabled change detection with dense
remotely-sensed time series at finer spatial resolution [35]. In comparison with the MODIS time
series, the Landsat time series possess several advantages, such as higher spatial resolution (30 m)
and longer archive (exceeding 47 years), which means more accurate change detection and longer
terms of monitoring [36–38]. However, the relatively low temporal resolution and frequent cloud
cover and shadows result in excessive temporal gaps in the Landsat archive for certain regions or
time periods [39], such as the West Dongting Lake region in South China (subtropical region with low
optical data availability) in summer. Therefore, for investigating the spatiotemporal dynamics of forest
in the West Dongting Lake region with dense Landsat time series by using BFAST, we should answer
the new question in this study: (5) how does one acquire the dense Landsat time series with high
quality for change detection using BFAST?

This research aims to investigate the spatiotemporal dynamics of forest in the West Dongting Lake
region with dense Landsat time series using BFAST through answering five questions. In this research,
the timing and location of forest changes, changing types (from forest to what, or from what to forest),
and process are acquired by integrating BFAST and classification algorithm. Then the spatiotemporal
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variations of forest and the potential drivers in the West Dongting Lake region are analyzed on the
basis of the information of change detection and classification.

2. Materials and Methods

2.1. Study Area

The Donting Lake region, the second largest freshwater lake and one of the major grain production
areas in China, is located in northern Hunan Province (include three prefectural-level divisions of
Changde, Yueyang and Yiyang) along the southern bank of the Yangtze River (Figure 1a,b). The major
land cover categories in this study area include cropland, water body, forest, shoal (including mudflats,
marshland and reed land), and urban (including settlements and roads) in this study area. Land
cover changes frequently occurred in this region in recent decades due to natural disasters and human
activities. As one of the major land cover categories in this area, the land cover changes related to
forest, especially economic forests (i.e., Populus euramericana), are significant. It takes only 3–4 years
to make the Populus euramericana with fast growth and strong adaptability grow into useful timber
for papermaking. The mass planting of Populus euramericana began in the late 1990s in West Donting
Lake (Figure 1c). Many primary and secondary forests, such as Metasequoia and willow, have been
replaced by the Populus euramericana. A variety of land cover categories, including farmland and
wetland, have been transformed to plant the Populus euramericana due to decline in grain prices and
the increasing profitability of paper-making. Parts of the planting areas have disappeared because
of flood, urbanization, decline in timber prices, government policy, and construction of the Three
Gorges Dam (TGD). As the study area in this work, West Dongting Lake is artificially divided into two
parts, namely, the core zone (yellow border in Figure 1d,e) and the transition zone, according to the
distance from the main water body and demand for wetland protection (Figure 1d). The core zone
includes West Dongting Lake Nature Reserve and buffer zone of the trunk streams flowing into West
Dongting Lake. The transition zone, which has some distance from the main water body, is in the
adjacent area where some small lakes and tributaries are dispersedly distributed. The value range of
Global Digital Elevation Model (GDEM) is mostly from 20 to 40 m in West Dongting Lake, except for
the southwestern mountains with GDEM greater than 50 m (Figure 1e).
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Figure 1. Geographic location, Landsat and DEM image of the study area: (a) general location within
China, (b) within Hunan Province, and (c) within the Dongting Lake region; (d) Landsat 8 OLI image
(RGB = near-infrared, red, and green band); and (e) Global Digital Elevation Model (GDEM) image of
the study area.

2.2. Methods

Figure 2 shows an overview of the general workflow followed in this study. The monthly
Landsat NDVI time series were generated by using two spatiotemporal interpolation methods named
Neighborhood Similar Pixel Interpolator (NSPI) and its modified version MNSPI, and a spatiotemporal
data fusion algorithm named enhanced spatial and temporal adaptive reflectance fusion model
(ESTARFM). The BFAST was then adopted to detect the abrupt changes with the monthly NDVI time
series. The land cover categories before and after abrupt changes were identified through setting
the coefficients of the time series model as the input parameters of the RF algorithm. To determine
forest extent, we created a forest mask for each image in the time series and merged these masks to
produce an ‘anytime’ forest mask for extracting all the forest pixels. After accuracy assessment of
change detection and classification, the spatiotemporal distributions of the number and timing of
abrupt changes related to forest were analyzed. Lastly, we focused on describing the variation of
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forest area in West Dongting Lake and discussing the potential drivers. The critical procedures will be
introduced in the following sections in detail.
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Figure 2. Flowchart of investigating the spatiotemporal variations of forest in the West Dongting
Lake region. NSPI, MNSPI and ESTARFM represent the spatiotemporal interpolation method named
Neighborhood Similar Pixel Interpolator and its modified version, and a spatiotemporal data fusion
algorithm named enhanced spatial and temporal adaptive reflectance fusion model, respectively. BFAST
is the change detection algorithm named Breaks For Additive Seasonal and Trend, and RF represents
random forest algorithm.

2.2.1. Datasets and Preprocessing

The remotely sensed time series with coarse spatial resolution, such as MODIS and NOAA/AVHRR,
are often used for land cover change detection because of their high temporal resolution. However,
they have the limitation of detecting small changes because of the high fragmentation degree of land
cover in the West Dongting Lake region. Considering the temporal resolution (16 days) of Landsat
images and time span of abrupt change and its influence, the time interval between different images in
time series is set as 1 month for accurate change detection. Therefore, a monthly Landsat time series
with 19 years, from 2000 to 2018, have been adopted for change detection and analyzing spatiotemporal
variations of forest in West Dongting Lake region.

