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Abstract: Aggregated mining development has direct and indirect impacts on vegetation changes.
This impact shows spatial differences due to the complex influence of multiple mines, which is a common
issue in resource regions. To estimate the spatial heterogeneity of vegetation response to mining activities,
we coupled vegetation changes and mining development through a geographically weighted regression
(GWR) model for three cumulative periods between 1999 and 2018 in integrated resource regions of
northwestern China. Vegetation changes were monitored by Sen’s slope and the Mann–Kendall test
according to a total of 72 Landsat images. Spatial distribution of mining development was quantified,
due to four land-use maps in 2000, 2005, 2010, and 2017. The results showed that 80% of vegetation in
the study area experienced different degrees of degradation, more serious in the overlapping areas
of multiple mines and mining areas. The scope of influence for single mines on vegetation shrunk
by about 48%, and the mean coefficients increased by 20%, closer to mining areas. The scope of
influence for multiple mines on vegetation gradually expanded to 86% from the outer edge to the inner
overlapping areas of mining areas, where the mean coefficients increased by 92%. The correlation
between elevation and vegetation changes varied according to the average elevation of the total mining
areas. Ultimately, the available ecological remediation should be systematically considered for local
conditions and mining consequences.

Keywords: spatial heterogeneity; vegetation trends; mining development; geographically weighted
regression (GWR); Sen’s slope; Mann-Kendall; arid and semi-arid areas

1. Introduction

Vegetation dominating terrestrial ecosystems connects the material circulation and energy flow of
the biosphere [1] and plays a critical role in supporting ecosystem services and functions [2,3]. Vegetation
changes, thus, have increasingly become an inevitable indicator in global climate changes and regional
eco-environmental assessment [4,5]. Changes in natural conditions and strong human activities involve
ecological elements and ecological processes, and alter the regional environment [6]. As intensive
human activities, mining activities have an impact on 11 out of the 17 United Nations Sustainable
Development Goals (SDGs) [7], and are a constraint for achieving sustainable development [8]. Mining
activities, especially extractive ones, directly destroy vegetation and indirectly lead to environmental
problems, including air and water pollution [9], heavy-metal pollution [10], groundwater loss [11],
soil erosion and degradation [12]. These problems profoundly change the environment of vegetation
growth, and, in turn, disproportionately damage broader range of vegetation coverages and show
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spatial differences on vegetation changes. The vegetation changes representing local ecosystem health
are severely disturbed by mining activities [13]. Research on the effect of mining activities on vegetation
is essential for further ecological construction and achieving the SDGs.

Analyzing the mechanism of mining activities on vegetation growth in mining areas provides
significant insight for constructing ecological coal mining [14]. Researchers have made many findings
through field surveys and experiments focusing on soil parameters [15], microorganisms [16], root
environments [17], toxicological effects [18,19], colony symbiosis and photosynthesis [20], heavy-metal
pollution and enrichment in vegetation [21,22], the extinction of major dominant species [23],
and biodiversity loss [24]. Related studies have revealed that mining approaches impacting vegetation
growth are diversiform on a local scale and more complicated on a regional scale [25]. However,
mining development in resource regions is not a single sporadic mine pit, but a complex and systematic
industrial chain [26]. This chain involves a wholly integrated process and establishes diversified
industrial branches from mining excavation, transportation, preprocessing, and deep processing, to
material consumption and utilization [26,27]. The successive impacts are constantly accumulated
by the aggregation of one or more activities on receptors [28,29]. The difference in the spatial
accumulation degree over time and space causes different responses of various vegetation types to
mining development on a regional scale, resulting in significant spatial heterogeneity. Understanding
how mining impacts accumulate, and change over time is the key issue for assessing and monitoring
vegetation response to mining activities.

The regional ecological impact of mining development could be revealed through large-scale
observation [30]. Recent achievements include that coal mining is an important driving factor resulting in
serious regional vegetation degradation, especially in China’s Mongolia Plateau and alpine areas [29–31].
Vegetation disturbance caused by mining is evident on a large scale [30], and much more significant in
arid and semiarid areas [25,31]. The combined effect of climate conditions and ecological restoration
activities also make vegetation changes more volatile and show vast spatial differences [30,32]. In relation
to the regional scale, the relationship between mining development and vegetation changes during
the aggregation progress of mining development and the typical region where mining activities influence
more significantly, are still not well-understood. Establishing a mathematical coupling model between
vegetation trends and human activities is essential in a complex system under the coupling of natural
conditions and human activities [33].

