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Abstract: Accurately quantifying water inundation dynamics in terms of both spatial distributions
and temporal variability is essential for water resources management. Currently, the water map is
usually derived from synthetic aperture radar (SAR) data with the support of auxiliary datasets, using
thresholding methods and followed by morphological operations to further refine the results. However,
auxiliary datasets may lose efficacy on large plain areas, whilst the parameters of morphological
operations are hard to be decided in different situations. Here, a heuristic and automatic water
extraction (HAWE) method is proposed to extract the water map from Sentinel-1 SAR data. In the
HAWE, we integrate tile-based thresholding and the active contour model, in which the former
provides a convincing initial water map used as a heuristic input, and the latter refines the initial map
by using image gradient information. The proposed approach was tested on the Dongting Lake plain
(China) by comparing the extracted water map with the reference data derived from the Sentinel-2
dataset. For the two selected test sites, the overall accuracy of water classification is between 94.90%
and 97.21% whilst the Kappa coefficient is within the range of 0.89 and 0.94. For the entire study
area, the overall accuracy is between 94.32% and 96.7% and the Kappa coefficient ranges from 0.80 to
0.90. The results show that the proposed method is capable of extracting water inundations with
satisfying accuracy.

Keywords: water inundations; heuristic and automatic water extraction (HAWE); Sentinel-1; synthetic
aperture radar (SAR); Dongting Lake (China); remote sensing

1. Introduction

Water shortages have been happening all the time around the world and the water crisis has been
ranked among the top five global risks [1]. Water dynamics are critical to understanding the ecosystem
process. Furthermore, they are linked to various environmental, societal, and economic risks [1],
as well as people’s living standards. Therefore, there is an urgent need for quantifying the water
dynamics in both spatial distribution and temporal variability, which has become an active research
field recently [1–6]. There are some existing water map products that can be used for monitoring
surface water at a continental or global scale [7], such as the global water body dataset (SWBD),
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the Water Indication Mask [8], the global water occurrence product of the Joint Research Center
(JRC) of the European Commission [4], open permanent water bodies (SAR-WBI) [9], water product
MOD44W [10], etc. However, due to a lack of sufficient spatial and/or temporal resolutions, these
products cannot timely characterize heterogeneity and variations on surface water. Accordingly, they
need to be improved for a better understanding of surface water changes at a higher spatial and
temporal resolution.

Satellite-based remote sensing techniques, including optical systems and active microwave
systems, are widely used for surface water extraction. As for optical systems, lots of spectral water
index based water map extraction methods are devised, such as the normalized difference water index
(NDWI) [11], the modified normalized difference water index (MNDWI) [12], the automated water
extraction index (AWEI) [13], and the improved spectral water index based on MNDWI [14]. These
optical remote-sensing-based methods can derive convincing water maps when using high-quality
cloud-free optical imagery. The optical remote sensing images with a low spatial and high temporal
resolution, such as the AVHRR and MODIS data [7], have been widely used to map the dynamics of
surface water in a short time period. However, the coarse spatial resolution of these images results
in the misclassification of water bodies because of mixed water and non-water pixels. For images
with a higher spatial resolution, such as the Sentinel-2 MSI and Landsat 8 [13,15], they always have
a low temporal frequency and irregular time series because of the weather conditions. Thus they are
unsuitable for persistently and accurately monitoring surface water dynamics for near real-time use.
In contrast to optical systems, the active microwave monitoring techniques like synthetic aperture
radar (SAR) have considerable advantages over optical systems and can provide reliable information
for water level estimation and surface water extraction because they are cloud-proof and illumination
independent [3]. By combining SAR data with elevation data sources like DEMs, altimetry, and LiDAR,
it is feasible to estimate water level or flood depth [16–19] which has a close relationship with surface
water changes and is essential for regional water cycle modeling and water dynamics monitoring.
To derive water maps, several bundles of SAR-based methods are presented, including supervised
classification methods [5], histogram-based thresholding [2,3,6], and multi-temporal thresholding [20].
Automatic water extraction methods [2,3,5,6,21,22] are much more preferred for rapid and efficient
monitoring of the variations of water inundations. For supervised classification methods, accurate
results are usually obtained if selected training samples can represent most occasions. However, training
samples are often selected subjectively and manually, hence this process is commonly time-consuming.
It is also hard to obtain training samples for water inundations with large variations, especially for
large datasets. Generally speaking, the thresholding-based methods can effectively separate water
from non-water areas. The key step for thresholding is to determine the suitable threshold [23].
The empirically chosen thresholds can be used to divide water from non-water pixels [3,22], but it
needs many trials to decide an optimal threshold for a given image, let alone large datasets. There
are a number of thresholding methods [24,25] available, such as the KI [26] and the Otsu [27]. With
the help of some auxiliary data, such as DEM and height above the nearest drainage (HAND) map,
the water map derived by thresholding can be further refined to improve the results [2,3,5,6,21,22].
However, the terrain effect in large plain areas can be ignored and thus the corresponding methods
need to be improved. Some mathematical morphological methods (e.g., erosion and dilation) are also
used for further refining the initial water map [3,22,28]. However, the results are sensitive to the kernel
size in morphological operations and the kernel size usually needs to be adjusted case by case. Thus,
an adaptive method is desired to address such limitations.

The region-based active contour model (ACM) proposed by Zhang [29] can handle images with
weak edges by utilizing the statistical information inside and outside the water and non-water contours
to control the direction of evolution, no matter whether the contours contain weak edges or not. Hence
it is ideal for refining the edges between water and non-water areas. However, due to the complicated
situation on the SAR image, there may be some obvious water pixels (target) that cannot be separated
from non-water (background) by using the ACM model directly. This is because they are not considered
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as water targets in the initialization step and also in the evolution steps. In addition, it needs much
more time to converge when dealing with images with a large size, especially for remote-sensing
applications. Therefore, it is quite important to offer confident target initialization for the ACM model,
not only for precisely deriving the water but also speeding up convergence.