Although the Landsat data records were continuously captured from 1972 to present, the relatively
low temporal resolution and frequent cloud cover and shadows result in excessive temporal gaps in the
Landsat archive for certain regions or time periods [39], such as the West Dongting Lake region in South
China (subtropical region with low optical data availability) in summer. Moreover, the permanent
failure of the scan-line corrector (SLC) of the ETM+ on Landsat 7 caused approximately 22% of the
pixels to be unscanned in ETM+ image since 2003 [40]. In spite of three sensors with 16-day revisit cycle
operation, only 197 Landsat images, including 56 TM, 103 ETM+ and 38 OLI, with less than 60% of
pixels contaminated by clouds, cloud shadows, and SLC-off gaps were collected in the West Dongting
Lake region between 2000 and 2018 (Table 1, Figure 3). The region was not covered by the Landsat
images with contaminated pixels less than 60% within 59 months (Table 1). Two spatiotemporal
interpolation methods named NSPI for SLC-off gaps filling and its modified version MNSPI for cloud
removal were integrated into an iterative process for interpolating gaps pixels and cloudy pixels,
respectively [40–42]. This method is effective for the time series without extremely persistent clouds,
such as the 197 Landsat images with less than 60% of contaminated pixels. However, it is difficult to fill
the contaminated pixels with acceptable accuracy when the clouds cover most (over 60%) of the image.
Therefore, the missing images in 59 time phases need to be reconstructed in another way to generate a
monthly Landsat time series between 2000 and 2018, a total of 228 images (12 scenes per year multiply by
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19 years). A spatiotemporal data fusion algorithm named ESTARFM was used to reconstruct the missing
Landsat images by fusing available Landsat and MODIS images [43]. Seventy-three MODIS surface
reflectance 8-day composite images for data fusion were obtained (Table 2). The ESTARFM uses two pairs
of cloud-free fine-resolution Landsat and coarse-resolution MODIS images at base date tm and tn, and one
cloud-free coarse-resolution MODIS image at prediction date tp to construct the fine-resolution image at
tp. The ESTARFM (1) uses a linear mixture model to establish the relationship between the reflectance of a
mixed coarse-resolution MODIS pixel and the fine-resolution Landsat pixels within it at base date tm or
tn, and then (2) employs a conversion coefficient to convert the reflectance changes of a mixed coarse
resolution pixel to the fine-resolution pixels within it based on spatial and spectral similarity. The missing
Landsat pixels at tp are reconstructed based on the two relationships. Either the pair of images at tm or tn

can be used as the reflectance at base date to compute the fine resolution reflectance at tp, and a more
accurate reflectance at tp can be obtained by a weighted combination of the two prediction results. The
validity of the ESTARFM was verified by our previous experiment [44]. After the data reconstruction,
NDVI was calculated from Landsat surface reflectance data, considering the NDVI robustness. Finally,
an available monthly NDVI time series per pixel with 30-m resolution during this time period for the
responding variable in the following change detection process was established.

Table 1. Number of available and missing images for generating a monthly Landsat time series between
2000 and 2018.

Year Number of Available Images Number of Missing Images

2000 9 4
2001 11 2
2002 10 2
2003 5 7
2004 15 1
2005 10 3
2006 9 3
2007 8 5
2008 12 1
2009 13 3
2010 10 3
2011 11 5
2012 7 6
2013 11 2
2014 10 4
2015 10 3
2016 12 2
2017 12 3
2018 12 0
total 197 59Remote Sens. 2020, 12, x FOR PEER REVIEW 1 of 33 
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Table 2. Datasets used in this study.

Data Description Source

Landsat 5, 7 and 8

All 197 available Landsat images (Table 1) used as inputs to NSPI and
MNSPI for SLC-off gaps filling and cloud removal.
One-hundred-and-sixty-nine out of 197 images and 59 prediction images
reconstructed with ESTARFM, a total of 228 images, utilized to generate a
monthly Landsat time series for change detection with BFAST.

(1) The United States Geological Service (USGS) [45];
(2) prediction images reconstructed with ESTARFM.

MODIS Seventy-three MODIS surface reflectance 8-day composite images used as
inputs to ESTARFM for reconstructing the 59 missing Landsat images.

National Aeronautics and Space Administration (NASA)
Level-1 and Atmosphere Archive & Distribution System
Distributed Active Archive Center (LAADSDAAC) [46].

High-resolution images
Images for validation of change detection and land cover classification,
and determination of land cover category of each reference pixel with
Landsat images together.

Google earth

GDEM ASTER GDEM version 2.0 data with 1 arc-second grid used for analyzing
spatiotemporal dynamics of forest.

NASA Land Processes Distributed Active Archive Center
(LPDAAC) [47].
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In addition, the high-resolution images were acquired from Google earth for validation of change
detection and land cover classification, and determination of land cover category of each reference pixel
with Landsat images together (Table 2). The Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) GDEM data were collected for analyzing spatiotemporal dynamics of forest
(Table 2).

2.2.2. Breaks for Additive Seasonal and Trend

BFAST is an iterative algorithm, decomposing time series into three components: trend, seasonal,
and remainder components, for change detection [12,23]. The simple form of decomposition model
(Equation (1)) is as follows:

Yt = Tt + St + et (t = 1, . . . , p) (1)

where Yt is the observed data at time t, Tt, St, and et, which separately represent the trend, seasonal,
and remainder component. p represents the number of observations. Tt can be fitted as the piecewise
linear models (Equation (2)) with specific slopes βi and intercepts αi on different m + 1 segments:

Tt = αi + βit (τ∗i−1 < t ≤ τ∗i ) (2)

where i = 1, . . . , m, and m represent the number of breakpoints in the trend component. The seasonal
component St can be fitted as the piecewise harmonic models (Equation (3)) on different n + 1 segments:

St =
K∑

k=1

[
γ j,ksin(

2πkt
f

) + θ j,kcos(
2πkt

f
)

]
(τ#

j−1 < t ≤ τ#
j ) (3)

where j = 1, . . . , n, and n is the number of breakpoints in the seasonal component. Variable k is the
order of harmonic function and its set as 3 to more accurately detect complex phenological changes,
such as double- or even triple-crop patterns within a year in this study area. As a result, not only the
land cover categories with simple phenology patterns, such as forest with yearly phenological cycle,
but also those with the complex phenology patterns could be accurately described and then classified.
The frequency f is set as 12 for annual observations for a monthly Landsat time series in this research.

The iteration process is initialized by estimating the seasonal component Ŝt through utilizing the
seasonal-trend decomposition (STL) algorithm [48]. First, the residual-based moving sum (MOSUM)
test [49] is used to test whether breakpoints τ* 1, . . . , τ* m occur in the adjusted trend component
Yt−Ŝt. The position and number of breakpoints in the trend component are then determined through
minimizing the Bayesian Information Criterion (BIC) [50] and the residual sum of squares (RSS),
respectively. Then robust regression on the basis of M-estimation [51] is used to estimate coefficients α
and β in the trend component for each segment, and the trend estimate T̂t is computed on the basis of
Equation (2). Similarly, the MOSUM test is utilized to test whether breakpoints τ# 1, . . . , τ# n occur in
the de-trended seasonal component Yt−T̂t, and the minimization of the BIC and RSS is conducted to
determine the position and number of the breakpoints in the seasonal component. Coefficients γj,k
and θj,k of the seasonal component in Equation (3) for each segment are also estimated on the basis of
M-estimation, and then the seasonal estimate Ŝt is computed on the basis of Equation (3). The above
steps are iteratively performed for breakpoint detection and parameter estimation until the number
and position of detected breakpoints remains stable.