Spatial analysis provides an advantage in understanding the variation in the impact of mining
on vegetation [34]. Traditional multivariate statistical analysis and simple spatial analysis, such
as ordinary least squares (OLS) models, usually assume that spatial relationships between variables
are stable in the entire study area and reflect any variation of spatial characteristics with difficulty [35].
Geographically weighted regression (GWR) constructs local regression equations from any given
geographic location to represent accurate quantitative characteristics of spatial relationships, thereby
avoiding the problems of spatial non-stationarity, heterogeneity, and autocorrelation [36]. Computed
correlation coefficients in the GWR model quantitatively express the spatial relationships at each
location. Geographically weighted regression models are widely used in urban landscape pattern
analysis [35,37,38], PM2.5 concentration estimation [39], carbon emissions [40], and ecosystem
services [41,42]. Sawut et al. [43] also estimated the heavy metal arsenic (As) contents of an open-pit
coal mine in soil on the basis of GWR.

Arid environments occupy more than 47% of Earth’s landmass with constant expansion throughout
the world [44]. Exploitation of mineral resources has had extensive environmental and social
consequences [45]. China is the leading country in energy production and consumption [46]. More than
70% of coal reserves are distributed in arid, semiarid, and fragile ecological regions, with high-strength
exploitation activities [23]. Analyzing the relationship of vegetation and mining development provides
practical guidance and reference for the development of mineral resources and ecological construction
in the Belt and Road Initiatives.
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As a representative resource-based city of China, Wuhai is not only a city that has maintained coal
exploitation for decades, but also an important ecological function zone in Inner Mongolia. In the context
of simultaneous ecological destruction and construction, setting Wuhai and its surroundings
as the research area was of great significance to regional ecological security and harmonious
development. The purpose of this article is to determine the spatial variability of mining impact on
vegetation changes. There were two detailed objectives: (1) To identify the mining development pattern
and associated vegetation dynamics in different periods, and (2) to explore the spatial variability of
vegetation response to mining development.

2. Study Area and Data Sources

2.1. Study Area

The study area (106.36◦E–107.05◦E, 39.15◦N–39.52◦N) mainly comprised the whole city of
Wuhai, and parts of Alxa League and Ordos according to the planning (2010–2030) of Wuhai and its
surrounding areas. The whole study area is located in the middle of Inner Mongolia with six districts
(Figure 1a) and surrounded by three deserts—the Uulan Buh, the Kubuqi, and the Maowusu [47,48].
The north–south-oriented Yellow river runs through the whole city and forms irrigation districts of
about 175 km2 with a narrow river beach wetland and an agricultural oasis [47]. Topographically,
the study area is low-lying in the northwest, and high-lying in the middle and east (Figure 1b).
The study area belongs to the middle-latitude temperate continental climate zone, a region affected
by the East Asian monsoon belt [49]. Annual precipitation is 160 mm, and annual evaporation is 20
times that of rainfall [47]. The main vegetation types in the study area are grassland and shrubland.
The combination of the Yellow river and the complex natural environment gives the entire region
a unique desertification ecosystem, including national wetland parks and an extremely precious plant,
Tetraena mongolica [48].

Figure 1. (a–b) Location, administrative divisions, land-use and land-cover map (a), and topography
(b) of study area. Land-use and land-cover map was monitored at 2017, provided by the Institute of
Geographic Sciences and Natural Resources Research in China. Note: districts of 1O, Uulan Buh; 2O,
Mengxi; 3O, Wuda; 4O, Haibowan; 5O, Etuoke Banner; and 6O, Hainan.
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Wuhai is a typical resource-based city where mining development comprises many mining
activities, including industrial base, surface mining, and waste dumping, and they play a dominant
role in social–economic development [49]. Industrial base mainly consists of coal washing, coal
storage, and primary and deep processing sites, while surface mining and waste dumping are the main
activity sites for mineral mining and disposal [48]. There are three industrial bases distributed across
the study area: the Wuda industrial base in the northwest, the Hainan industrial base in the midland,
and the Mengxi industrial base in the Mengxi district. Mining areas are attached to the Shendong
coalfield in Inner Mongolia and adjacent to the Ningdong Energy and Industrial Base, one of China’s
largest coal bases [23]. As the development progresses, decline transformation, and deepening of
social economic reforms, mining, coal, and chemical industries were introduced in this region over
the course of 30 years by enterprises with severe pollution and an extensive development model
from the developed eastern part of China [49]. Under the pressure of the inherent irreconcilable
conflict between social-economic development and ecological protection, it is more and more urgent to
recognize the internal relationship between ecological degradation and mining development

