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Abstract: The Northwest Passage (NWP) in the Arctic is usually covered with hazardous multi-year
ice (MYI) and seasonal first-year ice (FYI) in winter, with possible thin ice and open-water areas during
transition seasons. Ice classification is important for both marine navigation and climate change
studies. Satellite-based Synthetic Aperture Radar (SAR) systems have shown advantages of retrieving
this information. Operational ice mapping relies on visual analysis of SAR images along with ancillary
data. However, these maps estimate ice types and concentrations within large-size polygons of
a few tens or hundreds of kilometers, which are subjectively identified and selected by analysts.
This study aims at developing an automated algorithm to identify individual MYI floes from SAR
images then classify the rest of the image as FYI and other ice types. The algorithm identifies the MYI
floes using extended-maximum operator, morphological image processing, and a few geometrical
features. Classifying the rest of the image uses texture and neural network model. The input data is a
set of Sentinel-1 A/B Extended Wide (EW) mode images, acquired between September and March
2016–2019. Although the overall accuracy (for all type classification) from the new method scored
93.26%, the accuracy from using the texture classifier only was 75.81%. The kappa coefficient from
the former was higher than the latter by 0.25. Compared with the operational ice charts from the
Canadian Ice Service, ice type maps from the new method show better distribution of MYI at the fine
scale of individual floes. Comparison against MYI concentration from two automated algorithms
that use a combination of coarse-resolution passive and active microwave data also confirms the
advantage of resolving MYI floes from the fine-resolution SAR.

Keywords: sea ice classification; Sentinel-1 A/B; Northwest Passage; Arctic MYI floes

1. Introduction

The Northwest Passage (NWP) connects the eastern Arctic to the Chukchi Sea, passing through
the Canadian Arctic Archipelago (CAA). Parts of the route are usually blocked by the multi-year ice
(MYI), which is hazard to marine navigation, all year round. With the recent decline of Arctic ice cover
and the replenishment of MYI by thinner and less navigational-hazard first-year ice (FYI) [1–3], it is
predicted that the NWP may open for marine navigation in future summers if it becomes MYI-free.
This will provide an alternative shipping route between Asia and Europe [4,5].
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MYI in the CAA is mostly adverted from the northern part of the Arctic Ocean though some is
formed locally in the form of land fast ice [6,7]. The balance between MYI and FYI along the NWP has
been addressed in previous studies [8,9]. Although MYI in the Arctic has been sharply decreasing in the
past two decades [10,11], its amount in the NWP varies from year to year as the low ice concentration in
summer allows more MYI floes imported from the Arctic basin [12,13]. This emphasizes the importance
of monitoring sea ice type in the NWP.

Satellite-based Synthetic Aperture Radar (SAR) systems have proven to be an excellent tool for
monitoring polar sea ice because of their fine spatial resolution, self-illumination (as they transmit
their own radar pulses, hence can image the surface during polar nights) and their ability to penetrate
clouds [14,15]. Other passive microwave sensors such as ESA-SMOS (European Space Agency-Soil
Moisture and Ocean Salinity) can be used in polar ice classification but their coarse resolution does not
allow identification of individual floes, which is the purpose of the present study. The observed SAR
backscatter from the surface can be used to discriminate between ice types [16–18]. Operational sea ice
monitoring centers (e.g., the Canadian Ice Service (CIS) and the Norwegian Ice Service) use SAR as a
prime tool to generate maps of ice types and concentration [19,20]. To meet the fast turnaround time
and robustness requirements of the operations, SAR image analysis is usually performed visually by
experts. Though several methods of automated analysis of SAR data for sea ice mapping have been
developed [21–25], none has been operationally adopted. They are mostly used to support offline ice
analysis for climate studies.

Several studies concluded that identification of ice types using backscatter from a single SAR
channel is difficult [26,27]. This is because backscatter from each type usually occupies a wide range
under varying environmental conditions [28]. For that reason, extra information is needed to facilitate
ice classification. This includes multi-channel SAR data, and textural and geometrical features of
ice types.