Considering the frequent land cover changes that have resulted from the active human activities
in this study area, we set 1 year as the minimal segment size between successive abrupt changes for
fine change detection. Both changes will be detected as long as their interval exceeds 1 year.

The phenological characteristics among land cover categories are different, and they can be
effectively captured by the seasonal component. The breakpoint in the seasonal component, which
means the phenological change before and after breakpoint, suggests a potential land cover change. In
this study, land cover changes related to forest, including conversion from forest to other land cover
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categories (hereinafter referred to as FTO) and from other land cover categories to forest (hereinafter
referred to as OTF), are detected. Results calculated by using BFAST in sample areas of forest, an
area converted from forest to shoal (Figure 4a) or from cropland to forest (Figure 4b), indicate the
phenological characteristic differences among different land cover categories. Although the forest
and shoal have a significant cyclic intra-annual variation with one peak in each year, the seasonal
component of the shoal possesses small fluctuations of intra-annual NDVI values. Cropland has an
intra-annual variation with two peaks in each year compared with the phenological characteristic of one
peak within 1 year for forest. The breakpoints in the seasonal component indicate the structural change
of the phenological characteristic and therefore suggest a permanent land cover change. Specifically,
the monthly NDVI time series decomposed by BFAST can detect the land cover changes related to
forest in the subtropical wetland.
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estimated date of abrupt changes are shown (red).
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The short-term disturbances, such as flooding and replantation post-deforestation, result in
conversion from forest to forest (hereinafter referred to as FTF). Although these ephemeral changes,
including disturbance to forest and then recovery performed within a short term, could not result
in the permanent change related to forest, such as the land cover change (FTO or OTF), they still
cause short-term forest change and spatiotemporal variation of forest. Therefore, the description of
flooding and replantation post-deforestation is as important as the detection of land cover changes
related to forest for monitoring the spatiotemporal variation of forest in West Dongting Lake. Results
calculated by using BFAST over sample areas of forestland, an area flooding (Figure 4b), or replantation
post-deforestation (Figure 4c), showed that these interruptions only cause abrupt changes in the trend
component. Two breakpoints (dash lines in Figure 4) closely adjacent to each other in trend component
represent the disturbance (the former) and recovery (the latter), respectively. The major difference
between flooding and replantation post-deforestation is whether the value of NDVI time series is
greater than zero when the disturbance occurred. These results showed that the different ephemeral
disturbances, even the recovery process, could also be detected and distinguished by BFAST.

2.2.3. Land Cover Classification after Breakpoint Detection

BFAST could identify abrupt change types in the remotely sensed time series: Abrupt changes
in the seasonal component indicate a permanent land cover change; the ephemeral changes, such as
flooding and replantation post-deforestation, could be detected in the trend component. However,
land cover categories before and after the breakpoints could not be identified by using the BFAST
algorithm. Similar to the CCDC algorithm, the coefficients of the time series models (Equations (2)
and (3)) fitted by BFAST are used as input parameters to RFC [52] for land cover classification, which
is the main reason why the monthly Landsat time series and BFAST are adopted in this study. The
subsequent classification after change detection could also reduce the pseudo change (false positive
in change detection). Therefore, the land cover categories at any given time and location could be
effectively acquired by integrating BFAST and RF algorithms.

Each pixel has its own time series models (the trend model in Equation (2) and seasonal model
in Equation (3)) before and after any breakpoint. For example, n + 1 time series models exist when
n breakpoints are detected in the seasonal and trend components by BFAST. Given that each land
cover category has its own specific shape of the time series models [53], the coefficients of each time
series model used to describe the shape could be utilized as input parameters to the trained RFC
for classifying land cover category. Accordingly, the land cover category of each pixel for each time
series model in the entire period is determined. Two coefficients (α and β in Equation (2)) in the trend
component and six coefficients (γk, θk, and K = 3 in Equation (3)) in the seasonal one were selected
as the classification features in this study. Variable α represents the overall NDVI value of each time
series model, and β indicates inter-annual differences, the combination of which describe the mean
value and inter-annual trend of each land cover category. Meanwhile, γk and θk provide information
about intra-annual seasonal change pattern primarily caused by phenological change.

The land cover reference data for classification, a total of 26,137 reference pixels for five land cover
categories, were collected on four dates within the period covered by the Landsat time series (Table 3).
An approximately equal number (around 6500) of reference pixels were collected on each date. The
number of reference pixels for different land cover categories on each date is different, considering the
difference among areas, intra-class heterogeneity and data availability of each land cover category.
The land cover category of each reference pixel at the given time was determined through careful
visual interpretation by using the Landsat time series and the images with high spatial resolutions
from Google Earth; and the reference pixels of each land cover category are equably collected at
representative regions. Random sampling with replacement design was used to divide the land cover
reference data into two parts of training data (for training the classifier) and test data (for validating
the classifier) with sampling probabilities of 0.7 and 0.3, respectively.
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Table 3. Land cover reference data collected at four dates for classification.

Class
Date

Total
2002-09-02 2007-08-07 2013-08-07 2017-08-18

Crop 1066 1397 1066 1896 5425
Forest 1091 1204 1091 1505 4891
Shoal 161 126 188 190 665
Urban 2959 2957 2959 1521 10,396
Water 1080 1008 1080 1592 4760
Total 6357 6692 6384 6704 26,137

2.2.4. Accuracy Assessment

Due to the lack of remotely sensed images with higher temporal and finer spatial resolution than
Landsat images over the last few decades covered by Landsat, the primary and optimal source for
accuracy assessment of long-term change detection using historical dense time series of Landsat is
the Landsat images themselves [21,54–56]. Meanwhile, the images with high spatial resolution from
Google Earth could help manually interpret the land cover categories and change. A random stratified
sample design proposed by Zhu and Woodcock [21] was used to assess the detection accuracy in this
study. A total of 600 reference pixels were selected. Three hundred example pixels represent the areas
where forest was persistent between 2000 and 2018 and another 300 pixels represent those where forest
change occurred, which were identified by the BFAST and RF algorithm. In each pixel, we visually
examined the NDVI time series data and images with high spatial resolution acquired from Google
Earth to determine whether and when forest change occurred for that specific location.