Dongting Lake (China) is within a plain area and its surface water is of great seasonal
variations [30,31]. An automatic SAR-based water extraction method is needed to timely monitor
its surface water dynamics. As aforementioned, there is great potential for future integration of the
thresholding and the ACM model to extract water maps from SAR data, because thresholding can
provide reliable initial water maps, whilst the ACM model can further refine the extracted water
maps. Therefore, a heuristic and automatic water extraction (HAWE) method using the Sentinel-1
C-band SAR data and the auxiliary data SRTM DEM is proposed for extracting water inundation in
this situation. In HAWE, we at first use the tile-based thresholding to generate the initial water map,
and then use the ACM model for further refinement with the initial water map adopted as heuristic
initial inputs. The HAWE method was tested by four Sentinel-1 SAR scenes acquired on different dates
and two test sites were selected to evaluate the accuracy of the proposed approach.

2. Study Area and Datasets

2.1. Study Area

The Dongting Lake plain locates in the north of Hunan province, China (see in Figure 1), which
is one of the biggest freshwater lakes in China and receives partial water from and flows water into
the Yangtze River [30,31]. The Dongting Lake plain (China) covers an area of 18,780 km2, of which
15,200 km2 is within Hunan province and the rest 3580 km2 is in Hubei province. It is also an important
agricultural, ecological, and economic zone alongside the Yangtze River.
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Previous studies have revealed that the water inundation areas in this region change significantly
because of the precipitation variations in different seasons [30,31]. Two subsets, denoted as validation
Site A and Site B in Figure 1, are selected for testing the proposed approach. Each of them covers
an area of 10 × 10 km, where site A is prone to be seriously affected by flood and the surface water of
site B is relative stable.

2.2. Remote Sensing Datasets

Sentinel-1 SAR data was employed in this research and it observes the earth’s surface with
various observation strategies, swath widths, and spatial resolutions [32]. Previous studies [28,33]
have shown that the dual-polarization (horizontally transmitted horizontally and vertically received,
HH+HV) SAR data provides the most reliable information for extracting surface waters. However,
only dual-polarization (vertically transmitted vertically and horizontally received, VV+VH) data is
available at most circumstances for Sentinel-1 SAR. Twele [28] suggested that Sentinel-1 VV-polarized
data can provide better results than VH-polarized data. As a result, we finally adopt the Sentinel-1
SAR Level-1 ground range detected (GRD) products in the IW mode with VV polarization. We select
four Sentinel-1 SAR scenes with VV-polarization observed by Sentinel-1 A satellite on different dates,
including dry and rainy season, as summarized in Table 1. Besides, we also employ the SRTM DEM
data with one arc-second spatial resolution, which can be downloaded by SNAP toolkit, for range
doppler terrain correction and radiometric calibration [3,13,28].

Table 1. The acquisition date and identifier information for the Sentinel-1 synthetic aperture radar
(SAR) and Sentinel-2 MSI data used in this study *.

No.

Sentinel-1 SAR Sentinel-2 MSI

Date
(dd/mm/yyyy)

Absolute Orbit
Number

Date
(dd/mm/yyyy) Tile Number

1 23/05/2017 016708 18/05/2017 T49RFM, T49RFN
2 22/07/2017 017583 17/07/2017 T49RFM, T49RFN
3 20/09/2017 018458 15/09/2017 T49RFM, T49RFN
4 09/10/2018 024058 05/10/2018 T49RFM, T49RFN

* Descriptions: (a). Each row represents corresponding data information for Sentinel-1 SAR or Sentinel-2 MSI data.
(b). The first column ‘No.’ is the index of the selected data. (c). The 2nd and 3rd columns are the acquisition date
and the unique identifiers for the Sentinel-1 SAR data. (d). The 4th and 5th columns are the acquisition date and the
two adjacent tile numbers for the Sentinel-2 MSI data that covered the whole study area.

Eight Sentinel-2 MSI scenes in the Level-1C product [34], shown in Table 1, are used for testing
the results of the proposed approach. We select two Sentinel-2 MSI tiles for a given acquisition date
because neither of them could cover the whole study area. As a result, we need to stitch them together
and use the merged tiles as the study area. For the satellite image acquisition date, Sentinel-2 MSI is
4–5 days earlier than Sentinel-1 SAR. It is reasonable to assume that there is only insignificant water
inundation variation in such a short time period.

3. Methodology

The HAWE method consists of four main parts (in Figure 2): (a) SAR preprocessing using the
SNAP toolkit, (b) automatic tile-based thresholding and deriving initial water map as heuristic inputs,
(c) applying the ACM to refine the initial water map, and (d) removing small objects from the refined
water map and outputting the final water classification. Then, we compare the water map extracted by
the HAWE with the Sentinel-2 MSI reference data, which is derived by steps 6 and 7, and the compare
process is accomplished by step 8. The SNAP toolkit is used for preprocessing Sentinel 1 or 2 data, and
the Matlab 2017a software is applied for water map extraction and accuracy evaluation.
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3.1. Preprocessing of Sentinel-1 SAR

In this step, Sentinel-1 datasets with Level-1 GRDH products (10 m) are processed by the SNAP
toolkit, including geometric correction, radiometric correction, de-speckle filtering, linear to sigma
naught (dB) transformation, and finally, extracting the image of the study area, as outlined in Figure 1.
The purpose of step 1 SAR preprocessing is to derive de-noised, geometric, and radiometric corrected
SAR images for the study areas. The graph processing tool (GPT) embedded in the SNAP toolkit allows
the aforementioned sub-steps to be processed automatically. Geometric correction, combined with
SRTM DEM data, is aimed to correct the terrain distortion and to improve the geolocation accuracy.
Afterwards, the Sentinel-1 SAR scene is range-doppler terrain corrected and projected to the WGS-84
geographical coordinate system. We set the Sentinel-2 MSI as the reference image and select the
ground control points on both images to co-register the Sentinel-1 image by the polynomial model.
The geometric corrected scene is calibrated to the backscatter coefficients and exported as sigma naught
images [6]. As the VV-polarized image can generate better results [28] than HH polarized one, only
the VV-polarized output option is selected. The calibrated scenes are filtered to reduce the inherent
speckle noise, using the Lee Sigma filter with a 7 × 7 window and the sigma with 0.9. The backscattered
coefficients are then converted into decibel-scale (dB) and the images of the study area are cropped
in the following steps. In summary, the result of this step is geometric corrected, re-projected and
calibrated backscatter coefficients (in dB) images for the study area.

