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Abstract: The main objective of this study was to explore the impact of various spectral indices on
the performance of change vector analysis (CVA) for detecting the land cover changes on the island
of Crete, Greece, between the last two decades (1999–2009 and 2009–2019). A set of such indices,
namely, normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), albedo,
bare soil index (BSI), tasseled cap greenness (TCG), and tasseled cap brightness (TCB), representing
both the vegetation and soil conditions of the study area, were estimated on Landsat satellite images
captured in 1999, 2009, and 2019. Change vector analysis was then applied for five different index
combinations resulting to the relative change outputs. The evaluation of these outputs was performed
towards detailed land cover maps produced by supervised classification of the aforementioned
images. The results from the two examined periods revealed that the five index combinations
provided promising performance results in terms of kappa index (with a range of 0.60–0.69) and
overall accuracy (with a range of 0.86–0.96). Moreover, among the different combinations, the use of
NDVI and albedo were found to provide superior results against the other combinations.
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1. Introduction

Land cover plays a significant role in the terrestrial ecosystem biodiversity, water resources, climate
system, and socio-economic sectors. The term “land cover” originally referred to the distribution and
type of vegetation (e.g., cropland, forests) that covered a land’s surface [1]. However, nowadays, it is
considered to describe the general biophysical state of the surface also providing information about
other aspects of the land such as soils and water [1].

Changes in land cover caused by several natural and anthropogenic forces and represented
by relative biophysical changes to the land surface have noticeable impacts on the quality of
environmental and ecological systems. Therefore, land cover changes can constitute the main
indicators of environmental/ecological change at different spatial and temporal scales. The detection
and evaluation of these spatio-temporal changes has become a major priority for researchers and policy
makers around the world over the last few decades [2].

In order to study land cover changes in a given region, it is necessary to have information that
reflects its status at different times. Satellite remote sensing—most of the times, in combination with
geographic information systems (GIS)—has been recognized as a powerful and cost-effective tool which
can provide valuable multi-temporal information for detecting such changes. Due to the ability of
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satellites to cover, continuously and repeatedly, vast and inaccessible areas as well as the advancements
in the quality (spatial resolution) of output imagery data, remote sensing-based techniques have been
widely applied in numerous studies focusing on land cover change detection [3–5]. In terms of remote
sensing, change detection is defined as the process in which temporal differences in the state of an object
or phenomenon are identified [6]. Considering the imagery data processing approach, the change
detection techniques can be divided into two main categories: (a) based on spectral classification of
satellite images for each date; and (b) based on metric difference among satellite images of different
dates or data products derived from their transformation.

The biophysical properties of land surface are mainly expressed as coverages by vegetation or
bare soil. These properties can be measured by transformation-based data products such as vegetation
and soil indices. Based on the degree of absorption/reflectance from the land surface in the different
portions of electromagnetic spectrum (satellite bands), the indices represent the vegetation and soil
conditions, respectively, for a given region, using a defined value range. The relationship between
spectral indices and land cover change detection is well established resulting from their common
examination in this kind of analyses [7–9].

Concerning the recent (within last decade) literature, several studies have focused on land cover
change detection for various geographical settings in Greece, using remotely sensed techniques and
data. It is worth mentioning that, in these studies, classification-based techniques have been selected to
be applied. Among others, Dawson et al. [10] assessed the land cover of the Itanos area on the island
of Crete and then detected its changes for the period 2013–2016. They carried out object-based image
analysis to classify the land cover on high spatial resolution satellite imagery. Xystrakis et al. [11]
mapped the land cover changes for different time intervals of the period 1945–2009 in Aetoloakarnania
prefecture, central Greece. Also, in this case, an object-based image analysis allowed the multi-temporal
classification of the land cover and, consecutively, the detection of changes for each time interval.
Symeonakis [12] identified the land cover changes on the island of Lesvos for the period 1995–2007
by the classification of satellite imagery data. Furthermore, in a study by Kolios and Stylios [13], the
land cover changes in the Preveza region for the period 2000–2009 were detected, examining several
remotely sensed data along with the implementation of different traditional and modern classification
techniques. Mallinis et al. [14] mapped land cover changes in Nestos delta (“Natura 2000” habitat site
in northern Greece) by exploiting high spatial resolution satellite images. Maps created for separate
time intervals over a total period of about 65 years contributed to the change detection.

The main purpose of this study was to explore the effect of various spectral indices on the
implementation of a metric difference-based technique, known as change vector analysis (CVA), for
detecting the land cover changes on the total extent of Crete Island during the decades 1999–2009 and
2009–2019. These indices were derived from satellite images from 1999, 2009, and 2019. Change vector
analysis produced change results for each of the examined time periods presenting the magnitude and
type of changes, respectively, based on five different index combinations. The most appropriate index
combination for detecting the land cover changes in the study area was determined by an evaluation
process resulting to the estimation of accuracy statistics (kappa index and overall accuracy).