A randomly selected subset, a total of 30% (7837 reference pixels) of the land cover reference pixels,
were used to assess the accuracy of classification with the RF algorithm (Section 2.2.3). A confusion
matrix was produced to estimate user’s and producer’s accuracy of each land cover category, and
overall accuracy.

2.2.5. Spatiotemporal Dynamics Analysis of Forest

Eleven indicators were utilized to analyze the spatiotemporal dynamics law of forest in West
Dongting Lake region from the aspect of duration, number and timing of abrupt change, and areas
(Table 4). Df is used to measure the duration of forest plantation within each pixel between 2000 and
2018. Two indicators (Ps, Pc) are utilized to measure the proportion of stable and changed forests,
respectively. Nc(i), Pc(i) are separately used to measure the number and proportion of changed pixels
with different numbers of abrupt changes. ML is calculated to illustrate the proportion of abrupt
changes in each region, while two indicators (iK, RL) are adopted to describe the change frequency of
each forest pixel and each region, respectively. Tl and APK,T are utilized to describe the timing of the
last abrupt change and the annual proportion of all abrupt changes, respectively. In the end, forest
areas AL,t in every time phase within time series are calculated. Five indicators (Ps, Pc, ML, RL, AL,t)
are calculated in each region, while six indicators (iK, Nc(i), Pc(i), ML, Tl, APK,T) are calculated based on
different change types.
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Table 4. Indicators for describing spatiotemporal dynamics of forest.

Category Indicator Formula Meaning/Explanation

Duration The duration proportion Df of forest plantation
in each pixel D f =

TP f
228

TPf represents the number of time phases when the land cover
category within the pixel is forest; 228 is the total number of
time phases (or images) within the monthly Landsat time series

Proportion of stable (Ps) and changed forests (Pc)
Pc =

Nc
N f

Ps =
Ns
N f

Nc and Ns represent the number of changed and stable forest
pixels, respectively
Nf represents the number of forest pixels

Number Number iK of abrupt changes [24] iK = 1, 2, . . . , n
K = ALL, FTO, OTF, FTF K represents the change type

Number Nc(i) and proportion Pc(i) of changed
pixels with i times abrupt changes

Pc(i) =
Nc(i)

N f

Nc =
n∑

i=1
Nc (i)

Proportion ML of abrupt changes in region L ML =
∑n

i=1 i×Nc(i,L)∑n
i=1 i×Nc(i)

Nc(i, L) represents the number of changed pixels with i times
abrupt changes in region L

n∑
i=1

i×Nc(i) represents the total number of abrupt changes

The ratio RL of the number of abrupt changes to
the number of changed pixels in region L RL =

∑n
i=1 i×Nc(i,L)

Nc(L)
Nc(L) represents the number of change pixels in region L

Timing Timing (Tl) of last change [25] Tl = 2000, 2001, . . . , 2018

Annual proportion APK,T of abrupt changes [24] APK,T =
∑n

i=1 i×Nc(i,T,K)∑n
i=1 i×Nc(i)

T = 2000, 2001, . . . , 2018

The ratio of the number of changes in a certain year to the total
number of changes.
Nc(i, T, K) represents the number of changed pixels with i times
change type K in T

Areas forest areas AL,t in region L in t AL,t = n f (L, t) × s
t = 1, 2, . . . , 228

n f (L, t) represents the number of forest pixels in region L in t. s
is the area of one Landsat pixel (900 m2)
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3. Results

3.1. Accuracy Assessment

3.1.1. Accuracy Assessment for Change Detection

For changed pixels, the results showed the producer’s accuracy of 90.7% and user’s accuracy of
84.3% (Table 5). For stable pixels, the results showed the producer’s accuracy of 85.4% and user’s
accuracy of 91.3%. The change detection with an overall accuracy of 87.8% indicated that the changes
related to forest were well captured by BFAST algorithm. The accuracy of the timing of change
detection was further assessed for 253 reference pixels in which the change was identified with the
Landsat time series data or high spatial resolution images acquired from Google Earth and correctly
detected by BFAST (Table 6). The proportion of pixels in which the change timing detected by BFAST
is the same as that identified with reference data is 77.47%. The proportions of the pixels in which the
detected timing is later than that identified with reference data within 2 months or over 2 months are
13.04% and 9.49%, respectively. If we consider that the actual date of change is within a quarter of a
year of the detected change date, the accuracy of timing is as high as 90.51% (77.47% + 13.04%).

Table 5. Accuracy assessment of change detection.

Changed Pixels Stable Pixels Total User’s Accuracy

Changed pixels 253 47 300 84.3%
Stable pixels 26 274 300 91.3%

Total 279 321
Producer’s
accuracy 90.7% 85.4% Overall 87.8%

Table 6. Accuracy assessment of the timing of change detection.