Contextual information, namely texture, from SAR image are commonly used in ice classification.
One of the most widely used statistical-based texture method is the grey-level co-occurrence
matrix (GLCM) [28]. This approach has been widely used in sea ice classification [15,19,29–32].
The computation time of GLCM depends on several required texture features and selected input
parameters; namely discretized grey levels, size of the convolution window and displacement between
adjacent pixels. Improving the accuracy of sea ice classification may be possible by adding the texture
features. However, with adding the texture features, the computation time also increases which makes
this approach not conforming to the operational requirement of fast turnaround time.

In addition to texture, shape features of sea ice types are proven to be useful in sea ice classification.
A complete analysis system named Advanced Reasoning using Knowledge for Typing Of Sea ice
(ARKTOS) based on attributes, such as roundness and eccentricity, developed from segmented region
in SAR images is presented in Soh [33]. An automated segmentation and classification benefited from
the incorporation of various high-level features, such as the shape of ice floes, was proposed in [34].
Using shape features proved to correct some misclassifications [34].

Although many studies of sea ice classification focus on the Beaufort Sea [15,27] and Baffin
Bay [34,35], a few studies have been performed for the NWP region. Ice information from this region is
often obtained from the CIS weekly and seasonal products [8,36]. The information is retrieved mainly
from Radarsat data in addition to other satellite observations and ship measurements, and presented
in the forms of ice charts and bulletin format. Ice charts have been used to study the interannual
variabilities of ice types in this region [37]. However, its weekly frequency and coarse spatial resolution
(a few kilometers) is not suitable for accurate and timely monitoring the ice conditions [21], let alone
identifying individual hazardous MYI floes. Operational ice charts are commonly used to validate ice
classification methods [23,32,34].

The objective of this study is to develop a robust method to identify MYI floes in SAR image using
its shape features in addition to the backscatter and its texture. Then a quick method is applied to
classify the rest of the scene into FYI and other types in NWP region. This approach resolves the issue
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of misclassification of MYI using backscatter or texture signature when the signature overlaps with that
from other ice types. Results will offer better information for marine navigation in areas that feature
hazardous MYI. It will complement operational ice charts which are generated at much coarser scale
than SAR images. The method was applied to eight scenes from the Northwest Passage. Assessment
of the method was performed using visual interpretation of the input SAR images as well as results
from two other methods of automated sea ice classification. Comparison against operational ice charts
was also performed to show the difference in ice type mapping when generated using fine-resolution
SAR data to identify individual ice floes.

2. Study Area and Data

2.1. Study Area

The CAA is located at the north of the Canadian continental mainland. It is bounded by the
Beaufort Sea to the west and the Baffin Bay to the east. CAA covers an area of around 1,500,000 km2

and consists of 94 major islands and more than 36,000 minor ones. These islands are separated by
numerous waterways, some major ones constitute the Northwest Passage. The passage is mainly
covered by FYI and MYI all year round. However, owing to the recent significant changes in the Arctic
climate, summer sea ice has decreased substantially [38], leading to an increasing number of vessels
navigating through this once-impossible route. In our study, five critical water passages are selected,
including M’Clintock Channel (MCC), Viscount Melville strait (VMS), M’clure Strait (MCS), Barrow
Strait (BS), and Lancaster Sound (LS) (Figure 1).
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2.2. Sentinel-1 A/B SAR Images