2. Materials and Methods

2.1. Study Area

The island of Crete is located in the southern part of Greece (Figure 1), having a distance of 160 km
from the Greek mainland. It separates the Aegean Sea from the Libyan Sea and is surrounded by
numerous smaller islands including Gavdos, the southernmost Greek and European border. With an
extent of 8257 km2 (about 6% of the total area of Greece), length of 260 km, and width ranging from
12 km to 57 km, Crete constitutes the largest Greek island and the fifth largest in the Mediterranean
region. Administratively, it is divided into four prefectures from west to east: Chania, Rethymno,
Heraklion, and Lasithi (Figure 1). According to the official 2011 census [15] held by the Hellenic
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Statistical Authority (ELSTAT), Crete is the most populated Greek island with 623,065 inhabitants (5.8%
of the total population of Greece). As a result of significant increase in urban and touristic activities
over the last two decades, the majority of them are concentrated in coastal areas [16].
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Figure 1. Study area and location maps.

The topography of Crete follows the typical Greek landscape consisting mainly of mountainous
terrain (with a mean elevation at 460 m). A great number of landforms (caves, plateaus, etc.) have
developed among its mountains. The variable morphology as well as the position of the island between
the Mediterranean and North African climatic zones have played an important role in its climate.
In general, it is considered mild with warm and dry summers and slightly cold and humid winters.
The average temperature is 10 °C in the winter season and 30 °C in the summer season. The mean
annual precipitation is estimated to be 750 mm, presenting strong spatial and temporal differences.
Specifically, more than 40% occurs in the winter months ranging from 440 mm in the east to 2188 mm
in the west [17].

Geologically, the island is composed of pre-Alpine and Alpine carbonate rocks, and Neogene and
Quaternary (alluvial) sediments. The carbonate rocks, such as limestones, marbles, and dolomites,
constitute the dominant geological formations covering more than 30% of the total area. Since these
formations expedite water penetration, the region is characterized by limited surface waters.

Grasslands and permanent crops of olives, vines, and citrus cover most of the study area.
Heterogeneous croplands or fields mixed with natural vegetation also make their appearance over a
significant part of the island. The extensive agricultural activity has caused a strong dependence of the
island on groundwater sources [18].
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2.2. Satellite Imagery Data

Considering the relation between the examined time period of 1999–2019 and the temporal
availability of data, Landsat satellite images were selected to be analyzed in this study. In particular,
multispectral imagery data acquired from the Landsat 5 thematic mapper (TM) in May 1999, Landsat 7
enhanced thematic mapper plus (ETM+) in May 2009, and Landsat 8 operational land imager (OLI) in
May 2019 were used. The acquisition date selection mainly depended on the need for acquiring images:
(a) from the peak of the vegetation growing season (from May to June) and (b) with no influence by
cloud cover limitations. Due to the size of the study area, three image tiles with a spatial resolution of
30 m were provided by the United States Geological Survey (USGS) [19] for each date in order to build
a cloudless image covering the total extent.

2.3. Change Vector Analysis

Change vector analysis, which has been widely used to study the spatio-temporal dynamics
of land cover [20–22], is a change detection technique which presents the change as a vector in
a multi-dimensional space. By examining the metric difference of input components that can be
either original satellite (band) images or transformed data products of different dates, CVA enables
pixel-by-pixel mapping of the magnitude and direction of the changes among the selected dates. The
number of dimensions of the space is defined by the number (n) of components. In the case of using
two components, the relative two-dimensional space can be represented by a Cartesian coordinate
system with two axes (Figure 2). The change vector is formed by two points corresponding to the same
pixel at two different dates [20]. The start point and finish point are considered to be the locations of
pixel (with pixel values as coordinates) in the space of two components at these two dates.

The magnitude (∆M) of the change between date 1 (t1) and date 2 (t2) is based on the length of
change vector (Figure 2a) and is computed by the Euclidean distance as follows:

∆M =

√
(C1t2 – C1t1)

2 + (C2t2 – C2t1)
2 (1)

where C1t1 and C1t2 are the pixel values in component 1 at dates 1 and 2, respectively, and C2t1 and
C2t2 are the pixel values in component 2 at dates 1 and 2, respectively. A threshold, usually in terms
of standard deviations, is defined for the magnitude values to distinguish between changed and
unchanged parts of the study area [21].
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The direction of the change is based on the angle (θ) of change vector (Figure 2b) indicating the
type of change from one date to the other. The angle defines the quadrant and can be derived from
Equation (2):

tanθ =
C1t2 –C1t1
C2t2 –C2t1

(2)

where tanθ is the tangent of angle θ. Since the number of quadrants is equal to 2n, the direction of the
change is categorized as four quadrants (Figure 2b). The first quadrant (0◦–90◦) and the third quadrant
(180◦–270◦) indicate an increase and decrease in both components, respectively. The second quadrant
(90◦–180◦) and the fourth quadrant (270◦–360◦) indicate that one of the components increased and the
other one decreased.