Same time Late ≤ 2 months Late > 2 months Total

Changed pixels 196 33 24 253
proportion 77.47% 13.04% 9.49% 100%

The reference Landsat images before and after abrupt change and results of change detection
with BFAST for each conversion type were displayed to further intuitively illustrate the algorithm
ability (Figure 5). A typical area converted from forest to urban in 2008 was found by BFAST algorithm,
in which wavelet characteristics of the seasonal component were weakened to a small fluctuation of
intra-annual NDVI values after the breakpoint (Figure 5a). The slow urban expansion resulted in
partial forest cut within the pixel, in which this spectral change was insufficiently large to be detected
by the BFAST algorithm until it was totally changed. Accordingly, the timing of change detected by
BFAST was a little later (2 months) than the actual timing observed from the reference data. Another
typical area converted from shoal to forest in 2005 was also found by BFAST algorithm, in which
the land cover before and after breakpoint and breaking time detected by BFAST and RF algorithms
could correspond to those acquired from the reference Landsat images (Figure 5b). Intra-annual
changes, such as the flooding and replantation post-deforestation, were difficult to be detected by
algorithms, such as Landtrendr, with the frequency of time series of one image per year. The accuracies
of flooding and replantation post-deforestation detected by BFAST algorithm were high compared with
the reference Landsat images before and after the breakpoint (Figure 5c,d). Moreover, the confidence
interval of each detected breaking time (two dashed lines in the trend component) was narrow.
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Figure 5. Examples of accuracy assessment for the detected changes and corresponding Landsat
images (RGB = near-infrared, red, and green band) before and after abrupt changes: (a) Forest to
other land cover (urban), (b) Other land cover (shoal) to Forest, (c) Flooding, and (d) Replantation
post-deforestation. Yt is the original observed data; Tt, St, and et separately represent the trend,
seasonal, and remainder component decomposed by BFAST. The dashed line represents the breakpoint
and indicates when abrupt change occurred. The confidence intervals of the estimated date of abrupt
changes are shown (red).
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3.1.2. Accuracy Assessment for Classification

The overall accuracy and Kappa coefficient of the land cover classification with five categories are
92.96% and 0.9026, respectively (Table 7). Not only producer accuracies but also user accuracies for the
different land cover categories are mostly greater than 90%. These results indicate that the RF classifier
is sufficient for classifying the land cover categories in Dongting Lake region. The largest confusion is
between forest and shoal, with the producer accuracy for shoal being 73.44%. The possible reason is
that other vegetation growing in shoal, such as the annual shrubs or herbs, are similar to forest in the
spectral characteristics at the spatial resolution of 30 m.

Table 7. Accuracy assessment of classification with the RF algorithm.

Overall Accuracy = 7285/7837 = 92.96% Kappa Coefficient = 0.9026

Ground Truth (Pixels)

Class Crop Forest Shoal Urban Water User Accuracy

crop 1500 48 0 35 38 92.54%
forest 20 1338 45 22 15 92.92%
shoal 0 10 141 0 1 92.76%
urban 109 42 2 3049 113 91.98%
water 18 7 4 23 1257 96.03%
Total 1647 1445 192 3129 1424

Producer accuracy 91.07% 92.60% 73.44% 97.44% 88.27%

3.2. Spatiotemporal Dynamics of Forest

3.2.1. Duration and Spatial Distribution of Forest Plantation

Previous studies mostly focused on the regions that are known to have been forested at the
beginning of the first monitoring period and neglected the forest regions in which the forest has
not been planted in the initial period [27,57], such as the pixels, the land cover of which changed
from another land cover category in the initial period to forest in the later period. Considering the
characteristic of frequent change between forest and the other land cover categories in West Donting
Lake, we created a forest mask of each image in the time series and merged these masks to produce an
‘anytime’ forest mask for extracting all forest pixels. The distribution map of the duration proportion
of forest plantation between 2000 and 2018 (Df, Table 4) is shown in Figure 6. The forests are mainly
distributed in the core zone surrounding the water body and southwestern mountains. The Df of most
forest regions is 1 (stable forests), whereas the rest of the forests, the Df of which are less than 1 (changed
forests), are dispersedly distributed. Especially, the forest areas with Df less than 0.5 are mainly distributed
in the south of the West Donting Lake region, and most changed forests with Df greater than 0.5 are
concentrated in the core zone. In contrast with the forests in South China, which are mainly distributed
in mountainous regions because of the limited flatlands with low elevation utilized for croplands or
settlements, a large part of forests in the West Dongting Lake region are distributed in the flatlands with
low elevation, except for the forests in the southwestern mountains (Figures 1e and 6).

Further comparison of the spatial distribution between stable and changed forests for each DEM
range and region showed considerable differences (Table 8). The proportions of stable and changed
forests (Ps and Pc, Table 4) are 72.08% and 27.92% for all forest regions, a total of 1,180,893 forest pixels.
Over 60% (44.45%/72.08% = 61.67%) of the stable forests are distributed in the transition zone, including
those with DEM greater than 50 m (27.55%); the stable forests in the core area are mainly distributed in
the region with DEM ranging from 20 to 40 m. This finding indicates that the stable forests are mainly
distributed in relatively high elevation regions of the transition zone and low elevation regions of
the core zone. The proportion of changed forests with DEM ranging from 30 to 40 m is the highest
(11.12%), and those with DEM ranging from 20 to 40 m is over 60% of the changed forests, especially
including those in the core zone. In addition, the proportion of changed forests in the transition zone
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with DEM greater than 50 m is also high (6.88%). These results showed that the changes related to
forest were mainly detected in the low elevation region surrounding the water body and relatively
high elevation region of the transition zone. Although the proportion of forests in the core zone
(11.69% + 27.63% = 39.32%) is lower than that in the transition zone (16.23% + 44.45% = 60.68%), the
proportion of changed forests in all of the forests in the former (11.69%/39.32% = 29.73%) was slightly
higher than that in the latter (16.23%/60.68% =26.75%). Meanwhile, the proportion of changed forests
in the region with each DEM range decreased with the DEM increase. These results further showed
that the forest changes in the core zone and low elevation region are more prevalent.
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Table 8. Proportion (%) of stable (PS) and changed (Pc) forests for each DEM range and region.

Location Type
DEM (m)

Total
≤20 20–30 30–40 40–50 ≥50

Core zone
Changed forest 0.12 3.89 6.46 0.81 0.4 11.69

Stable forest 0.20 10.04 14.24 2.02 1.13 27.63

Transition
zone

Changed forest 0.08 2.75 4.66 1.86 6.88 16.23
Stable forest 0.07 3.68 8.15 5 27.55 44.45

total
Changed forest 0.20 6.64 11.12 2.67 7.28 27.92

Stable forest 0.27 13.72 22.39 7.02 28.68 72.08

proportion of changed forest 42.55 32.61 33.18 27.55 20.24

All the forest pixels were extracted by using the ‘anytime’ forest mask, and then the proportion
and spatial distribution of stable and changed forests were also analyzed in this section. However,
the spatiotemporal characteristic of forest changes must be analyzed to further explain the variation
characteristic of forests. Therefore, the number and timing of abrupt changes related to forest, and the
variation of forest areas will be discussed in the following sections.