2.2. Data Sources

2.2.1. Landsat Data and Mining Maps

Normalized difference vegetation index (NDVI) values of all clear-sky Landsat images during
the growing seasons from April to October of 1999–2018 were obtained to composite interannual maximal
sequence to detect vegetation variation trends. Growing seasons included the vegetative and reproductive
phases of vegetation growth [50]; the maximal value of NDVI in the arid and semiarid areas represented
the best state of vegetation in a year. All Landsat data were obtained from the United States Geological
Survey (Table 1). Land-use maps were used to present the spatial distribution of mining activities
and calculate the distance from vegetation areas to mining areas. The maps were extracted from land-use
maps monitoring at 2000, 2005, 2010, 2017, respectively, from the Institute of Geographic Sciences
and Natural Resources Research. All maps were accurately interpreted on the corresponding historical
Google Earth images. Topography data at 30 m spatial resolution from the digital elevation model in
ASTER GDEM 2 (http://www.gscloud.cn/) were used to reveal the relationships between vegetation
dynamics and terrain features. All data were converted into a common coordinate system (WGS1984,
UTM Zone 49N), and raster data were resampled into 1000 × 1000 m.

Table 1. Sources of remote sensing data.

Theme Data Type/Images Number Resolution Time Source

Landsat 4-5 TM C1
Level-1 Satellite Imagery/ 41 Imageries 30 m 1999–2011 U.S. Geological Survey (USGS)

(http://www.glovis.usgs.gov/)
Landsat 7 ETM+

C1 Level-1 Satellite Imagery/ 11 Imageries 30 m 1999–2003 U.S. Geological Survey (USGS)
(http://www.glovis.usgs.gov/)

Landsat 8 OIL/TIRS
C1 Level-1 Satellite Imagery/ 20 Imageries 30 m 2013–2018 U.S. Geological Survey (USGS)

(http://www.glovis.usgs.gov/)

Historical Google
Earth Image Satellite imagery 17 m/4 m/2

m
2000, 2005,

2010, and 2017

Google Earth Pro
(http://www.google.com/intl/en_uk/

earth/versions/#earth-pro)

2.2.2. Boundary Data in Vector Format and Climate Dataset

The boundary of the research area was set according to the coal industry planning (2010–2030)
of Wuhai and its surrounding areas, which was made by the government of the Inner Mongolia
Autonomous Region. Basic geographic information was provided by the National Geomatics Center of
China (http://218.244.250.94:9003/English/html/1/), including a set of regional boundaries, major roads,
and river basins. The boundary of the conservation zone in the study area was drawn on the basis
of the Western Ordos national nature reserve [51]. The observed annual precipitation and average
temperature datasets were downloaded by the National Meteorological Information Center of China

http://www.gscloud.cn/
http://www.glovis.usgs.gov/
http://www.glovis.usgs.gov/
http://www.glovis.usgs.gov/
http://www.google.com/intl/en_uk/earth/versions/#earth-pro
http://www.google.com/intl/en_uk/earth/versions/#earth-pro
http://218.244.250.94:9003/English/html/1/
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(http://data.cma.cn/en), to describe the impact of climate conditions on vegetation changes. This dataset,
comprising monthly observations, was obtained from 5 meteorological reference stations around
the research area in 1999–2018.

3. Methodology

The purpose of the article was to analyze the relationship between vegetation changes and mining
development on the basis of remote sensing data and the GWR model. Vegetation changes were
described by interannual NDVI trends (1999–2018), and the spatial distribution of mining activities
were obtained via four land-use maps (2000, 2005, 2010, 2017, respectively). Considering the intensity
of the potential influence of mining activities relying on distance [21,52], all data were divided into 1 km
units to calculate the distance from vegetation units to mining units on the basis of Euclidean distance
in ArcGIS 10.2. Minimal distance emphasizing the ecological impact of a single mine and summary
distance emphasizing regional mining impact on vegetation were differently analyzed. Minimal
distance was the shortest one of distances of central point between a vegetation unit and mining units.
The summary distance was the sum of distances of central point between a vegetation unit and mining
units. Topography was a limiting factor affecting vegetation changes in geographical conditions, such
as water and radiation balance. Elevation was regarded as an important factor in the analysis of
vegetation response to mining activities.

The methodology framework was divided into three steps (Figure 2). The first step was to
identify vegetation dynamics. Vegetation changes were divided into three stages, 1999–2005, 1999–2010,
and 1999–2018, to correspond to the cumulative effect of mining development in three periods, where
the starting year was set to 1999 to ensure the initial stability of the NDVI sequence. The second
was to present the spatial distribution of mining development, and calculate the minimal distance
and summary distance from vegetation areas to mining areas in units in different stages. The third was
to quantify the spatial relationships between two kinds of distances, elevation, the combination of
distance and elevation, and vegetation changes in the GWR model. Removing the improvement areas
of vegetation in the 1999–2018 period was to highlight the cumulative effects of mining development.
Detailed descriptions are provided in the following sections.