3.2. Automatic Tile-Based Thresholding and Initial Water Map Classification

Step 2 “Automatic thresholding” and step 3 “Initial water map classification” are used to derive
the heuristic water map for the next processing steps, with the former step obtaining the threshold
and the latter classifying water and non-water regions. We at first divide the whole image into
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different tiles and then select qualified tiles to compute the optimal local thresholds, which is then
averaged to generate the initial water map (classification). To choose qualified tiles, a bi-level quad
tree structure [28] is applied and the detail steps are listed as follows:

(i) Tiling the entire scene into different tiles (batches or blocks) L+
i (i = 1, 2, . . . , K) with the size

of c× c pixels, which are called parent level tiles, and each parent tile is further separated into four
children sub-tiles L−i j( j = 1, 2, 3, 4) and each sub-tile has a size of c/2× c/2 pixels.

(ii) Selecting the initial N1 candidate tiles. Firstly, for each parent tile L+
i (i = 1, 2, . . . , K), the mean

backscatter intensity µ(L−i j) for each sub-tile L−i j( j = 1, 2, 3, 4) is calculated. The standard deviation of

these µ(L−i j) values, denoted as σ(L+
i ), are sorted in ascending order. The parent tiles with σ(L+

i ) value
above 95% quantile and mean intensity less than the mean of all parent tiles are finally selected as the
initial N1 candidate tiles, because these two criterions assure the selected tiles of having large spatial
heterogeneity and more than one semantic class [22,28]. As for the number of N1, there are usually
enough N1 tiles be chosen in this step and its value ranges from 22 to 51 [21], which is sufficient to
fulfill the success of the following steps. If N1 is too small, it is recommended to reduce the size of both
parent tiles and sub-tiles to its half and also decrease the quantile from 95 to 90%, which allows many
more candidate tiles to be selected.

(iii) Selection of N2 qualified tiles for thresholding. The standard deviation σ(L+
n ), n = 1, 2, . . . , N1

of the initial N1 candidate tiles are sorted in descending order. The tiles with the highest standard
deviation and the average backscattered intensity less than the mean value of all N1 tiles are chosen as
the qualified tiles. As suggested in previous studies [21,28], N2 = 5 is adopted in this study.

(iv) Deriving the optimal threshold from N2 qualified tiles and generating the initial water map.
For each qualified tile, the KI thresholding method [26] is applied to derive the thresholds, which are
then averaged to obtain the optimal threshold. The initial water map is derived by thresholding on the
entire scene with the optimal threshold.

3.3. Active Contour Refinement of Initial Water Map

There are usually some water pixels missing in the initial water map that need to be refined.
Step 4 “Active contour refinement for initial water map” is designed to accomplish this goal, which
can delineate accurate boundaries between water and non-water and derive convincing water maps.
The ACM model can automatically detect the exterior and interior boundaries and stop the contours at
weak or blurred edges, hence, it is ideal for further refinement of the initial water map. According
to the ACM model [29], the level set formulation is given as follows, in which the contours between
water and non-water are evolved in each iteration step:

∂φ

∂t
= sp f (I(x)) · α

∣∣∣∇φ∣∣∣, x ∈ Ω (1)

where Ω is the domain for a given image I; ∇ is the gradient operator to compute the image gradient for
each pixel; α controls the smoothness of zero level set (the boundaries between water and non-water
areas); φ is the level set function to define the status of water or non-water areas and the boundaries
between them.

sp f (·) is the signed pressure force (SPF) function, which modulates the signs of the pressure force.
As a result, the water and non-water boundaries will shrink when pixels are located outside the water
area and expanded when inside the water area.

sp f (I(x)) =
I(x) − c1+c2

2

max(
∣∣∣I(x) − c1+c2

2

∣∣∣) (2)
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where c1 and c2 are the average intensities of the inner contour (the water area) and external contour
(the non-water area), respectively, which can be derived by:

c1(φ) =

∫
Ω I(x) ·H(φ)dx∫

Ω H(φ)dx
(3)

c2(φ) =

∫
Ω I(x) · (1−H(φ))dx∫

Ω (1−H(φ))dx
. (4)

Herein H(φ) is the Heaviside function, which smoothes the distributions of φ, and its regularized
version is given as:

Hε(z) =
1
2
(1 +

2
π

arctan(
z
ε
)). (5)

The parameter ε is used to extract the accurate contour. According to Zhang [29], ε = 1.5 is
recommended for extracting the accurate contours.

The ACM model [29] contains six steps as detailed below:
(1) Initializing the level set function φ with the initial water map as

φ(x, t = 0) =


−1, x ∈ Ω0 − ∂Ω0

0, x ∈ ∂Ω0

1, x ∈ Ω −Ω0

(6)

where Ω0 is the water pixels extracted from Sentinel-1 SAR, and ∂Ω0 is the boundary of Ω0.
(2) In order to handle large scenes and accelerate the computation speed, the SAR image is evenly

split into blocks with a size of 2 × 2 k pixels. For each block, do steps from (3) to (6) until all blocks
are processed.

(3) Compute c1(φ) and c2(φ) for each block under processing using Equations (3) and (4).
(4) Evolve the level set function using Equation (1).
(5) Regularize the level set function with a Gaussian filter (with the standard deviation σ = 1 and

a kernel size of K = 5) by an image convolution operator.
(6) Continue step (2) until the number of iterations reaches 30 or the level set function has converged.