3.2.2. Number of Abrupt Changes Related to Forest

The number (Nc(i), Table 4) and proportion (Pc(i), Table 4) of pixels with single (or multiple)
occurrence(s) (iK, Table 4) of abrupt change for each change type were compared to show considerable
differences (Table 9). In all the changed pixels related to forest (27.92%), the number of abrupt changes
of 25.35% out of 27.92%, which exceeds 90% (25.35%/27.92% = 90.80%) of all the changed pixels related
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to forest, is from 1 to 3. The number of FTO and OTF, which separately occurred in 13.36% and
11.89% of the forest pixels, is basically 1. The proportion of the forest pixels with FTF is 15.70%. In
contrast with FTO and OTF, the proportion of forest pixels with one time FTF (flooded or replantation
post-deforestation) is generally equal to that with multiple times FTF. Results indicated that not only the
proportion of forest pixels with FTF but also the number of FTF is higher than those of FTO and OTF.

Table 9. Number (Nc(i)) and proportion (Pc(i)) of pixels with single (or multiple) occurrence(s) of
abrupt change between 2000 and 2018.

Number of Abrupt
Changes

All FTO OTF FTF

Number Proportion (%) Number Proportion (%) Number Proportion (%) Number Proportion (%)

0 851,172 72.08 1,023,095 86.64 1,040,505 88.11 995,485 84.30
1 125,277 10.61 145,754 12.34 129,876 11.00 91,530 7.75
2 122,404 10.37 11,665 0.99 9897 0.84 56,196 4.76
3 51,649 4.37 375 0.03 609 0.05 21,962 1.86
≥4 30,391 2.57 4 0.00 6 0.00 15,720 1.33

TCP 1 329,721 27.92 157,798 13.36 140,388 11.89 185,408 15.70
TNB 2 665,744 170,225 151,521 343,998

1 TCP represents Total of changed pixels, and 2 TNB represents Total number of breakpoints.

The distribution map of the number of breakpoints is shown in Figure 7. Most areas with two or
more times changes are in the core zone surrounding the water body, and the areas with one change
are dispersedly distributed in the whole study area, especially the southwest mountains (Figure 7a,b).
FTO or OTF, the number of which is generally 1, are principally distributed in the areas surrounding
the water body (Figure 7c–f). The distribution of areas with different numbers of FTF is almost the
same as that with the estimated number of all abrupt changes (Figure 7g,h).

The number of abrupt changes is summarized for each DEM range and region to facilitate further
comparison (Figure 8). Most changes occurred in the areas with DEM ranging from 20 to 40 m, the
proportion (ML, Table 4) of which in all of detected changes is over 65% (Figure 8a). In these areas with
DEM ranging from 20 to 40 m, the proportion of detected changes in the core zone is higher than that
in the transition zone regardless of the change types (Figure 8b–d). The detected changes in the region
with DEM over 40 m are generally distributed in the transition zone, the proportion of which is much
less than that with DEM ranging from 20 to 40 m. This is because the elevation in West Dongting Lake
is generally less than 40 m and the main land cover categories in the transition zone with DEM less
than 40 m are cropland and settlement (Figures 1 and 6). The proportion of OTF (18.59%) and FTO
(18.59%) in the transition zone with DEM over 50 m (southwest mountains) is relatively low compared
with the proportion of OTF (42.89%) and FTO (42.78%) in the core zone with DEM less than 40 m
(Figure 8b,c). The proportion of FTF in the southwest mountains (24.64%) is also lower than that in the
core zone with DEM less than 40 m (43.33%; Figure 8d).
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and replantation post-deforestation). ML is calculated as the ratio of the number of abrupt changes in a 
certain region or DEM range to the total number of abrupt changes in the whole study area between 
2000 and 2018 for each change type. 

The ratio (RL, Table 4) of the total number of changes to the total number of changed forest pixels 
was proposed to further reflect the frequency of forest change in different regions. Although the 
proportion of change number in the core zone is slightly less than that in the transition zone (47.49% 
versus 52.51% of 665,744), the ratio in the core zone (2.29) is higher than that in the transition zone 
(1.82) considering the proportion of the changed forests in both zones (11.69% versus 16.23% of 
1,180,893, Table 8). Moreover, the ratio in the core zone is slightly higher than that in the transition 
zone regardless of the change types, especially FTF (2.15 versus 1.66). Specifically, the proportion of 

Figure 7. Spatial distribution of the number (iK) of abrupt changes between 2000 and 2018 for different
forest change types and their close-up subsection: (a,b) all changes; (c,d) conversion from forest to
other land cover categories (FTO); (e,f) conversion from other land cover categories to forest (OTF);
and (g,h) conversion from forest to forest (FTF, such as flooding and replantation post-deforestation).
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Figure 8. Proportion (ML) of the number of different forest change types for each DEM range and
region: (a) all changes; (b) conversion from forest to other land cover categories (FTO); (c) conversion
from other land cover categories to forest (OTF); and (d) conversion from forest to forest (FTF, such as
flooding and replantation post-deforestation). ML is calculated as the ratio of the number of abrupt
changes in a certain region or DEM range to the total number of abrupt changes in the whole study
area between 2000 and 2018 for each change type.

The ratio (RL, Table 4) of the total number of changes to the total number of changed forest pixels
was proposed to further reflect the frequency of forest change in different regions. Although the
proportion of change number in the core zone is slightly less than that in the transition zone (47.49%
versus 52.51% of 665,744), the ratio in the core zone (2.29) is higher than that in the transition zone (1.82)
considering the proportion of the changed forests in both zones (11.69% versus 16.23% of 1,180,893,
Table 8). Moreover, the ratio in the core zone is slightly higher than that in the transition zone regardless



Remote Sens. 2020, 12, 341 23 of 33

of the change types, especially FTF (2.15 versus 1.66). Specifically, the proportion of changed forests
(Section 3.2.1) and the ratio in the core zone are higher than those in the transition zone. This finding
further indicates that the forest change in the core zone is more frequent than that in the transition zone.