2.4. Land Cover Change Detection

2.4.1. Imagery Data Pre-Processing

The imagery data pre-processing was performed in ENVI (version 5.1) software and included the
atmospheric and radiometric corrections as well as the mosaicking of the obtained Landsat image tiles.
When using imagery data from different satellite sensors, acquired at different dates, the atmospheric
and radiometric corrections are prerequisite for creating high-quality data that are less or not affected
by atmospheric differences and variations due to the solar irradiance. Based on dark object subtraction
approach [23] and radiometric rescaling coefficients [24], the result was the conversion of the pixel
values of Landsat image tiles from original digital numbers into top-of-atmosphere (TOA) reflectance
values. The corrected image tiles of each date were then mosaicked (as it was abovementioned) in
order to build a full image covering the total extent of the study area.

2.4.2. Preparation of Spectral Indices

The biophysical properties of a given region can be assessed by several spectral indices which are
developed after processing of satellite imagery data. These indices are subdivided into two main types
representing: (a) the vegetation conditions and (b) the soil conditions of the region. In total, six spectral
indices were considered in this study including three vegetation indices, namely, normalized difference
vegetation index (NDVI), soil adjusted vegetation index (SAVI), tasseled cap greenness (TCG), and
three soil indices, namely, albedo, bare soil index (BSI), and tasseled cap brightness (TCB).

The NDVI is the most known and widely used index for vegetation density [25]. Among several
relative parameters, it can be highly linked to the quantity of chlorophyll concentrated in leaves and
the biomass productivity variations. The NDVI is calculated by the following Equation (3) [21]:

NDVI =
ρNIR − ρRED

ρNIR + ρRED
(3)

where ρNIR and ρRED are the reflectance values at the near-infrared and red visible bands, respectively,
of the Landsat imagery data. The resulting values are bounded by a range between −1 and 1, indicating
a lack of vegetation or dense vegetation, respectively.

The SAVI minimizes the soil influence on vegetation quantification by introducing a soil adjustment
factor. It is computed in a range between –1 and 1 by the Equation (4) [26]:

SAVI =

(
ρNIR – ρRED

ρNIR + ρRED + L

)
× (1 + L) (4)

where L is the soil adjustment factor, commonly set at a 0.5 value.
Albedo reflects soil conditions, including soil moisture and soil exposure, based on the quantity

of radiation energy absorbed by the land surface. It is estimated as follows [27]:

Albedo = 0.356ρBLUE + 0.130ρRED + 0.373ρNIR + 0.085ρSWIR1 + 0.072ρSWIR2 – 0.0018 (5)
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where ρBLUE, ρSWIR1 and ρSWIR2 are the reflectance values at the blue visible, short-wave infrared 1,
and short-wave infrared 2 bands, respectively, of the Landsat imagery data. In this study, albedo was
estimated in a normalized form according to Reference [28]. The resulting values are bounded by a
range between 0 and 2 indicating vegetation cover or barren land, respectively.

The BSI is mainly used to highlight the difference between agricultural and non-agricultural land
due to the fact of its enhanced ability to identify bare soil and fallow lands. It is derived in a range
between 0 and 2 from the equation [22]:

BSI =


(
ρRED + ρSWIR1

)
–
(
ρNIR + ρBLUE

)(
ρRED + ρSWIR1

)
+

(
ρNIR + ρBLUE

)  + 1 (6)

Tasseled cap (TC) is the transformation of imagery data into a number of components allowing
better separability between vegetation and bare soil. Among the components, brightness and greenness
are considered the most noticeable in terms of land cover. The TCG (with a range between –1
and 1) and TCB (with a range between 0 and 2) are defined on the basis of soil and vegetation,
respectively, reflectance variations. Their TC transformation-based creation is achieved using fixed
coefficients [29–31] in equations similar to Equation (5). As it is shown in Table 1, these coefficients are
different for each of the Landsat sensors (TM, ETM+, and OLI) and corresponding bands.

Table 1. Coefficients for tasseled cap greenness and brightness.

Satellite Sensor Index

Bands

BLUE GREEN RED NEAR-INFRARED
(NIR)

SHORT-WAVE
INFRARED 1 (SWIR1)

SHORT-WAVE
INFRARED 2 (SWIR2)

Landsat 5 TM
Greenness –0.2848 –0.2435 –0.5436 0.7243 0.0840 –0.1800
Brightness 0.3037 0.2793 0.4743 0.5585 0.5082 0.1863

Landsat 7 ETM+
Greenness –0.3344 –0.3544 –0.4556 0.6966 –0.0242 –0.263
Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596

Landsat 8 OLI
Greenness –0.2941 –0.243 –0.5424 0.7276 0.0713 –0.1608
Brightness 0.3029 0.2786 0.4733 0.5599 0.5080 0.1872

By executing all the aforementioned equations in ArcGIS (version 10.6) software, the relative
spectral indices were obtained for 1999, 2009, and 2019. An overview of these indices is presented for
selected dates in Figure 3.
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Figure 3. Spectral indices for selected dates: (a) normalized difference vegetation index (NDVI) for
1999; (b) soil adjusted vegetation index (SAVI) for 2009; (c) tasseled cap greenness (TCG) for 2019;
(d) Albedo for 1999; (e) bare soil index (BSI) for 2009; (f) tasseled cap brightness (TCB) for 2019.