3.4. Removing Small Objects to Derive the Final Results of Classification

After refining the initial water map, the water and non-water pixels can be divided by setting
φ < 0. However, there are still some small objects (islands) of water or land that should be rectified or
eliminated. Step 5 “Remove small objects and output final results" is employed to complete this task.
According to [3,22], we set the minimum size of small lakes or islands as 300 pixels, which means that
any small lakes or islands with an area measured by the number of pixels less than 300 will be removed.

3.5. Processing of Sentinel-2 MSI and Performance Evaluation

The aim of step 6 “MSI preprocessing” is to obtain the subset of Sentinel-1 MSI images. Step 7
“derivation reference data” is used to obtain the water map as reference data for SAR extraction
evaluation, which is done in step 8 “Water extraction accuracy evaluation”. The Sentinel-2 MSI
Level-1C products are radiometric corrected and provide the Top-Of-Atmosphere (TOA) reflectance.
However, there are still residual atmospheric effects in TOA reflectance data and need to be eliminated.
The Sen2Cor [35], a Level-2A (L2A) processor embedded in the SNAP toolkit, is used to remove the
atmospheric effects and derive the Level-2A surface reflectance products. Then they are co-registered
with the corresponding Sentinel-1 SAR image to obtain the subset image of the study area.

The automated water extraction index (AWEI) [13] is applied to Sentinel-2 MSI to extract water
inundations as reference data. Two AWEI forms, AWEInsh, and AWEIsh, can be used in different
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situations. According to Feyisa [13], the separation of water and non-water bodies can be done by
applying AWEIsh coefficients that force non-water pixels below 0 and water pixels above 0.

AWEIsh = ρband2 + 2.5× ρband3 − 1.5× (ρband8 + ρband11) − 0.25× ρband12 (7)

where ρ represents the surface reflectance of Sentinel-2 MSI. The water extent extracted by Sentinel-2
MSI using the AWEIsh index is used as the reference water inundations in this study because it is good
at extracting water maps from MSI with good performance [13,36].

4. Results

4.1. Extracted Water Inundation Areas

The extracted water inundation areas for test sites A and B (as illustrated in Figure 1) are shown
in Figures 3 and 4, respectively. As can be seen, most of the water inundation areas in the validation
sites A and B were correctly extracted and the refined contours of water and non-water areas are
much more accurate, especially for Figures 3c and 4c,e,g. There are still some narrow rivers that are
missed in the detected results because these objects are excluded from the initial water map and are
prone to be neglected when the contours of water are evolving [29]. In addition, these rivers are too
narrow to be detected by active contour-based refinement, and the backscatter intensities of these
objects are also relatively higher than the derived overall optimal threshold and thus are considered as
non-water objects.
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Figure 3. The initial water contours using tile-based KI thresholding method, refined water contours
by the active contour model (ACM) model, and final extracted water inundations for validation site A;
(a,c,e,g) show the initial and refined water contours, as well as the Sentinel-1 scene in VV polarization
acquired on 23 May 2017, 22 July 2017, 20 September 2017, and 9 October 2018, respectively; (b,d,f,h)
show the corresponding final water and non-water classification.



Remote Sens. 2020, 12, 243 9 of 20

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 20 

 

The functions of applying the active contour model to the initial water map are mainly marked 
in two aspects. Firstly, comparing with some mathematical morphology methods, the active contour 
model method can refine the water and non-water boundaries as more accurate and closer as possible 
to the natural reality, no matter whether they are weak or blurred edges. Secondly, the evolution 
process of the active contour model method can combine some small water objects with similar 
backscatter intensity in open water areas, which seems reasonable and is in conformity with real 
situations. These small water objects often exist because of the inherent speckle noise in SAR data or 
small water waves induced by wind. 

  

  
Figure 4. The initial water contours using tile-based KI thresholding method, refined water contours 
by ACM model, and final extracted water inundations for validation site B; (a), (c), (e), and (g) show 
the initial and refined water contours, as well as the Sentinel-1 scene in VV polarization acquired on 
23 May 2017, 22 July 2017, 20 September 2017, and 9 October 2018, respectively; (b), (d), (f), and (h) 
show the corresponding final water and non-water classification. 

4.2. Comparison and Performance Evaluation 

The water and non-water contours for test sites A and B extracted from Sentinel-1 SAR and 
Sentinel-2 MSI, as well as the water classification overlay, are shown in Figures 5 and 6 for 
comparison. The Sentinel-2 MSI extracted water map is set as the reference data because reliable 
water information can be derived by the AWEI method and its spatial resolution (10 m) is finer than 
that of Sentinel-1 SAR data, which was upsampled from 20 × 22 m to 10 × 10 m. When they were 
overlaid, most of the water inundation areas are consistent with each other. While there are still some 
differences between them, especially for the water and non-water edges, isolated islands, or narrow 
rivers, which are prone to be inundated in different seasons and are failed to be detected as discussed 
in Section 4.1. Due to a flooding event, there were dramatic surface water discrepancies between 
extracted results from the Sentinel-1 SAR (acquired on 22 July 2017) and the Sentinel-2 MSI reference 
data (acquired on 17 July 2017), as shown in Figures 5f and 6f. As reported in [37], there was a long 
persistent heavy rain in Hunan province since 22 June 2017, which had induced severe flooding 
around the entire province, including the Dongting Lake (China). On 17 July 2017, when the Sentinel-
2 MSI scene was acquired, the floods were receded slowly but still with lots of lands and islands 
inundated. While on 22 July 2017, when the Sentinel-1 SAR was acquired, the flood receded 
completely with pre-inundated lands and islands exposed again. The commission surface waters 
mainly occurred in narrow rivers or edges and ends of large open water areas for the validation site 
A. The omission surface waters rarely occurred for the validation site A, which occurred frequently 
within the edges and ends of large open water areas for the validation site B. However, most of these 

Figure 4. The initial water contours using tile-based KI thresholding method, refined water contours
by ACM model, and final extracted water inundations for validation site B; (a,c,e,g) show the initial
and refined water contours, as well as the Sentinel-1 scene in VV polarization acquired on 23 May 2017,
22 July 2017, 20 September 2017, and 9 October 2018, respectively; (b,d,f,h) show the corresponding
final water and non-water classification.