Figure 2. Framework of data processing flow.

http://data.cma.cn/en
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3.1. Trend Analysis of Vegetation Changes

NDVI is an indispensable indicator for mapping green biomass to describe vegetation dynamics
because they are closely related with biophysical and biochemical variables [53]. The calculation
method was detailed in a study by Maneja et al. [54,55]. All NDVI series were synthesized according
to the maximal value of the growing season in a year to eliminate interference caused by vegetation
changes, clouds, and the atmosphere. Sen’s slope is calculated by the median of the linear rate of
change between any two points in the sequence, which accurately expresses the trend and relatively
reduces noise interference [56,57]. The Mann–Kendall trend test is a quick and effective method for
detecting significance level with the advantage of not requiring time distributions and being insensitive
to outliers [58]. Sen’s slope estimator was used to first detect the direction and magnitude of vegetation
changes, and the Mann–Kendall trend test was then applied to quantify the significance level. Therefore,
vegetation trends could be estimated by the combination of Sen’s slope and the Mann–Kendall trend
test in light of the NDVI series.

Sen’s slope equation is shown in Equation (1) [57]:

θslope = Median
[(

NDVI j −NDVIi
)
/( j− i)

]
,∀ j > i (1)

The Mann–Kendall test is shown by test statistic S in Equation (2) [59,60]:

S =
n = 1∑
i = 1

n∑
j = i+1

sign(NDVI j −NDVIi) (2)

where signal sign
(
NDVI j −NDVIi

)
is;

sign
(
NDVI j −NDVIi

)
=


1
0
−1

(NDVI j −NDVIi > 0)(
NDVI j −NDVIi = 0

)
(NDVI j −NDVIi < 0)

(3)

The test statistic Z is defined as;

Z =


(S− 1)/

√
V(S)

0
(S + 1)/

√
V(S)

S > 0
S = 0
S < 0

(4)

where variance V(S) is;
V(S) = n(n− 1)(2n + 5)/18 (5)

where θslope is the annual variation rate of the NDVI trend on a pixel scale, and NDVIi and NDVI j
represent the maximal NDVI values of monitoring years j and i, respectively; V(S) is the variance.
A positive value of θslope indicates an upward trend for vegetation, and a negative value means
a downward trend. Moreover, the appropriate statistical test in the process of inferring significance
is determined through the n values of the time-series lengths; when n < 10, the bilateral trend test
was used to directly show a slight upward or downward trend by test statistic S. When n >= 10,
test statistic S obeyed standardized normal distribution. Given confidence level α = 0.05, whether
the trend changed significantly depended on |Z| ≥ 1.96. Four kinds of classification were obtained
through trend and significance analysis: θslope ≥ 0&|Z| ≥ 1.96 denoted significant improvement,
and θslope ≥ 0&|Z| ≤ 1.96 indicated slight improvement, whereas θslope ≤ 0&|Z| ≥ 1.96 denoted
significant degradation, and θslope ≤ 0&|Z| ≤ 1.96 meant slight degradation.
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3.2. Relationship between Vegetation Changes and Mining Development in GWR Model

The GWR model was explored to examine the relationship between mining development
and vegetation changes, and their spatial variability. OLS is a global regression model, and parameter
estimates are consistent throughout the study area. The GWR model makes important improvements
in solving non-stationary spatial relationships and cross-space spatial autocorrelation by estimating
local parameter characteristics and geographic map variability in the association between results
and predictors [34,61]. This regional exploratory analysis technique can measure a set of local
parameters that could be mapped, estimated, and analyzed in each unit to provide new insights about
window movement and the global correlation of variables in a single modeling frame [62]. The GWR
model is expressed in Equation (6) [34],

y = β0
(
µ j, υ j

)
+

k∑
i = 1

βi(µ j, υ j)χi j + ε j (6)

where µ j and υ j denotes the spatial coordinates of sample points j and i; β0
(
µ j, υ j

)
indicates the intercept

of location j; βi
(
µ j, υ j

)
denotes the local estimated coefficient of independent variable χi j; and ε j is

the error term.
Local parameter estimation was conducted through a spatial weight matrix by a distance decay

weighted function in GWR modeling. The function was spatially modified by kernel function
bandwidth. Kernel function bandwidth determines the scope of spatial dependence, which means
the total numbers of neighborhood points. The Akaike information criterion (AIC) determined
the optimal bandwidth. More details about GWR were shown in Alahmadi et al. [62]. GWR analysis
was performed in the GWR tools of ArcGIS 10.2. All data were normalized by a standardized min–max
method before regressions.