2.4.3. Implementation of CVA

In the present study, CVA was selected to be implemented for land cover change detection using
five different combinations of the above spectral indices. In each implementation, a vegetation index
as component 1 (C1) and a soil index as component 2 (C2) were considered resulting to the following
combinations: NDVI–albedo, NDVI–BSI, SAVI–albedo, SAVI–BSI and TCG–TCB. This selection for the
number of components led to the formation of a two-dimensional space and four directional quadrants
as schematically described by Cartesian coordinate system in Figure 2.

By using Equation (1) in ArcGIS software, the magnitude of land cover changes in the study area
was estimated for each of the examined index combinations and time periods. One standard deviation
from the mean was determined as threshold to distinguish between change and no change [21,32].
In a similar manner, the level of change was determined as low and high, respectively. The change
magnitude outputs for the periods of 1999–2009 and 2009–2019 are presented as maps categorized into
three categories: “no change”, “low level change”, and “high level change”.

By using Equation (2), the change direction was then defined according to the angles of change
vectors. Each of the four quadrants is related to a category representing the type of land cover changes
in the study area. Therefore, the first category with an increase in both spectral indices represents
biomass variation or moisture reduction. This category indicates areas with variations in the amount
of biomass that can be associated with changes in agricultural areas such as crop substitution or
different phenological stages in the agricultural cycle [20]. The second category with a decrease in
the vegetation index and an increase in the soil index represents bare soil expansion, i.e., areas with
land degradation. The third category with a decrease in both spectral indices represents water body or
moisture increase. The fourth category with an increase in the vegetation index and a decrease in the soil
index represents vegetation regrowth, i.e., areas with land improvement. By taking into consideration
also the information from the change magnitude about the unchanged part of the study area, the
final change direction outputs for the periods of 1999–2009 and 2009–2019 were produced. They are
presented as maps categorized into the relative five categories: “no change”, “water body/moisture
increase”, “vegetation regrowth”, “biomass variation/moisture reduction”, and “bare soil expansion”.
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3. Results

3.1. Spatio-Temporal Dynamics of Land Cover

The land cover change maps produced by the five examined index combinations in CVA are
illustrated in Figures 4 and 5 for the period of 1999–2009, and in Figures 6 and 7 for the period
of 2009–2019. Furthermore, the calculated area percentages of the relative categories are shown in
Figures 8 and 9, analytically, for each combination.
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3.1.1. NDVI–Albedo

Based on the NDVI–albedo combination, a total of 69.99% (about 5779 km2) of the study area
presented changes in the period between 1999 and 2009, with the rest, 30.01% (approximately 2478 km2),
not presenting changes. Among the changes, 68.16% (about 5626 km2) of the island referred to low
level changes detected across its total extent. Only 1.83% (about 153 km2) referred to high level changes
mainly concentrated in the Rethymno prefecture.

In terms of change direction, i.e., type of change, 44.29% (approximately 3656 km2) of the study area
indicated vegetation regrowth, followed by 22.07% (approximately 1822 km2), 2.88% (approximately
239 km2), and 0.75% (approximately 62 km2) indicating biomass variation/moisture reduction, bare
soil expansion, and water body/moisture increase, respectively, in the same period. In either high or
low degree, these change direction categories made their appearance across the entire region.

In the period between 2009 and 2019, a larger part of the study area (37.06%, approximately
3060 km2) remained unchanged thus resulting in a smaller changed part (total of 62.94%, approximately
5197 km2). Although the low-level changes continued to dominate on the island against the high
level changes, a decrease in the first one (new percentage equal to 60.36%, approximately 4983 km2)
and a slight increase in the second one (new percentage equal to 2.58%, approximately 214 km2) was
noted. Spatially, the extent of the low-level changes decreased in the Chania prefecture, whereas the
high-level changes were mostly concentrated in the Heraklion prefecture. However, a significant area
of these changes remained in the Rethymno prefecture and especially on Psiloritis Mount.

In the same period, the part of the study area presenting vegetation regrowth was notably
decreased (new percentage equal to 27.20%, approximately 2246 km2) reaching the extent of the part
with biomass variation/moisture reduction (new percentage equal to 27.43%, approximately 2311 km2).
This change type was limited in the Heraklion prefecture. On the other hand, the part presenting bare
soil expansion increased (new percentage equal to 7%, approximately 532 km2) covering scattered
areas in the Chania prefecture and large areas on the massifs of the island.

3.1.2. NDVI–BSI

According to the NDVI–BSI combination, a total of 68.78% (approximately 5680 km2) of the
study area was observed with changes in the period between 1999 and 2009, and the rest 31.22%
(approximately 2577 km2) with no changes. From the total of changed area, 66.67% (approximately
5504 km2) was related to low level changes, and only 2.11% (approximately 176 km2) to high level
changes. The spatial pattern followed by these changes was shown to be similar to this one from
NDVI–albedo combination in the same period.