In theory, open water areas often have a relatively smooth surface and produce much less
backscattered signals to the SAR sensor. So, the water bodies generally appear darker color than
non-water objects, such as built areas and forests. Thus, it is easy to separate water from non-water
by thresholding. However, due to the inherent speckle noise, weather conditions, and acquisition
time, the initial water map derived by thresholding could fail to detect certain water bodies, such as
the small ponds, reservoirs, and narrow rivers. As a result, the detected initial water map tends to
underestimate water inundation areas, as shown in Figure 3. Beginning with the initial water map,
the desired water inundation areas, and contours of water bodies are eventually derived by the active
contour refinement method.

The functions of applying the active contour model to the initial water map are mainly marked in
two aspects. Firstly, comparing with some mathematical morphology methods, the active contour
model method can refine the water and non-water boundaries as more accurate and closer as possible to
the natural reality, no matter whether they are weak or blurred edges. Secondly, the evolution process
of the active contour model method can combine some small water objects with similar backscatter
intensity in open water areas, which seems reasonable and is in conformity with real situations. These
small water objects often exist because of the inherent speckle noise in SAR data or small water waves
induced by wind.

4.2. Comparison and Performance Evaluation

The water and non-water contours for test sites A and B extracted from Sentinel-1 SAR and
Sentinel-2 MSI, as well as the water classification overlay, are shown in Figures 5 and 6 for comparison.
The Sentinel-2 MSI extracted water map is set as the reference data because reliable water information
can be derived by the AWEI method and its spatial resolution (10 m) is finer than that of Sentinel-1
SAR data, which was upsampled from 20 × 22 m to 10 × 10 m. When they were overlaid, most of the
water inundation areas are consistent with each other. While there are still some differences between
them, especially for the water and non-water edges, isolated islands, or narrow rivers, which are prone
to be inundated in different seasons and are failed to be detected as discussed in Section 4.1. Due to
a flooding event, there were dramatic surface water discrepancies between extracted results from the
Sentinel-1 SAR (acquired on 22 July 2017) and the Sentinel-2 MSI reference data (acquired on 17 July
2017), as shown in Figures 5f and 6f. As reported in [37], there was a long persistent heavy rain in
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Hunan province since 22 June 2017, which had induced severe flooding around the entire province,
including the Dongting Lake (China). On 17 July 2017, when the Sentinel-2 MSI scene was acquired,
the floods were receded slowly but still with lots of lands and islands inundated. While on 22 July 2017,
when the Sentinel-1 SAR was acquired, the flood receded completely with pre-inundated lands and
islands exposed again. The commission surface waters mainly occurred in narrow rivers or edges and
ends of large open water areas for the validation site A. The omission surface waters rarely occurred
for the validation site A, which occurred frequently within the edges and ends of large open water
areas for the validation site B. However, most of these commission surface waters were actual water
bodies by visual interpretation checking, which were underestimated by the AWEIsh method in the
reference data.
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Figure 5. The extracted water contours and final water classification overlays for Sentinel-2 MSI
(as reference) and Sentinel-1 SAR for validation site A: (a,d,g,j) represent water contours derived by
automated water extraction index (AWEI) method and true color compositions of Sentinel-2 MSI
acquired on 18 May 2017, 17 July 2017, 15 September 2017, and 5 October 2018, respectively; (b,e,h,k)
are extracted water contours using proposed method and Sentinel-1 SAR scene in VV polarization
acquired on 23 May 2017, 22 July 2017, 20 September 2017, and 9 October 2018, respectively; (c,f,i,l) are
overlays of the final water classification from Sentinel-1 SAR and Sentinel-2 MSI.
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Figure 6. The extracted water contours and final water classification overlays for Sentinel-2 MSI
(as reference) and Sentinel-1 SAR for the test site B: (a,d,g,j) are water contours using the AWEI
method and true color compositions of the Sentinel-2 MSI acquired on 18 May 2017, 17 July 2017,
15 September 2017, and 5 October 2018, respectively; (b,e,h,k) are extracted water contours using the
proposed method and Sentinel-1 SAR scene in VV polarization acquired on 23 May 2017, 22 July 2017,
20 September 2017, and 9 October 2018, respectively; (c,f,i,l) are overlays of final water classification
from Sentinel-1 SAR and Sentinel-2 MSI.

To sum up briefly, the differences between the extracted surface water from Sentinel-1 SAR and
the reference data are mainly caused by the following reasons: (i) The inconsistent spatial resolution
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between the Sentinel-1 SAR (nominal 10 m) and Sentinel-2 MSI (real 10 m), in which images with
coarse spatial resolution are prone to produce mixed pixel problems for the water and non-water
edges; (ii) there are 4–5 days of delay for image acquisition. Though it is reasonable to assume that
there is insignificant change in water inundation areas in such a short time period, it is inevitable that
considerable changes happen during different time periods, especially for a flooding event period, as
shown in Figures 5f and 6f; (iii) the AWEIsh method may fail to detect the surface water under some
circumstances, which may also yield differences; (iv) some water bodies are excluded from the initial
water map because its backscatter intensities are relatively higher than the finally derived optimal
threshold. The higher backscatter intensity may also hinder the water contours’ evolution process and
led to misclassification.