The multicollinearity of the explanatory variables was excluded by the variance inflation factor
(VIF) value of the running OLS model [63]; all values were less than 7.5, which indicated that slight or
no collinearity existed in the explanatory variables. The performance of the GWR and OLS models
was compared using the values of AIC and R2; these two values were used to determine the predictive
capacity of the model. The higher the R2 was, the more reliable the independent variable’s explanation
of the dependent variable. AIC estimated the accuracy of the estimated value, and lower values could
better describe the observed data.

4. Results

Vegetation has been considerably degraded as the mining development rapidly expanded
according to Sen’s slope and the Mann–Kendall test. Spatial correlation of GWR expressed significant
spatial differences between minimal distance, summary distance, elevation, and vegetation changes.

4.1. Temporal Trends and Spatial Distribution in NDVI

The tendency of vegetation changes to first rise and then quickly decline appeared in the whole
study area. The proportion of the significant degradation area increased (Figure 3) according to
vegetation trend analysis of Sen’s slope. Clear improvements of vegetation changes accounted for
the majority of the study area (74%) in the initial stages, especially a significant improvement gathering
in the south of the study area (17%) with the NDVI value increasing nearly by 100% (Figure 3b).
Initially degraded areas were mainly distributed in the mining areas and eastern mountainous areas,
and 85% of them turned degradation into improvement during 1999–2010. Positive growth conditions
drove an upward vegetation trend in 1999–2010. Nevertheless, in 1999–2018, the overall trend of
vegetation had deteriorated, and degraded areas accounted for more than 80% of the total study area
(Figure 3c). Severely degraded vegetation areas (27%) were distributed in the north of the study
area and mining areas. Most significant improvements in the south of the study area were lost,
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and continuous degradation occurred in the western areas. The few improvements that were gathered
in the central town may result from ecological construction.

Figure 3. (a–c) Spatial distribution of vegetation changes by Sen’s slope and Mann–Kendall method.
(a) 1999–2005; (b) 1999–2010; (c)1999–2018.

4.2. Spatiotemporal Distribution of Mining Development

Mining development rapidly expanded over the past 20 years, and established a connected spatial
pattern in three major industrial bases. As shown in Figure 4, the total area of the industrial base was
9.57 km2 in 2000 and 184.98 km2 in 2017. Open pits gradually expanded with a uniform growth rate of
9.17 km2/a around the core industrial base, the distribution of which was in a narrow pattern along
the terrain of the valley in the middle, and an aggregate pattern in the northwest of the study area.
The waste dump was staggered with open pits and expanded from 2.85 km2 in 2000 to 69.36 km2 in
2017. Areas of mining activities expanded from 55.83 km2 in 2000 to 453.78 km2 in 2017, accounting
for more than one-tenth of the research area and 9 times the production scale in 2000. The average
expansion rate was 16%, 32%, and 7% per year in 2000–2005, 2005–2010 and 2010–2017, respectively,
with the highest expansion in the period of 2005–2010, as the market price of coal was at historic highs.
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Figure 4. (a–d) Components and spatial distribution of mining activities in study area.

4.3. Mining Development and Elevation of Influencing Vegetation Changes

4.3.1. Correlation between Minimal Distance, Summary Distance, and Vegetation Changes

Spatial variation, mapping the relationship between distances and vegetation changes, was
clearly shown in Figure 5. The positive coefficient indicated that vegetation changes moved towards
an upward trend as the increase in distance to mining areas in the minimal and summary distance
models. The depth of colors expressed the level of the correlation coefficient and fitness to match
the variables.

For minimal distance, as distance increased, the impact of single mines on vegetation was
shrunken, but dominated around areas of mining activities. Areas with positive coefficient (above 0.01)
was 1418, 969, 866, and 733 km2, respectively, with a continuous decline trend of 48.31%. The mean
coefficient (above 0.02) continued growing by 20% (0.025, 0.026, 0.03, 0.033, respectively). Positive
coefficients were significantly higher around mining areas than those of other areas, and a clear shift
from negative to positive correction constantly occurred in the mining areas (Figure 5a–c). The spatial
pattern of areas with higher positive correlation (above 0.01) was consistent with spatial pattern of
mining development, especially in the middle of study area after removing the areas with an NDVI
slope of >0.