As it was derived from the relative change direction map for the period of 1999–2009, 61%
(approximately 5096 km2) of the island affected by vegetation regrowth, with only 3.99% (approximately
330 km2), 2.63% (approximately 218 km2), and 1.16% (approximately 36 km2) affected by bare soil
expansion, biomass variation/moisture reduction, and water body/moisture increase, respectively.
Areas with vegetation regrowth were detected across the entire island, and areas with bare soil
expansion were mainly located in Heraklion prefecture. A high-level change to barren land was also
extensively situated in the western part of the Lasithi prefecture and specifically on the Dikti Mount.

In the period between 2009 and 2019, the unchanged areas cover a larger part of the island
(37.66%, approximately 3110 km2) resulting, thus, to a totally smaller part for changed areas (62.93%,
approximately 5148 km2). Concerning the level of change, a decrease in the low-level changes (new
percentage equal to 59.72%, approximately 4931 km2) and a slight increase in the high-level changes
(new percentage equal to 2.62%, approximately 217 km2) were shown. Spatially, the withdrawal of
the low-level changes from the western part of the island and the transfer of concentration of the
high-level changes in the Heraklion prefecture and on Psiloritis Mount were also observed in this
index combination.

The part of the study area indicating vegetation regrowth decreased (new percentage equal to
53%, approximately 4376 km2) and the part indicating bare soil expansion was slightly increased (new
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percentage equal to 7%, approximately 569 km2) in the period of 2009–2019. However, the large areas
on Lefka Ori Mount (in Chania prefecture) and Psiloritis Mount (in Rethymno prefecture) affected by
water body/moisture increase changes were the most pronounced from this index combination for the
given period. A slight increase of the area percentage (new equal to 1.31% approximately 151 km2)
was estimated for the relative change direction category.

3.1.3. SAVI–Albedo

The change magnitude map of SAVI–albedo combination for the period between 1999 and 2009
indicated that in total 72.57% (about 5993 km2) of the study area was changed, and the rest 27.43%
(about 2264 km2) was unchanged. In particular, 70.45% (approximately 5816 km2) of the changes were
of low level presenting a scattered distribution within the island. Only 2.12% (approximately 177 km2)
of the changes were of high level, being mainly concentrated in the Rethymno prefecture.

The change direction map for the same period showed that a significant part equal to 43.28%
(approximately 5096 km2) of the study area experienced vegetation regrowth. A less extensive part
equal to 25.38% (approximately 2096 km2) experienced biomass variation/moisture reduction. Large
extents of the aforementioned parts were detected in Rethymno prefecture. The corresponding area
percentages for the other two categories, the bare soil expansion and water body/moisture increase,
were 2.64% (approximately 219 km2) and 1.27% (about 105 km2), respectively.

In the period between 2009 and 2019, the total of unchanged areas increased (new percentage
equal to 35.80%, approximately 2956 km2) and this area’s changed decreased (new percentage equal
to 64.20%, approximately 5302 km2). However, despite the minimization of total changed extent,
the areas with high level changes marked a notable increase reaching an area percentage equal to
8.62% (approximately 713 km2). These areas were situated across the entire island, with pronounced
concentrations in its central part and specifically in the Heraklion and Rethymno prefectures. It is also
worth mentioning the significant presence of this change magnitude category on Psiloritis Mount.

In the period of 2009–2019, the part of the study area experienced vegetation regrowth remarkably
decreased (new percentage equal to 23.89%, approximately 1972 km2). This part was spatially restricted
within Heraklion prefecture. On the contrary, the extent of the other three change direction categories
more (new percentage equal to 34.18% or approximately 2824 km2 for the biomass variation/moisture
decrease) or less increased (new percentage equal to 4.34% or approximately 358 km2 for the bare
soil expansion, and to 1.79% or approximately 148 km2 for the water body/moisture decrease). In the
relative map, large areas seemed to experience bare soil expansion on Lefka Ori and Psiloritis Mounts
and moisture increase in Chania and Rethymno prefectures.

3.1.4. SAVI–BSI

The change magnitudes from SAVI–BSI combination for the period of 1999–2009 can be
characterized as quantitatively and spatially similar to the previous combinations. Changes occurred
in the largest part of the study area (totally 66.88%, approximately 5523 km2). Most of these changes
were of low level, covering 64.53% (approximately 5327 km2) of the island and presenting a spatial
scattering across its total extent. The rest 2.35% (approximately 196 km2) was covered by high level
changes which mostly took place in the Rethymno prefecture.

Based on change directions for the same period, vegetation regrowth occurred in the largest part of
the study area (59.40%, approximately 5096 km2) indicating a spatially scattered coverage. Its relative
percentage was found to be not at all close with those of the remaining categories which had a range
from only 1% (approximately 41 km2) for water body/moisture reduction to 4.33% (approximately
359 km2) for bare soil expansion. However, the high spatial concentration of bare soil expansion in
Heraklion prefecture must be highlighted.