Taking the Sentinel-2 MSI based water extraction as the reference data, the Sentinel-1 SAR based
water extraction was pixel-wisely compared to determine several quantitative metrics, including the
producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and Kappa coefficient (K).
The definitions of these quantitative metrics are given as follows [38–40]:

OA =
P11 + P22

N
× 100% (8)

PA_water =
P11

P11 + P21
× 100% (9)

PA_non-water =
P22

P12 + P22
× 100% (10)

UA_water =
P11

P11 + P12
× 100% (11)

UA_non-water =
P22

P21 + P22
× 100% (12)

K =

N
2∑

i=1
Pii −

2∑
i=1

Pi+ ∗ P+i

N2 −
2∑

i=1
Pi+ ∗ P+i

(13)

where, P11, P12, P21, and P22 construct an error matrix (confusion matrix), which denotes, respectively,
the number of water pixels on both the SAR extraction and the reference data, the number of water
pixels on SAR extraction which are non-water pixels on the reference data, the number of non-water
pixels on the SAR extraction which are water pixels on the reference data, and the number of non-water
pixels on both the SAR extraction and the reference data; Pi+ and P+i are the marginal totals of row i
and column i for the error matrix, respectively; N = P11 + P12 + P21 + P22 is the total number of pixels.

Table 2 shows the comparison results for the sites A, B, and the whole study area. In Table 2,
there are minor differences in terms of the classification accuracy for test site A, with the OA varying
between 94.90% and 95.54% and the K ranging from 0.89 to 0.91, except for the date 22 July 2017. While
for the validation site B, the OA (between 90.51% and 97.21%) and K (between 0.81 and 0.94) are both
slightly higher than that of the test site A. This is because most of the surface water is fully protected
by natural dikes and the water inundation areas for the validation site B are much more stable than site
A, hence the evaluation accuracies for validation site B are considerably higher. When compared to
Sentinel-2 MSI water extraction results, the root mean squared error (RMSE) of water area extracted by
Sentinel-1 SAR is 11.65 km2 on site A and 4.94 km2 on site B for all dates. The main reason is that there
are some narrow rivers or small reservoirs that are not detected due to the low backscatter intensity or
exclusion in the initial water map.

With respect to the water and non-water classification accuracy over the whole study area, the OA
and K values derived on different dates are generally consistent, varying within 94.32–96.8% and
0.80–0.89, respectively, where it seems only the PA water values show a slightly larger variability than
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others. The statistical evaluations for the study area indicate that the proposed method can obtain
desired water maps for the Sentinel-1 SAR time series, where different backscattered intensities help to
make the water extent separation a hard problem.

Table 2. Quantitative metric values of the proposed heuristic and automatic water extraction (HAWE)
method for two selected test sites and the whole study area *.

Test
Sites

SAR Date
(dd/mm/yyyy) OA (%) PA Water

(%)
UA Water

(%)

PA
Non-Water

(%)

UA
Non-Water

(%)
K

Site A

23/05/2017 95.54 99.50 89.32 93.30 99.70 0.91
22/07/2017 78.15 100 64.01 64.27 100 0.58
20/09/2017 94.91 99.68 88.04 92.13 99.80 0.89
09/10/2018 94.90 99.88 87.12 92.29 99.93 0.89

Site B

23/05/2017 96.35 98.68 92.08 94.97 99.18 0.92
22/07/2017 90.51 99.37 81.07 84.65 99.51 0.81
20/09/2017 97.21 98.41 94.67 96.43 98.95 0.94
09/10/2018 96.66 99.12 92.23 95.27 99.48 0.93

Whole
Study
Area

23/05/2017 96.71 85.65 94.21 98.94 97.16 0.88
22/07/2017 93.31 75.44 98.92 99.70 91.90 0.81
20/09/2017 96.80 84.80 97.27 99.47 96.71 0.89
09/10/2018 97.41 86.95 95.51 99.27 97.72 0.90

* Descriptions: (a). Each row shows the corresponding quantitative metric values of water extraction from the
HAWE method on different test sites and dates. (b). The 1st column ’Test Sites’ shows the corresponding test site,
including Site A, Site B, and the whole study area, as shown in Figure 1; the 2nd column gives the data acquisition
date for Sentinel-1 SAR data. (c). The 3rd to the 8th columns represent the relevant metric values in terms of
producer’s accuracy (PA) water, user’s accuracy (UA) water, overall accuracy (OA), PA non-water, UA non-water,
and Kappa coefficient (K) as defined in Equations (8)–(13).

5. Discussion

5.1. The Effects of Different Thresholding Methods on Accuracy

The selected tiles, which are generally located in water and non-water junctions and usually
show bimodal histogram characteristics, are used for deriving the overall optimal threshold for
the entire scene. For comparison, the Otsu [27] thresholding is also applied to derive the optimal
threshold. The Otsu thresholding finds the threshold value when the sum of the foreground and
background spreads is at its minimum. It involves iterating through all the possible threshold values
to calculate a measure of spread for the pixel levels at both sides of the threshold. KI thresholding
method is a minimum error thresholding algorithm which minimizes the probability of classification
error. As water backscatter intensity is relatively low, the corresponding SAR image can be usually
characterized by a bimodal intensity histogram. The Sentinel-1 SAR dataset acquired on 23 May 2017
is selected as an example to show the effect of the different tile-based thresholding on generating the
initial water map. The final selected qualified tiles and their corresponding intensity histograms and
the optimal local thresholds for each tile are shown in Figure 7. There are a certain amount of water
and non-water areas in the selected tiles which show a significant bimodal histogram. As for the
tile-based optimal thresholds, there are significant differences between those from the KI and Otsu
methods. More specifically, the thresholds derived by the KI method are generally less than that of the
Otsu method.