Sentinel-1A/B (https://sentinel.esa.int/web/sentinel/missions/sentinel-1) is a constellation of two
satellites. They are developed and operated by the European Space Agency (ESA), carrying a SAR
system that operates in the C-band dual-polarized channel. Sentinel-1 has four standard operational
modes: Stripmap (SM); Interferometric Wide Swath (IW); Extra Wide Swath (EW); Wave (WV). In this
study, we use the Level-1 Ground Range Detected (GRD) product. All scenes were acquired in
EW Mode with dual polarization (HH and HV). This mode employs the Terrain Observation with
Progressive Scans SAR (TOPSAR) technique to acquire data over a wider area using five sub-swaths,
EW1-EW5 with lowest-highest incidence angle ranges, respectively. The swath width for EW Mode is
approximately 400 km with an incidence angle ranging from 18.9◦ to 47◦ and pixel spacing of 40 m ×
40 m. The constellation provides relatively large spatial coverage and high temporal resolution.

We selected 17 Sentinel-1 EW dual-polarized SAR images (HH and HV), acquired between
September and March of 2016–2019 as shown in Table 1. Nine images acquired in different dates and
covering different straits are used for training data, and eight images are used for MYI identification
and sea ice classification. The images cover the five passages (listed in the previous sub-section) and
are coded as shown in Table 1. All Sentinel-1A/B images were provided by the Alaska Satellite Facility.

Table 1. List of Sentinel-1 SAR images used for training and classification in NWP.

No.
SAR Images for Training SAR Images for Classification

Acquisition
Date

Acquisition
Time Coverage Satellite Acquisition

Date
Acquisition

Time Coverage Satellite

1 11-03-2019 13:49:25 MCC Sentinel-1A 16-01-2016 13:33:03 MCC Sentinel-1A
2 10-12-2017 13:49:21 MCC Sentinel-1A 21-04-2018 13:49:20 MCC Sentinel-1A
3 07-01-2018 22:09:48 LS Sentinel-1B 27-12-2017 12:18:05 LS Sentinel-1A
4 05-02-2019 14:21:16 VMS Sentinel-1B 26-11-2016 12:18:07 LS Sentinel-1A
5 06-04-2019 14:21:16 VMS Sentinel-1B 23-03-2017 14:21:03 VMS Sentinel-1B
6 21-10-2018 13:23:53 BS Sentinel-1B 24-02-2019 14:13:04 VMS Sentinel-1B
7 22-09-2018 14:53:43 MCS Sentinel-1B 30-09-2016 13:31:30 BS Sentinel-1B
8 26-09-2018 14:21:19 MCS Sentinel-1B 04-10-2018 14:53:44 MCS Sentinel-1B
9 14-11-2017 14:53:37 MCS Sentinel-1B

2.3. Comparison Data

Three datasets were used to compare with the classification results in this study. The first is
CIS ice charts (https://iceweb1.cis.ec.gc.ca/CISWebApps/page1.xhtml?lang=en). For the Arctic region,
ice charts are generated at weekly basis using visual analysis of remote sensing data (mainly SAR)
combined with meteorological and climatic information at a grid resolution of 5 km. In each chart
the scene is divided into polygons (subjectively selected) and each polygon is assigned a code (called
egg code), indicating the existing ice types (up to three types) and their concentrations based on the
subjective estimate of the ice analysts. Details can be found in the manual of procedures for observing
and reporting ice conditions [39].

The second dataset is MYI concentration maps from the Environment Canada’s Ice Concentration
Extractor (ECICE) algorithm [40] with modifications to account for anomalous observations during
transition seasons [41]. It uses a combination of scatterometer and microwave radiometer, then adds air
temperature and sea ice drift data to correct for anomalies of the microwave observations. The algorithm
outputs concentrations of ice types from each pixel. Maps of MYI concentrations were downloaded
from University of Bremen (https://seaice.uni-bremen.de/multiyear-ice-concentration/data-access/)
at grid spacing of 12.5 km. As the algorithm does not work during the melt season, the data record
usually spans October to May.