For summary distance, in the agglomeration process of mining development, the impact of
multiple mines gradually shifted from the outside to the inside and continued to be increasingly
concentrated in overlapping areas of mining activities. Areas with positive correlation (above 0.01)
were 1129, 704, 587, and 588 km2 respectively, showing a downward trend. The higher ones (above
0.02) maintained a downward trend in the east but an increasing trend in the west, with an area of
186, 0, 393, and 373 km2. The average coefficient continuously increased by 92% from 0.026 to 0.050.
The increase in both the area and coefficient of positive correlation had emerged and gathered in
the west overlapping areas of three industrial bases. This was more evident in the increase in areas
with positive correlation after removing areas with an NDVI slope of >0, with mean coefficients of up
to 0.056. The comprehensive impact of coal bases is more influential for regional vegetation changes.
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Figure 5. (a–h) Spatial patterns of correlation coefficients between distance and vegetation changes.
(a–d) Minimal and (e–h) summary distance in 1999–2018.

4.3.2. Correlation between Elevation and Vegetation Changes

Significant spatial differences were shown in the relationship between vegetation changes
and elevation (Figure 6). The positive coefficient indicated that vegetation degradation improved
with the increase in elevations, and the negative coefficient meant that vegetation degradation was
worsening with the elevation’s increasing.

Spatial relationship between elevation and vegetation changes varied according to the average
elevation of the total mining areas. Negative correlation in higher-elevation areas and positive
correlation in low-altitude areas were expressed in the relationship between elevation and vegetation
changes. The two were approximately bounded by the average elevation of the total mining areas.
Most areas with negative correlation were distributed in the middle and southwest of the study area,
with the proportion gradually decreasing from 56%, 62%, 47%, to 38%. Low-elevation areas in the south
gradually changed from negative into positive correlation as mining activities continuously expanded,
indicating that the degradation of low-elevation vegetation was more serious with the decrease in
elevation. Furthermore, this may partly explain the disappearance of extremely significant improvement
areas in southern areas as the Hainan industrial base agglomerating. Three positively correlated
aggregation areas of about 362 km2 were located in the middle, north, and south around the Yellow
river and constructed areas. The boundary between positive and negative correlations (–0.03 to 0 and 0
to 0.03) was consistent with the 1200–1230 m contour line, shown in Figure 6c,d.
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Figure 6. (a–d) Spatial patterns of correlation coefficients between elevation and vegetation changes
in 1999–2018.

4.3.3. Correlation between Minimal Distance, Summary Distance, Elevation, and Vegetation Changes

Proper spatial stationarity was enormously maintained in maps of distance factors and vegetation
changes after the combination of elevation and distances (Figure 7).

For minimal distance, quantity disappearance in positively correlated areas and expansion of
negatively correlated areas, especially in the western areas, were clearly shown in the combination
of minimal distance and elevation (Figure 7a–d). Such disappearance illustrated that the ecological
impact of a single mine on vegetation and its action pathway were not closely related to elevation.
As minimal distance to mining areas increased, elevation and distance had disproportionately opposite
effects on vegetation changes at different elevation levels, as per Sections 4.3.1 and 4.3.2.

For summary distance, the spatial distribution of positively correlated areas was relatively stable
and showed no significant difference in whether elevation was involved in the relationship of summary
distance and vegetation changes. Areas of positive coefficients continued growing with a proportion of
up to 86.36%, and the quantities of higher positive coefficients (above 0.02) in 1999–2018 had increased
by 17% compared with Figure 5e–h. Consequently, the comprehensive impact of summary distance
on vegetation changes was relatively stable and not determined by the elevation, but by the spatial
pattern of mining development. Moreover, after removing areas with an NDVI slope of >0, significant
improvements of the positive coefficients occupied the majority, and less than 14% of the negative
areas were distributed in the middle of the study area. The comprehensive ecological influence of
summary distance was constantly strengthened with the systemization of mining activities.
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Figure 7. (a–h) Spatial patterns of correlation coefficients between distance and vegetation changes.
(a–d) Minimal distance and elevation, and (e–h) summary distance and elevation in 1999–2018.

5. Discussion

5.1. Importance of Applying GWR in Studying Spatial Heterogeneity of Vegetation

Significant spatial heterogeneity of the relationship between mining development and vegetation
changes was revealed by comparing the GWR and OLS models (Tables 2 and 3). The adjusted R2 of
the GWR model was in the range of 0.19 to 0.62, which was higher and better than that of the OLS
model (all less than 0.1). This showed that the GWR model could greatly explain the impact of mining
on vegetation changes. Therefore, it was concluded that the spatial relationship between mining
development and vegetation changes was almost not linear, but showed great spatial heterogeneity.
All R2 of GWR also gradually increased with the expansion and aggregation of mining development,
indicating that mining development had increasingly significant impact on vegetation changes.