The KI and Otsu methods applied directly to the entire image, named the global KI and global
Otsu method respectively, are used for comparison with the tile-based KI and Otsu methods. Relevant
results are compared in Figure 8. As seen, there are significant differences among these results, where
the thresholds derived by tile-based KI have the lowest intensities, followed by the global KI method,
while both the global and tile-based Otsu methods have yielded higher thresholds than that of the KI
method. The global Otsu method can always obtain higher thresholds than tile-based Otsu, except
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for Figure 8b. The final derived optimal thresholds vary from different dates for all methods. From
the visual perspective of bimodal histograms, the global KI method has better results. However,
the tile-based KI method, whose values are relatively lower than that of any other methods, can derive
water body pixels with the highest degree of confidence. The global Otsu and tile-based Otsu methods,
whose values are obviously higher than previous studies [5,6,21,28], are prone to misclassify some
non-water pixels as water, which will overestimate surface waters and bring risks to the active contour
refinement process.
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lower threshold was derived by the tile-based KI method, the final water classification still has good 
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Figure 7. The selected qualified tiles and the tile-based optimal threshold by different methods for
Sentinel-1 SAR VV polarization acquired on 23 May 2017. (a,c,e,g,i) are finally selected qualified
tiles with a size of 400 × 400 pixels; (b,d,f,h,j) are histograms and the tile-based optimal threshold
corresponding to each selected qualified tile.

The final results of water classification derived by the HAWE method, in which the global or
tile-based KI and Otsu methods are used to generate the initial water map, are compared with the
reference data. According to the results shown in Table 3, for the OA and the Kappa coefficient K,
the tile-based KI generally outperforms others, with a relatively higher mean accuracy (95.22% for OA
and 0.83 for K) and a lower standard deviation (1.12% for OA and 0.04 for K), followed by the global KI
and tile-based Otsu, while the global Otsu has the lowest accuracy. This means that although a lower
threshold was derived by the tile-based KI method, the final water classification still has good results
and seems more stable than other thresholding methods. For PA and UA of water and non-water, there
are significant differences among different thresholding methods and tile-based thresholding methods
can produce better results than that of global thresholding.
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Figure 8. Histograms and the corresponding optimal local thresholds derived by different methods for
the Sentinel-1 SAR VV polarization scenes. (a–d) represents the Sentinel-1 SAR images acquired on
23 May 2017, 22 July 2017, 20 September 2017, and 9 October 2018, respectively.

Table 3. Mean (standard deviation) quantitative metric values of water extraction results for the whole
study area with the initial water map derived by different thresholding *.

Quantitative
Metrics Global KI Global Otsu Tile-Based KI Tile-Based Otsu

OA (%) 94.88(2.16) 88.97(3.05) 96.06(1.86) 95.00(2.84)
Kappa 0.82(0.06) 0.68(0.10) 0.87(0.04) 0.82(0.08)

PA water (%) 84.34(4.12) 62.74(10.72) 83.21(5.25) 90.38(2.34)
PA non-water (%) 97.00(3.00) 98.35(0.99) 99.34(0.32) 95.82(3.75)

UA water (%) 86.45(11.02) 93.08(4.19) 96.48(2.06) 81.32(12.85)
UA non-water (%) 96.86(0.74) 88.14(3.12) 95.87(2.68) 98.26(0.36)

* Descriptions: (a). Each row shows the quantitative metric values from different initial water maps derived from
four approaches for the whole study area. (b). The 1st column ‘Quantitative Metrics’ shows different metrics
as defined in Equations (8)–(13). (c). The 2nd to the 5th columns represent the corresponding mean (standard
deviation) metric values for initial water maps derived from different approaches.

5.2. The Effect of Iterations on Water Boundary Evolution

When the ACM model was applied to refine the initial water classification map, two important
parameters including the α and the iteration number need to be further discussed. The parameter α
controls the smoothness of the zero-level set (contours). Empirically we set α = 20 in this study as it
can result in stable shapes for water inundation contours. In contrast to α, the iteration number, which
controls the evolutions of level set function and checks up whether water boundaries have converged,
affects the final results to a great extent.

To further evaluate how this parameter affects the final results of extracted water maps, we selected
an area in this study area and conducted experiments by setting different numbers of iterations varying
from 10 to 100 with an interval of 10, and the results are shown in Figure 9 for comparison. Obviously,
the initial water map derived by step 3, as shown in Figure 9a, has underestimated the water extent,
where the water and non-water boundaries are also inaccurate. The accurate boundaries between
water and non-water can be easily derived by introducing the ACM into the refinement process, as
it evolves the edges by computing the image gradient during the iterations. The evolution process
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converges fast after a few iterations and the water and non-water boundaries are evolved to desired
shapes, which can also be found in Figure 9b where the number of extracted water pixels keeps stable
after 30 iterations. This is due to the fact that the initialization of water classification has detected most
of the confident water inundations, which can accelerate the converge process in refinement and can
also further enhance the accuracy of water and non-water boundaries.
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Figure 9. The refinement of initial thresholding results and extracted water pixels varying under
different iterations.

5.3. Comparisons with Other Methodologies

To compare the proposed approach with other methodologies, we choose the tile-based KI
thresholding (T-KI) [21,26], the image-based KI thresholding method [26], the ACM method [29], and
the histogram-based thresholding method (HTM) [3,22] to extract the water maps followed by removal
of small objects for comparison. In the ACM method, the iterations are 200 times and other parameters
are kept the same as the proposed method. In the HTM, pixels with intensities, less than −18 dB are
regarded as confident water and larger than −14 dB are classified as confident land where the kernel
size in morphological operations is 3 × 3 window. The OA and K measurements are used to evaluate
the results on two selected test sites and the results are compared in Table 4.

As seen from Table 4, the tile-based thresholding (T-KI) can derive a confident water map but
with relatively low accuracy. This is because the selected tiles used for determining threshold usually
contain enough water and non-water pixels, but they cannot separate all water pixels from non-water
pixels. Due to the heterogeneity and complexity of the ground surface, the accuracy of the water map
by the ACM method is still not good enough and thus needs to be improved. The KI thresholding can
produce good results but the edges between water and non-water are hard to be accurately detected.
The HTM method is easy for implementation and is efficient to derive water maps with comparable
accuracy, but the corresponding empirical thresholds for separating water and non-water as well as the
morphological kernel size for further refinement need to be decided carefully in different situations.
The HAWE, by combining the advantages of T-KI and ACM, can significantly improve the results and
keep the OA and K metrics the highest for different dates on the two test sites. It suggests that the
proposed method can produce more accurate and robust results for water map extraction using the
Sentinel-1 SAR times series regardless of the changes of dry or rainy seasons.
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Table 4. The OA and K accuracies of water extraction results derived by different methods for two
selected test sites *.