3.2.3. Timing of Abrupt Changes Related to Forest

The spatial distribution of the timing (Tl, Table 4) of the last abrupt change detected from the
monthly NDVI time-series is shown in Figure 9. Most FTO in the core zone occurred between 2011 and
2015, whereas that in the transition zone is between 2012 and 2017 (Figure 9a,b). The major years of
OTF in the core zone region are 2000, 2012, and 2016, while most transition zones had OTF in 2012,
2016, and 2017 (Figure 9c,d). FTF mainly occurred in 2017 for the southwest mountains, while large
parts of the core zone region had FTF between 2006 and 2017 (Figure 9e,f).
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Figure 9. Spatial distribution of the timing (Tl) of last change of different forest change types and their
close up of the subsection detected from monthly NDVI time-series: (a,b) conversion from forest to
other land cover categories (FTO), (c,d) conversion from other land cover categories to forest (OTF),
and (e,f) conversion from forest to forest (FTF, such as flooding and replantation post-deforestation).
The changed forest pixels with nonFTO (or nonOTF, or nonFTF) represent that no FTO (or OTF, FTF)
occurred in these changed pixels.

In contrast with the analysis of the timing of last change in Figure 9, the timing of all changes was
summarized each year (APK,T, Table 4) to facilitate further comparison (Figure 10). Large parts of FTO
occurred since 2011, while a relatively low proportion of FTO was detected before 2011 (Figure 10a).
Several clear peaks of OTF were detected during 2000, 2012, 2016, and 2017 (Figure 10b). The frequency
distribution of the timing of FTF was relatively even for each year from 2000 to 2018, except for one
peak in 2017 (Figure 10c).
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Figure 10. Annual proportion (APK,T) of different forest change types detected from Landsat NDVI
time series between 2000 and 2018: (a) conversion from forest to other land cover categories (FTO),
(b) conversion from other land cover categories to forest (OTF), and (c) conversion from forest to forest
(FTF, such as flooding and replantation post-deforestation). APK,T is calculated as the ratio of the
number of changes in a certain year to the total number of changes between 2000 and 2018 for each
change type.

3.2.4. Variation of Forest Areas

The spatial distribution of forest pixels and the forest areas (AL,t, Table 4) at any given time could
be effectively acquired with the application of integrating BFAST and RF algorithms to the monthly
NDVI time series (Figure 11). The variation of forest areas in West Dongting Lake experienced three
steps (Figure 11a): a rapid expansion of forest plantation from 2000 to 2005, except for a small drop
between 2001 and 2002; the forest areas were relatively steady from 2006 to 2011, except for one valley
in 2008; the forest areas continued to decline since 2011.

The increased forest areas in the core zone are significantly higher than that in the transition zone
during the period of 2000 through 2005 (Figure 11b). This finding indicates that forest plantation in the
core zone is the major contribution for increased forest areas between 2000 and 2005. However, the
increasing rate of forest area in the transition zone is higher than that in the core zone since 2003. The
forest areas in the core zone generally remained steady between 2003 and 2011. The forest areas in the
transition zone first also had the same trend as that in the core zone between 2006 and 2008 and then
increased between 2008 and 2011. The overall trend of the forest areas in the core zone began to fall
since 2011, except for the forest areas in the core zone sharply fluctuating in 2014 and 2016. The forest
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areas in the transition zone began to fall since 2013, which is laggard compared with the downtrend in
the core zone; the decreasing trend and rate of forest areas in the transition zone almost did not change.
The forest areas in the core zone sharply decreased during 2017. By contrast, the forest areas in the
transition zone showed an increasing trend in 2017.
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4. Discussion

The accuracy assessment results of change detection show higher user accuracy for stable pixels
and higher producer accuracy for change pixels (Table 5), indicating more commission errors than
omission errors in the detected change pixels. The errors are possibly due to the following reasons:
(1) noise; (2) partial change; (3) and influence of classification accuracy. Although the validity of the
NSPI, MNSPI and ESTARFM are verified in this study and our previous experiment [44], the noise
cannot be removed completely, which is mistakenly detected as change (commission error). The
partially changed pixels are difficult to be detected by BFAST due to the insufficiently large spectral
change (omission error). The similarity between shoal covered by other vegetation and forest in the
spectral characteristics within the Landsat image with 30 m resolution may result in misclassification,
and then the inter-conversion between them cannot be identified even if the conversions have been
detected by BFAST before classification (omission error).

The timing errors of change detection are possibly due to the following reasons: (1) slow change;
(2) reconstruction effect of time series; and (3) parameter setting of BFAST. As shown in Figure 5a, the
slow urban expansion resulted in a partial forest cut within the pixel, in which this spectral change was
insufficiently large to be detected by the BFAST algorithm until it was totally changed. Accordingly,
the timing of change detected by BFAST was a little later (2 months) than the actual timing observed
from the reference data. NSPI, MNSPI and ESTARFM algorithms interpolated the contaminated
pixels and reconstructed the missing images without considering possible land cover change at that
time phase, which means that the land cover category of the interpolated or reconstructed pixel with
actual land cover change may have mistakenly remain unchanged at that time phase. This situation
may have resulted in the land cover change detected timing delay of one or several months. We set
1 year as the minimal segment size between successive change detections in BFAST to reduce pseudo
changes. However, this strategy caused the interval of two breakpoints closely adjacent to each other
in the trend component, representing the short-term disturbances (such as flooding and replantation
post-deforestation), to be just 1 year. In fact, the cycle of the short-term disturbances is generally less
than 1 year, and it may delay the timing of the recovery process.

On the basis of the error analysis, there are some feasible strategies as follows: (1) change detection
through integrating temporal and spatial information and (2) classification using deep learning. Similar
to most change detection methods utilizing time-series data, the BFAST adopted in this study is mainly
focused on the information on the temporal domain and independently processes each pixel, without
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considering the change characteristics generated on the spatial domain [14,58]. This results in the
accuracy of change detection relying heavily on the quantity and quality of time-series data in the
temporal domain, such as the reconstruction accuracy of the monthly Landsat time series in this
study. In fact, the change essentially occurs in the spatial domain and is reflected in the temporal
domain, in other words, change determines the necessity of defining ‘time’ by human. Therefore,
time series analysis based on an independent pixel is insufficient to accurately and roundly describe a
series of change characteristics. Several algorithms recently eliminated the noise and other change
(such as seasonal change) interference through integrating spatial information, which improved the
change detection accuracy [18,59–62]. These methods have less reliance on the quantity and quality
of time-series data. For example, Hamunyela et al. used spatially normalized NDVI values on the
basis of setting the various window sizes to reduce phenological differences and lower latency in
change detection [59], and Guttler et al. developed the object-based change detection method [62].
They may be used to resolve the problem mentioned in the previous paragraph. Therefore, additional
algorithms that use the spatiotemporal data analytical techniques (such as spatiotemporal geo-statistic
methods) [63,64], which consider the correlativity and heterogeneity of spatiotemporal data, are
anticipated. In addition, the improvement of the classification accuracy can also contribute to change
detection. Deep learning methods have recently progressed considerably and have played a key
role in addressing remote sensing image classification [65,66]. The validity of classification using
Convolutional Neural Network (CNN) in South China has been verified in our previous studies [67–69].
Compared with traditional classification methods, including support vector machine and decision
tree, the CNN improves the accuracy of classification through extracting deep features of spatial
and spectral trajectories. Specifically, the abandoned land and even paddy rice field with different
rice-cropping systems are classified well.