However, the question was why vegetation changes in the resource regions showed
significant spatial heterogeneity. Numerous studies suggested that vegetation greening rate was
elevation-dependent by the different sensitivity levels to precipitation and temperature changes in arid
and semiarid regions [64–66]. In mining areas, Liu et al. [67] found significant positive correlation in
the relationship between NDVI and elevation factor, while Li et al. [68] discovered that as the elevation
increased, the area covered by medium and high vegetation gradually decreased. We concluded
that the vegetation changes were closely related with the average elevation of mining activities,
and the higher degradation rate occurred away from the average elevation of mining activities due
to the gravity convergence of the basin in low elevation, and fragile conditions of vegetation growth
and high external sensitivity in high elevation.
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Table 2. Comparison in adjusted R2 of geographically weighted regression (GWR) and ordinary least
squares (OLS) models.

Adjusted R2 1999–2005 1999–2010 1999–2018 1999–2018R

Elevation
Adjusted R2

G 0.27 0.31 0.50 0.59
Adjusted R2

O 0.01 0.00 0.02 0.04

Minimal distance
Adjusted R2

G 0.28 0.33 0.52 0.62
Adjusted R2

O 0.05 0.04 0.00 0.00

Summary distance Adjusted R2
G 0.20 0.28 0.27 0.41

Adjusted R2
O 0.01 0.01 0.00 0.01

Minimal distance and elevation
Adjusted R2

G 0.20 0.27 0.29 0.41
Adjusted R2

O 0.05 0.03 0.02 0.05

Summary distance and elevation Adjusted R2
G 0.19 0.26 0.26 0.38

Adjusted R2
O 0.02 0.01 0.02 0.06

Adjusted R2
G: adjusted R2 of GWR; adjusted R2

O: adjusted R2 of OLS; 1999–2018R: 1999–2018 after removing areas
with normalized difference vegetation index (NDVI) slope of > 0.

Table 3. Comparison of Akaike information criterion (AIC) from GWR and OLS models.

AIC 1999–2005 1999–2010 1999–2018 1999–2018R

Elevation
AICG −31717.3 −34396.9 −32869.7 −28356.0
AICO −30523.8 −32951.2 −30187.1 −25504.8

Minimal distance
AICG −31739.0 −34488.6 −33030.7 −28700.3
AICO −30686.0 −33086.7 −30113.6 −25358.1

Summary distance AICG −31367.3 −34238.5 −31372.5 −27137.2
AICO −30517.9 −32968.3 −30118.3 −25381.6

Minimal distance and elevation
AICG −31364.3 −34189.6 −31489.8 −27145.2
AICO −30692.2 −33084.9 −30186.6 −25519.6

Summary distance and elevation AICG −31311.1 −34138.6 −31329.3 −26979.4
AICO −30549.2 −32969.9 −30214.0 −25589.5

Extensive human activities, including ecological management, are other drivers to determine
vegetation changes. Areas with negative correlation, where vegetation improved with the decline
of summary distance to mining areas (Figure 7h), are mainly distributed in the natural protected
areas with strong ecological management, though these are at the shortest distance in the summary
distance model, and should be the region with the highest degradation according to the assumption.
The effect of ecological protection could also be seen in the relationship between vegetation changes
and elevation (Figure 6d), such as the eastern, southeastern, and northeastern areas of positive
correlation. The significant improvement areas of vegetation were mainly distributed around the central
town because of ecological-engineering activities. Ecological activities are important measures to
maintain and improve vegetation growth, and become important factors to increase the spatial
heterogeneity of vegetation changes. Furthermore, all-natural protection areas were disproportionately
degraded, so existing protected areas must be strengthened, and the cumulative regionwide effects of
mining activities must be mitigated [69–71].

5.2. Effect of Distance on Vegetation Disturbance in Mining Areas

The results suggested that the ecological impact of a single mine was continuously strengthened
around the mining areas. A nationwide survey in China concluded that the distance of environmental
impact from mining sites varied from a few hundred meters to 10 km [72]. Previous studies have
shown that the influencing range of ecological disturbance in a single mine was mostly between 1000
and 3200 m [73,74]. In areas with poor vegetation growth conditions, the range of mining disturbance is
much greater [74]. The average distance of vegetation disturbance in large mining sites is greater than
that of small ones [75]. Empirical evidence from the Mongolian Plateau shows that this disturbance
range of large coal exacting areas had increased to over 5 km [75], where the ecosystem could maintain
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stable, sustainable, and rich ecosystem services [76]. The aggregated development of mining activities
enhances the range of ecological disturbance of individual mines.