The third dataset offers maps of FYI and MYI from an algorithm that also uses a combination of
scatterometer and passive microwave observations at 4.45 km resolution [9]. Data are available from

https://sentinel.esa.int/web/sentinel/missions/sentinel-1
https://iceweb1.cis.ec.gc.ca/CISWebApps/page1.xhtml?lang=en
https://seaice.uni-bremen.de/multiyear-ice-concentration/data-access/
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winter (November to April) seasons of 2002 throughout 2017. Table 2 includes radar data (SAR and
scatterometer) used in each set of comparison data.

Table 2. Comparison datasets.

Datasets Data Source

CIS ice chart SAR imagery (Radarsat/Envisat)

ECICE scatterometer from ASCAT, brightness temperature from AMSR-2, Air
temperature at 2 m level ERA-Interim and sea ice drift data

Zhang microwave scatterometer data from QuikSCAT and the ASCAT,
microwave radiometer data from the AMSR-E, SSMI/S, and AMSR-2

3. Method

The study area hosts an ice cover composed of FYI, MYI, and open-water (OW)/other ice type
(OIT). The OIT includes smooth fast ice, from which backscatter signature is typically low. OIT is
difficult to be distinguished from smooth OW in SAR image. Therefore, we classify them as one type
in this paper. As mentioned above, the new method presented here involves two parts (Figure 2).
This method is referred to by the first letters of the five undermentioned processes: TEMS-N. The first
part is about identification of individual MYI floes. It employs four processes: texture extraction,
extended-maximum operator, morphological image processing and shape features extraction (TEMS).
The second part is about classification of the rest of the scene into FYI and OW/OIT. It uses a neural
network scheme (N) with input from three GLCM texture parameters: mean from σo

hv, mean from σo
hh

and homogeneity from σo
hv. Another method that uses texture parameters only in a neural network

scheme (referred to as TPO) is used to compare its results against TEMS-N and therefore assess the
extra processes involved in TEMS-N (besides texture) to identify individual MYI floes.
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3.1. Pre-Processing

The pre-processing consists of thermal noise removal, radiometric calibration with conversion
to dB and terrain correction, all performed in the Sentinel Application Platform (SNAP) which was
developed by ESA (http://step.esa.int/main/toolboxes/snap/). SNAP provides a thermal noise removal
function which uses a noise look-up table (LUT) provided by Sentinel-1 products. The LUT could be
used to derive calibrated noise profiles. Calibration is carried out by using parameters within the
Sentienl-1 product for radiometrically calibrated backscatter values (sigma 0), then the backscatter
values are converted to dB using a logarithmic transformation. The terrain correction is applied to
output data using Range Doppler Terrain Correction Operator in SNAP. The images should be corrected
for these effects in the terrain correction step by using digital elevation model (ACE30 was used). Polar
stereographic projection/WGS 84 was chosen for map coordinate system in terrain correction resulting
in a geocoded image.

Variation of backscatter with respect to incidence angle is shown in Figure 3. No obvious
decreasing trend with the angle is observed in the FYI or MYI data. On the other hand, both backscatter
coefficients demonstrate strong angular decreasing trend for the OW/OIT category; −0.37 dB/deg for
σo

hh and −0.15 dB/deg for σo
hv. Based on these data, and given the difficulty of applying incidence

angle correction to pixels of unknown ice types, we decided to proceed with the classification without
incidence angle correction.

Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 22 

 

3.1. Pre-Processing 

The pre-processing consists of thermal noise removal, radiometric calibration with conversion 
to dB and terrain correction, all performed in the Sentinel Application Platform (SNAP) which was 
developed by ESA (http://step.esa.int/main/toolboxes/snap/). SNAP provides a thermal noise 
removal function which uses a noise look-up table (LUT) provided by Sentinel-1 products. The LUT 
could be used to derive calibrated noise profiles. Calibration is carried out by using parameters within 
the Sentienl-1 product for radiometrically calibrated backscatter values (sigma 0), then the backscatter 
values are converted to dB using a logarithmic transformation. The terrain correction is applied to 
output data using Range Doppler Terrain Correction Operator in SNAP. The images should be 
corrected for these effects in the terrain correction step by using digital elevation model (ACE30 was 
used). Polar stereographic projection/WGS 84 was chosen for map coordinate system in terrain 
correction resulting in a geocoded image. 