As in the previously described combination of SAVI–albedo, so in this one, the increase to the
extent of high-level changes (new percentage equal to 9.04%, approximately 747 km2) in the period of
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2009–2019 was noticeable. Spatially, this increase was extended in significant parts of the Heraklion
and Rethymno (remarkably on Psiloritis Mount) prefectures.

In the period of 2009–2019, vegetation regrowth occurred in a slightly smaller part of the island
(52.52%, approximately 4335 km2). On the other hand, firstly bare soil expansion and subsequently
moisture increase occurred in larger parts (5.88% or approximately 486 km2, and 1.95% or approximately
162 km2, respectively). Bare soil expansion was spatially transferred from the Heraklion to Chania
prefecture, and the moisture increase replaced the relative areas of bare soil expansion on Lefka Ori
and Psiloritis Mounts, as they were characterized by the previous SAVI–albedo combination.

3.1.5. TCG–TCB

Regarding the TCG–TCB combination results for the period between 1999 and 2009, a significant
part of the study area totaling to 68.91% (approximately 5690 km2) indicated changes, with 66.42%
(approximately 5484 km2) being linked to a low level and the rest 2.09% (approximately 173 km2) to a
high level. A smaller part equal to 31.49% (approximately 2597 km2) indicated persistence. Persistent
and low-level changed areas appear across the entire island, whereas high level changed areas mainly
in the Heraklion prefecture.

Against all the above index combinations, this one indicated biomass variation/moisture reduction
(not vegetation regrowth) as the change direction category with the highest coverage (36.19%,
approximately 3021 km2) for the period of 1999–2009. A high concentration of this category in
the southern part of Chania prefecture can be spatially detected. In a ranking based on area percentages,
the categories of vegetation regrowth (18.63%, approximately 1539 km2), bare soil expansion (12.71%,
approximately 1050 km2) and water body/moisture increase (0.98%, approximately 81 km2) follow.
Areas with vegetation regrowth made their appearance in all prefectures of the island, whereas areas
with bare soil expansion were highly concentrated in Heraklion prefecture.

In the period between 2009 and 2019, the extent of low-level changes increased covering an
extremely large part of the study area (87.60%, approximately 7234 km2). A much smaller part (5.91%,
about 488 km2) covered by a slightly increased extent of high-level changes was also observed in
Heraklion prefecture, with large areas on Lefka Ori and Psiloritis Mounts.

In the period of 2009–2019, the part of the island indicating biomass variation/moisture reduction
was almost doubled (new percentage equal to 62.40%, approximately 5205 km2). This doubling was
followed by a lower increase in vegetation regrowth (new percentage equal to 28.75%, approximately
2374 km2), a significant decrease in bare soil expansion (new percentage equal to 1.36%, approximately
112 km2), and a persistence in water body/moisture increase (new percentage equal to 1%, approximately
31 km2). The high concentrations of areas with biomass variation/moisture reduction and vegetation
regrowth in Heraklion and Chania prefectures, respectively, as well as the significant extent of areas
with bare soil expansion on Psiloritis and Lefka Ori Mounts, constituted the most pronounced spatial
characteristics from this index combination.

3.2. Accuracy Assessment

The outputs of CVA were evaluated by confusion matrices in terms of accuracy [33,34]. A confusion
matrix provides accuracy statistics such as kappa index (with a range from 0 to 1 indicating from very
low to excellent accuracy) and overall accuracy, according to the proportion of an area that is correctly
matched with reference data [35]. Due to the unavailability of accurate field-derived data, new remote
sensing-derived data was created to be used as reference data. Its creation was based on detailed land
cover maps produced by supervised classification of the Landsat imagery data.

Analytically, a total of 246 random sample areas were firstly collected on RGB color composite
images of 1999, 2009, and 2019. These areas were then labeled as a specific land cover category by
visual interpretation resulting to the representation of totally six categories. Using the labeled areas,
a supervised classification algorithm like Mahalanobis distance was applied in ENVI software to
produce a detailed land cover map for each date (Figure 10). Based on the correlations within a dataset
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as well as the distribution of the data, Mahalanobis distance algorithm determines the similarity
between an unknown data element to a known dataset by using a covariance matrix [36]. Consequently,
a GIS-based spatial analysis was conducted on pairs of these maps identifying areas of change or
no change for the periods 1999–2009 and 2009–2019. In changed area, the type of change was also
identified and labeled according to the change direction categories from CVA. The total of identified
information as reference data was finally compared with the change magnitude and direction outputs
of CVA in confusion matrices to calculate the statistics of kappa index and overall accuracy (Table 2).
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Table 2. Kappa index and overall accuracy values calculated for different index combinations in two
time periods.