Test
Site

SAR Date
(dd/mm/yyyy)

OA (%) K

T-KI KI ACM HTM HAWE T-KI KI ACM HTM HAWE

Site A

23/05/2017 91.86 94.46 84.94 93.57 95.54 0.82 0.88 0.70 0.86 0.91
22/07/2017 68.84 78.79 82.24 77.49 78.15 0.43 0.59 0.64 0.57 0.58
20/09/2017 92.69 95.69 87.57 95.07 94.91 0.85 0.91 0.75 0.90 0.89
09/10/2018 92.67 94.54 85.97 95.03 94.90 0.84 0.88 0.72 0.89 0.89

Site B

23/05/2017 94.37 95.78 92.32 96.04 96.35 0.88 0.91 0.84 0.92 0.92
22/07/2017 61.91 89.72 87.44 89.27 90.51 0.22 0.79 0.75 0.78 0.81
20/09/2017 85.57 97.02 92.29 94.33 97.21 0.68 0.94 0.84 0.88 0.94
09/10/2018 91.71 96.45 92.48 95.56 96.66 0.82 0.92 0.85 0.90 0.93

* Descriptions: (a). Each row shows the quantitative evaluations, OA and K, of different water map extraction
methods on different dates for Site A or Site B. The bold figures indicate the highest values for OA or K. (b). The 1st
column specifies the corresponding test site, and the 2nd column ‘SAR Date’ is the data acquisition date for the SAR
data. (c). From the 3rd to the 12th columns are the OA and K values for corresponding methods including T-KI, KI,
ACM, HTM, and HAWE, respectively.

5.4. Advantages and Disadvantages

Though optical sensors can be used to derive convincing water inundations, they are severely
affected by bad weather conditions, such as the cloud, haze, and rain, making it hard for persistently
monitoring the surface water changes with a relatively high temporal resolution. For the study area,
the available optical imageries with few clouds and high quality are quite rare. Whereas, SAR is capable
of acquiring data independent on weather and daylight and providing reliable information for surface
water. Note SAR backscatter intensities for the same water zones may vary from each other during
different seasons, making it difficult for dividing water and non-water with quite a similar backscatter
intensity. The proposed approach can tackle this limitation and performs quite well in the study area
for deriving accurate water inundation maps. There are some advantages to the proposed method we
would like to highlight. Firstly, the initial water map derived by the tile-based thresholding assures
confident water areas are included and thus can be used as heuristic inputs for further water map
refinement, which avoids misclassifying the water body, expanding the water boundary, and speeding
up the convergence process in the refinement phase. Secondly, it is a fully automated method with only
a few predefined parameters, and only one auxiliary data is needed. Furthermore, most inundated
water areas can be correctly extracted owing to the combination of tile-based thresholding and active
contour model, and it is also resistant to the inherent speckle noise in Sentinel-1 SAR. In addition,
the contours (boundaries) between water and non-water areas can be accurately extracted because
the ACM model uses image gradient information to evolve the contours, which is better and much
more accurate than morphological operations without any prior knowledge of the images. Finally,
our algorithm is simple, easy to implement, and quite efficient. As the initial water classification was
derived by tile-based thresholding, most water and non-water areas have been correctly extracted,
and thus the convergence rate can be accelerated when conducting evolutions of the level set function.
To further speed up the computations, the level set function evolution can be implemented in parallel
on the divided blocks.

Missing detection of water inundation areas occasionally occurs in our approach because some
water bodies are excluded in the initialization level set function. As mentioned in Section 4.2, when
the tile-based thresholding was applied to the entire scene, some regions such as small ponds, pools,
reservoirs, and narrow rivers, whose backscatter intensity is relatively higher than the final optimal
threshold, are not classified as initial water bodies and are prone to be classified as non-water in the
final results of water classification. To overcome this problem, it is feasible to raise the threshold to
include more water pixels in the initial water classification. While some non-water objects with similar
backscatter will also be classified as water bodies. Actually, for large study areas such as Dongting Lake
(China), these small ponds, pools, reservoirs, and narrow rivers are not important and can be neglected.
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6. Conclusions

In this study, a heuristic and automatic water extraction (HAWE) approach for the extraction of
water inundation area data was presented and tested on the Dongting Lake plain (China), where the
topography is mostly flat plains and the water inundation areas are prone to change with different
seasons due to the seasonal precipitation variations in this drainage basin. By adopting the tile-based
thresholding, an initial water map with confident water pixels can be derived as heuristic inputs for
further refinement. In the refinement process, the ACM model makes use of the statistic information
from the SAR image itself to evolve the contours between water and non-water areas. This process
can avoid empirical parameter settings for morphological operations case by case and derive a more
accurate extraction of water inundations. The entire process in the HAWE can be implemented with
few predefined parameters and can automatically generate the final water classification map for the
SAR time series.

The performance of the proposed method has been evaluated using two test sites within the
Dongting Lake plain (China). The results have indicated that the proposed method is able to achieve
satisfying classification results in terms of the overall accuracy (between 78.15% and 97.21%) and the
Kappa coefficient (ranging from 0.58 to 0.94) of water extraction. We also compared the proposed
approach with other methods, such as the direct tile-based method and ACM without initial water map,
and the results also show that our method can outperform several other methods listed in this study.

The limitation of this approach is that it may fail to detect some small water bodies or narrow
rivers with relatively higher backscatter intensities, because neither initial water map nor the evolution
process could identify them as water pixels. Raising the threshold may help to include these water
bodies in the initial water map and solve the problem to some extent, however, it may also introduce
non-water objects into the final results. In fact, for water inundation areas monitoring at large study
areas, these small ponds, pools, reservoirs, and narrow rivers can be reasonably neglected due to their
low importance as we mainly concern about the change analysis of the surface water for the overall
study area.
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