Variation of backscatter with respect to incidence angle is shown in Figure 3. No obvious 
decreasing trend with the angle is observed in the FYI or MYI data. On the other hand, both 
backscatter coefficients demonstrate strong angular decreasing trend for the OW/OIT category; −0.37 
dB/deg for 𝜎  and −0.15 dB/deg for 𝜎 . Based on these data, and given the difficulty of applying 
incidence angle correction to pixels of unknown ice types, we decided to proceed with the 
classification without incidence angle correction. 

 
Figure 3. Backscatter coefficient as a function of incidence angle for various ice types at co-polarized 𝜎  (a) and cross-polarized channels 𝜎  (b). OW/OIT (32 points), FYI (42 points), MYI (41 points). 

3.2. Texture Feature Selection 

The GLCM parameters characterize the texture of objects in an image by calculating a set of grey-
tone spatial-dependence matrices using various angular and distance relationships between 
neighboring pixel pairs; then extracting statistical measures from the matrices [28]. The window size 
(W), displacement (D), quantization level (K) and orientation are inputs for calculations of the 
matrices. Texture parameters derived from the GLCM are the mean, variance, homogeneity, contrast, 
dissimilarity, entropy, second moment and correlation [28,29]. 

Previous studies that used GLCM texture for ice classification usually set the K, W, D as fixed 
values. In this study, we tested the above-mentioned eight texture statistical parameters using 
different combinations of W (3, 11 and 25), D (1, 3 and 5) and K (16, 32 and 64) for their abilities to 
discriminate the given ice types. Nine images acquired in different months were used for this test. 
Samples from each ice type (OW/OIT, FYI and MYI) were selected using visual interpretation of the 
images. Figure 4 shows the samples from the 𝜎  SAR image acquired on 22 September 2018. The 

Figure 3. Backscatter coefficient as a function of incidence angle for various ice types at co-polarized
σo

hh (a) and cross-polarized channels σo
hv (b). OW/OIT (32 points), FYI (42 points), MYI (41 points).

3.2. Texture Feature Selection

The GLCM parameters characterize the texture of objects in an image by calculating a set of
grey-tone spatial-dependence matrices using various angular and distance relationships between
neighboring pixel pairs; then extracting statistical measures from the matrices [28]. The window
size (W), displacement (D), quantization level (K) and orientation are inputs for calculations of the
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matrices. Texture parameters derived from the GLCM are the mean, variance, homogeneity, contrast,
dissimilarity, entropy, second moment and correlation [28,29].

Previous studies that used GLCM texture for ice classification usually set the K, W, D as fixed
values. In this study, we tested the above-mentioned eight texture statistical parameters using different
combinations of W (3, 11 and 25), D (1, 3 and 5) and K (16, 32 and 64) for their abilities to discriminate
the given ice types. Nine images acquired in different months were used for this test. Samples from
each ice type (OW/OIT, FYI and MYI) were selected using visual interpretation of the images. Figure 4
shows the samples from the σo

hv SAR image acquired on 22 September 2018. The samples from SAR
images for training (Table 1) are used to calculate the backscatter coefficient as a function of incidence
angle (Section 3.1), evaluation of classification capability of each texture parameter and in the selection
of most powerful texture features for training the neural network model (Section 3.5).
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None of the texture parameters derived from the co-polarization backscatter σo
hh is found to be

useful for discriminating the three surface types (Figure 5a). Different selections of the W, D, and K have
virtually no discrimination power. Only the mean from σo

hh can discriminate between OW/OIT and two
sea ice types (MYI and FYI). On the other hand, texture parameters derived from σo

hv data have better
discrimination power. Figure 5b shows the superiority of the mean in discriminating between OW/OIT