Time Period Index Combination
Change/No Change (Magnitude) Type of Change (Direction)

Kappa Index Overall Accuracy Kappa Index Overall Accuracy

1999–2009

NDVI–albedo 0.672 1 0.954 0.637 0.887
NDVI–BSI 0.669 0.949 0.590 0.862

SAVI–albedo 0.664 0.943 0.626 0.884
SAVI–BSI 0.668 0.949 0.591 0.863
TCG–TCB 0.663 0.943 0.590 0.861

2009–2019

NDVI–albedo 0.686 0.960 0.637 0.896
NDVI–BSI 0.676 0.954 0.612 0.883

SAVI–albedo 0.673 0.946 0.631 0.889
SAVI–BSI 0.675 0.950 0.616 0.884
TCG–TCB 0.641 0.938 0.605 0.880

1 Bold style indicates the highest values.

On the basis of areas with change and no change, for the period of 1999–2009, the highest values of
kappa index and overall accuracy were derived from the NDVI–albedo combination. It was followed
by NDVI–BSI, SAVI–BSI, SAVI–albedo, and TCG–TCB. For the period of 2009–2019, the highest values
were also from NDVI–albedo followed by the same combinations.

Moreover, in terms of the type of change, for the period of 1999–2009, the highest values of kappa
index and overall accuracy were from the NDVI–albedo. The SAVI–albedo, SAVI–BSI, NDVI–BSI and
TCG–TCB constituted the ranking of the other combinations. For the period of 2009–2019, the ranking
of the combinations was found to be similar.
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4. Discussion and Interpretation

In the last two decades, the main objective of research efforts related to land cover change detection
has been to produce reliable cartographic outputs with as high as possible accuracy. In this study, by
applying a remote sensing-based technique like CVA, the relationship between the changes on various
spectral indices and land cover changes in Crete Island was assessed and mapped for the time periods
of 1999–2009 and 2009–2019. Landsat satellite images acquired in 1999, 2009 and 2019 constituted the
basis for the creation of both vegetation and soil indices. Five different combinations of these indices
(NDVI–albedo, NDVI–BSI, SAVI–albedo, SAVI–BSI and TCG–TCB) were examined in CVA in order to
evaluate their impact on the performance of technique and identify the best combination in terms of
accuracy of the outputs.

Change vector analysis is a robust change detection technique which can provide rich quantitative
and qualitative information with respect to spatio-temporal land cover dynamics in a given region.
Due to the fact of its two output products, change magnitude and direction, it enables the identification
of different magnitudes and types of change. In comparison with classification-based techniques, CVA
has the capability to concurrently analyze a set of remotely sensed data for monitoring changes within
land cover classes. These changes are derived from the difference between successive satellite images
without the need to struggle with uncertain classification [21].

The outputs of CVA for the different index combinations were mapped in order to visualize the
spatial distribution of the estimated land cover change magnitudes and directions (i.e., types) in the
study area. The magnitude maps (Figures 4 and 5) produced by the total of combinations indicated that
for both examined time periods the study area was mostly affected by low level changes. On the other
hand, its unchanged part was also prominent. The presence of high-level changes was particularly low
during the period of 1999–2009 presenting a similar spatial pattern across the island for the majority of
combinations (except for TCG–TCB). However, this presence increased (specifically from SAVI–albedo
and SAVI–BSI combinations) during the period of 1999–2009 covering much more areas in Heraklion
and Rethymno prefectures as well as large areas on massifs of the island.

The direction maps (Figures 6 and 7) created from the majority of combinations (except for
TCG–TCB) indicated that during the period of 1999–2009 the study area mostly experienced land
improvement expressed by vegetation regrowth. Due to the spatial concentration of this regrowth
mainly in the western (Chania prefecture) and central (Rethymno prefecture) parts of the island, the
high annual precipitation of the period [37] with the relative increasing amount of rainfall water from
east to west (as a result of its spatial variability) can be characterized as the main natural driving force.
On the other hand, the intensification of the agricultural sector had also an anthropogenic influence on
the dominant type of land cover change. This intensification reached a high point in the specific period
with complete mechanization of land cultivation and expansion of irrigation networks [38].

Based on the same index combinations, during the following period of 2009–2019, the study area
continued to experience vegetation regrowth but to a decreased degree. Its spatial concentration was
totally removed from the western to central part of the island (from Chania to Heraklion prefecture)
leading to an increased land degradation in the west with more areas experiencing bare soil expansion.
This higher spatial expansion of barren land can partially be attributed to the decrease in annual
precipitation, which is projected to be further reduced over the next decades [39]. The precipitation
decreases in this period altered the groundwater recharge with adverse implications for water supply
and agricultural activities. In combination with that, the profit-based unattractiveness of traditional
crops and the tourism growth caused further decline in the importance of the agricultural sector [38].
The bare soil expansion in large areas of massifs, such as Lefka Ori and Psiloritis Mounts, was also
pronounced for the same period. The specific type of change, as it was noticed by the combinations of
NDVI–albedo and SAVI–albedo, can be considered the result of accelerated rates of soil erosion in
these mountainous areas.

In addition, it can be noted that a significant part of the previously described gain and loss of
vegetation amount for the relative time periods was marked as less intense and was mostly “translated”
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as biomass variations (or moisture reduction) from the combination of TCG–TCB. This trend also
appeared from the combinations of NDVI–albedo and SAVI–albedo in order to indicate much of
vegetation loss within the period 2009–2019.