Although the West Dongting Lake region is small in spatial scale, the generation, storage, and
processing of the monthly Landsat Time series between 2000 and 2018 and the change detection with
BFAST still requires expensive storage and computation. Therefore, time series data analysis in the
large regional scale (such as global scale) and long temporal scale (such as the 47-year archive of
Landsat) needs more expensive storage and computation because of the large amount of data and
its processing [21]. Computing capability, such as the cloud-computing technology with the Google
Earth Engine (GEE) platform [70], has been greatly improved in the last few years. GEE synchronously
archives the Landsat data from USGS and effectively performs data processing by using the cloud
computing technology through utilizing millions of servers worldwide. This technology shows
potentials and prospects of the emerging GEE platforms in large regional and long temporal scales for
land cover change research, and several studies have proved its feasibility [31,71,72]. Therefore, the data
storage, processing, and analysis will be conducted by using the GEE platform in the next exploration.

Although the proportion of forests in the core zone is lower than that in the transition zone, the
proportion of changed forests in all the forests in the former is higher than that in the latter, especially
in the areas with low elevation. The forests in the core zone are mainly distributed in the region
with DEM ranging from 20 to 40 m, while over two-thirds of the forests in the transition zone were
planted in the region with DEM exceeding 40 m (Table 8), and these forests are concentrated in the
southwestern mountain with DEM over 50 m. Therefore, the forests with low elevation surrounding
the water body in the core zone are easily flooded, which increases the number of FTF. In addition, the
variation of timber price caused other land cover categories, such as cropland or shoal, to be switched
to forest and replantation post-deforestation when prices rose, or the forest to be switched to other
land cover when the price fell because of economic profit motivation, increasing the number of OTF or
FTO. Meanwhile, the southwestern mountain with high elevation is suitable for tree plantation and
unsuitable for growing crop and settlement, which leads to a relatively low proportion of OTF and
FTO compared with the proportion of OTF and FTO in the core zone. These situations result in a high
change frequency in the core zone.
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The low grain price and high timber price, policy incentives and market demand resulted in a
rapid expansion of forest plantation in the West Dongting Lake region from 2000 to 2005. The early
expansion mainly occurred in the core zone, and then in the transition zone since 2003. One potential
factor is the transferal of parts of forest plantation from the core zone surrounding the water body
to the transition zone due to TGD raising the water level of Dongting Lake. A possible reason for
forest areas keeping relatively steady from 2006 to 2011 is a recovery in the grain price and stable
timber price. Since 2011, a series of policies for protecting wetlands and restoring ecology made by
the local government, especially the project of returning forest to wetland after 2013, forbade poplar
plantation in the Dongting Lake region. It is the key driver of the difference of changes between before
and after 2011. These policies have led to a continuing decline of the forest areas since 2011, except for
the forest areas in the core zone sharply fluctuating with the fluctuating price of timber in 2014 and
2016. The policy of cleaning the poplar plantation in 2017 further accelerated the transferal of forest
plantation from the core zone to the transition zone, resulting in a decline of forest areas in the core
zone and an increasing trend in the transition zone during 2017. It also explained the high proportions
of OTF and FTF in 2017 (Figure 10b,c). Therefore, the variation trend of forest areas indicated that
anthropogenic factors, such as government policies and economic profits, are the dominating drivers
of forest plantation in the West Dongting Lake region.

Results in this study effectively showed not only the final results of forest variations, but also the
spatiotemporal dynamic process of forests and the potential drivers in West Dongting Lake, providing
abundant knowledge for wetland ecosystem protection.

5. Conclusions

This study confirmed the applicability of the BFAST method to detect changes related to forest
in the subtropical wetland ecosystem using the monthly Landsat NDVI time series and investigated
the spatiotemporal variations of forest in the West Dongting Lake region between 2000 and 2018. By
using the monthly Landsat time series generated by the spatiotemporal interpolator and data fusion
algorithms, the forest changes, including FTO, OTF, and FTF, and land cover categories before and after
breakpoints, could be effectively captured by integrating BFAST and RF algorithms, with an overall
accuracy of 87.8%. The spatiotemporal variations of forest were described from the aspects of duration
and distribution of forest, the number and timing of forest changes, and the variation of forest areas,
respectively:

(1) The forests are mainly distributed in the core zone surrounding the water body and the
southwestern mountains. Over 60% of the stable forests are distributed in the transition
zone, whereas the changed forests in the core zone and low elevation region are more prevalent.

(2) Not only the proportion of pixels with FTF but also the number of FTF is higher than those of
FTO and OTF. The forest change in the core zone is more frequent than that in the transition zone.
Most changes occurred in the areas with DEM ranging from 20 to 40 m, in which the proportion
of detected change number in the core zone is higher than that in the transition zone regardless of
the change type.

(3) Large parts of FTO occurred since 2011 due to the policy for protecting wetlands and restoring
ecology. Some clear peaks of OTF were detected during 2000, 2012, 2016, and 2017 because of the
jumping price of timber. FTF was relatively even for each year, except for one peak in 2017.

(4) The variation of forest areas in the West Dongting Lake region experienced three steps: rapid
expansion of forest plantation from 2000 to 2005, to which forest plantation in the core zone is the
major contribution; relatively steady from 2006 to 2011, except for a small increase in the transition
zone between 2008 and 2011; and continuous decline since 2011 with small sharp fluctuations
in the core zone and a laggard downtrend in the transition zone. These variations were mainly
caused by anthropogenic factors, such as the government policies and economic profits.
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