For the comprehensive impact of mining activities, it is difficult to judge the distance threshold of
mining disturbance. Our research results showed that its impact on vegetation changes was determined
by the comprehensive spatial pattern of current and future mining development. Related scholars
made some preliminary explorations. Cheng et al. [77] suggested that, in large coal bases, the source
and distribution of heavy-metal pollution have significant spatial heterogeneity, there is a hot spot in
the overlapping area of multiple coal mines, and the dispersion of pollutants is higher than that of
single mines. Moreover, the distance of its heavy-metal pollution far exceeds the capacity of a single
mine, reaching more than 15 km. In the aggregation process of mining development, the centralization
effect of mining activities emerged, and was continuously enhanced and stabilized.

5.3. Response of Vegetation Changes to Climate Conditions

A warming–wetting trend occurred in the study area that provided excellent conditions for
vegetation growth, and the increase in precipitation showed spatial differences during the last two
decades (Figure 8). In the study area, the precipitation in the north was much lower than that in
the south, in which the precipitation growth reached the peak of about 7 mm/a on average during
1999–2010. This strongly explained overall improvements of vegetation in the study area, especially in
the south, where almost all significant improvements had emerged in 1999–2010. However, the degree
of vegetation degradation was relatively high in 1999-2018, although there was a significant vegetation
improvement in the previous period and a constant precipitation increase throughout the period.
This properly meant that the impact that resulted from mining development was far greater than
the impact of positive climate factors on vegetation during 2010–2018.

Figure 8. (a–c) Spatial distribution of precipitation slope by Kriging interpolation. Precipitation
data in 1999–2018 were acquired from five meteorological reference stations: Hanjinqi, Linhe,
Huinong, Etuokeqi, and Taole. Precipitation slope was obtained by linear regression based on
interannual precipitation data, and then imported into ArcGIS to obtain changes in the study area by
Kriging interpolation.
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Under the context of global warming, the research area experienced notable climate change. Prior
to 2010, temperature changes were relatively stable and even slightly decreased, and the average
temperature then rose rapidly by about 1.5◦C. Increased temperature promotes the germination
of vegetation in spring and improves the growth of vegetation; on the other hand, it increases
the transpiration and evaporation of plants in summer, which limits vegetation growth in arid
and semiarid regions. Ma et al. [78] reported that evapotranspiration variation was consistent with
changes in vegetation coverage, with a marginally increasing trend of about 0–5 mm/a during 2000–2010
and no significant increasing trend during 2011–2015 in the northwestern Loess Plateau. Numerous
studies also showed that climate warming is one of the main driving factors of greening in northern
China by enhancing photosynthesis and increasing vegetation activity [66,79–81].

In summary, climatic conditions were very favorable for the growth of vegetation during 1999–2018.
It is almost impossible that climate changes led to vegetation degradation in such a water-scarce area
with huge evapotranspiration, instead promoting vegetation growth.

5.4. Limitations

Although reliable and extensive data were used in this research, there were inevitable uncertainties
or limitations. The interannual series of the maximal NDVI can characterize the dynamic changes of
regional vegetation, but the shortage of data in some years and the image time deviation of the growing
season had a specific effect on the accurate assessment of vegetation changes. More accurate time-series
data and error analysis of calculation should be implemented in future studies. In addition, studies
on the spatial differences of dominant areas by single mine and regional mining impacts, and their
dominant areas conversion in resource regions should be strengthened in future research. Vegetation
changes in resource regions are a comprehensive manifestation of indicators, such as vegetation
types, climate conditions, groundwater depth, mining activities, and ecological management [30].
In relation to effect analysis of factors on vegetation, there may have been uncertainties brought about
by other indicators. The contribution of other indicators to vegetation changes is notable and should
be strengthened in future research.

6. Conclusions

Spatial heterogeneity is a great challenge in exploring the correlation between vegetation changes
and mining development. Through spatial correlation based on the GWR model, three dominating
factors were detected to quantify the correlation between vegetation changes and mining development
across time and space. Our analysis indicated that incremental and combined mining activities could
reverse the incremental trend of regional vegetation, leading to 86% degradation in the entire study
area. Vegetation experienced a trend first of growth and then decline in the aggregation process of
mining development. The scope of influence for single mines on vegetation had shrunk by about 48%,
and the mean coefficients increased by 20%, closer to mining areas. The scope of influence for multiple
mines on vegetation gradually expanded to 86% from the outer edge to the inner overlapping areas
of mining areas, where the mean coefficients increased by 92%. Elevation dependence of vegetation
changes varied according to the average elevation of total mining areas and played an important role
in causing the spatial heterogeneity of mining impact on vegetation. Ecological measures should be
implemented according to local conditions to achieve sustainable vegetation ecology.
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