The part of the study area covered by water bodies or experiencing an increase in moisture is also
worth mentioning. For this type of change, the small extent in both periods and the almost unchanged
state between them, from the total of examined index combinations, constitute the confirmation of the
limited presence of surface waters in the island.

Regarding the spectral indices used in the selected combinations it was shown that among the
vegetation indices, SAVI had a different influence on change magnitude outputs providing more
areas with high level changes against NDVI and TCG. In terms of change direction outputs, as it is
derived from the above, among the soil indices, BSI seemed to highlight vegetation regrowth against
biomass variations. Conversely, albedo and TCB highlighted the moisture of vegetation indicating
these variations. Furthermore, in contrast to albedo and TCB, BSI was found to be greatly affected by
the increased moisture of soil on massifs of the island (probably due to snow melting). The assignment
of extensive mountainous areas (especially in the period of 2009–2019) to the relative category for the
combinations with BSI, and to the category of bare soil expansion for the combinations with albedo
and TCB confirms this finding.

Despite the differences among the examined indices, the magnitude and direction results produced
by their combinations identified certain similarities. One of the most characteristic was the detection
of land cover changes attributable to the construction of Aposelemis dam in Heraklion prefecture
(Figure 1). In terms of magnitude, the total of the applied index combinations recognized the relative
changes as high-level changes in both time periods. Moreover, in terms of direction, they firstly
detected the beginning of the construction works in 2005 and the conversion of land from agricultural
to barren (Figure 11), indicating the specific change as bare soil expansion for the period of 1999–2009.
Afterwards, they detected the completion of the works in 2015 resulting to the creation of an artificial
lake (Figure 11). In all the combinations, this change was represented by the category of water
body/moisture increase for the period of 2009–2019.
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The CVA outputs were evaluated in terms of accuracy using confusion matrices based on change/no
change (magnitude) and change type (direction) for the two periods. The statistics of kappa index
and overall accuracy calculated by these matrices (Table 2) showed that the five index combinations
provided similar values of satisfactory accuracy. In general, among the pair of outputs, the combinations
detected with higher accuracy the change/no change than the change type. Among the two periods,
they detected with higher accuracy the changes that occurred in 2009–2019 than those in 1999–2009.
However, for both kinds and for both periods, the combination of NDVI–albedo was found to have
more accurate outputs than the other combinations. Thus, NDVI–albedo can be characterized as the
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most appropriate index combination for detecting the land cover changes in the study area. This
finding is in agreement with the results from the research work of Vorovencii [33]. Specifically, by
applying CVA for three different index combinations (NDVI–albedo, NDVI–brightness index and
TCG–TCB), it was concluded that the most accurate outputs were obtained from the combination
of NDVI–albedo.

The main limitations and assumptions of this work have to be pointed out. First of all, it is
worth mentioning that CVA direction outputs provide dynamic and not static information about land
cover changes. For example, the category representing vegetation regrowth neither indicates that the
changed area was previously area with not at all vegetation, nor that it has changed to agricultural
or forest area. Therefore, a good understanding of the change processes in the study area is required
to improve on the interpretation of the direction outputs [40]. Furthermore, concerning the change
magnitude outputs, the choice of thresholds for the determination between change and no change
and between low- and high-level change, prove to be critical and play a major role in the accuracy
of the relative outcomes. Since this choice was based on subjective criteria for the present study, the
examination of alternative choices could lead to different results.

5. Conclusions

The changes of land cover occurred in a region may have serious environmental and socio-economic
impacts. Therefore, the need for detecting these changes is more and more imperative, especially
given the emergence of unbalances caused by natural and anthropogenic driving forces like climate
change, intensive agriculture and wrong land management decisions. Considering this as well as
the fact that the use of different remotely sensed data products is expected to have influence on the
performance of a metric difference-based change detection technique, spatio-temporal land cover
dynamics in the Greek island of Crete were detected and mapped for five different combinations
of spectral indices using change vector analysis. The findings revealed that the selected technique,
and thus land cover change detection, can be affected by the “nature” of indices. Furthermore, the
promising evaluation results (with a range of 0.60–0.69 for kappa index and 0.86–0.96 for overall
accuracy) of index combinations indicated that an accurate detection can be achievable. In particular,
the confirmed, with higher accuracy (with a range of 0.64–0.69 for kappa index and 0.89–0.96 for overall
accuracy), change magnitude and direction maps produced by the combination of NDVI–albedo could
constitute an essential base for planners and decision-makers in identifying land cover changes and
planning appropriate land management strategies. Due to the importance of agricultural land, which
predominates in the island, it is extremely valuable the planning and implementation of such strategies
in order to diminish the expansion of land degradation risk.

Future work could focus on the application of change vector analysis for detecting land cover
changes in smaller regions contained in the island (e.g., watersheds) using satellite imagery of higher
spatial resolution. Then, an identification of differences and similarities between the results of the two
analysis scales (for the entire island and for the contained watersheds) could be achieved. Moreover,
the comparison of change vector analysis with other change detection techniques, such as image
differencing and principal component analysis, could be another objective of future work.
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