Remote Sens. 2020, 12, 3221 8 of 22

and the two types using any combination of W, D, and K. However, discrimination between FYI and
MYI is still relatively ambiguous. The variance and contrast obtained from σo

hv data are particularly
useless in discriminating any type using any combination of W, D, and K. Homogeneity and correlation
had good performance in discriminating OW/OIT from other ice types. The performance improves
with increasing window size and degrades with increasing displacement. Nevertheless, these results
suggest that discrimination between FYI and MYI is still difficult using texture alone.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 22 
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Figure 5. Values of the tested GLCM features for the three ice types FYI, MYI and OW/OIT for σo
hh

(a) and σo
hv (b). Three sets of calculation parameters are given on the x-axis. The orientation parameter

in all cases is 0◦.

3.3. The TEMS Method

The synthesis of the TEMS-N method is presented in Figure 2. Here, the six steps for identifying
MYI floes in the TEMS component of the algorithm are presented. The neural network component is
present in a later section. It should be noted that TEMS identify MYI floes based on their rounded/elliptic
shape and high backscatter/texture. This criterion applies to most MYI floes as explained in Section 5.
Results from each step are presented in Figure 6 for the image of a section in the Beaufort Sea acquired
on 30 September 2016. The original SAR image, discretized into 256 levels, is shown in Figure 6a,
where MYI floes appear bright against the background. The image of GLCM texture mean parameter
from σo

hv with (W = 11, D = 1, K = 32) is shown in Figure 6b. Here, contrast between the MYI floes and
background is enhanced.
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Figure 6. Steps of identifying MYI in SAR image (the example is from image No.4 in the classification
columns in Table 1. (a) original σo

hv image, (b) image of GLCM texture mean parameter with (W = 11,
D = 1, K = 32), (c) linear stretch, (d) adaptive histogram equalization, (e) opening by reconstruction,
(f) extended-maxima operator, (g) morphological image processing. (h) removal of small regions,
(i) using the eccentricity of shape feature, (j) using the extent and area of shape feature.

The first step involves enhancement of σo
hv image using a linear stretch of the 20–80% range of grey

tone to occupy the full scale (0–256) (Figure 6c). This step removes the darkest area (e.g., OW and smooth
fast ice) and accentuates the MYI floes with uneven brightness. It is followed by the adaptive histogram
equalization to improve the image contrast (Figure 6d) which further enhances the appearance of some
MYI floes against the dark background.

The second step, opening-by-construction, is an erosion followed by a morphological
reconstruction [42]. It was performed to eliminate small objects that are considered to be noise
(Figure 6e), hence facilitate extraction of MYI later. The erosion “shrinks” an image according to the
shape of a given structuring element, removing objects that are smaller than the given element. We used
the structuring element with 8 × 8 pixels in this step. The dilation step “regrows” the remaining objects
by the same shape.

In the third step, the extended-maxima operator is applied to identify bright objects (potentially
MYI and rough FYI). The output is a binary image (Figure 6f). The extended-maxima operator is
composed of two steps, H-maxima transform and regional maximum [43]. The H-maxima transform,
where h is a nonnegative scalar, suppresses all maxima in the intensity image whose height (grey tone)
is less than h, as shown in the following:

H MAXh( f ) = Rδf ( f − h) (1)

where f is the greyscale of original greyscale image, and h is the threshold value. We set h at a value of
50. The extended-maxima EMAX are as shown in the following:

E MAXh( f ) = RMAX[MAXh( f )] (2)

The regional maxima connect pixels with a constant intensity value and whose pixels outside the
region’s boundary have a lower value. By using the extended-maxima operator, we identify areas with
higher grey tone intensity in SAR images (potential MYI floes). The drawback is that some MYI floes
may include some dark areas that would be rejected by the extended-maximum operator. This may
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lead to misidentification of ridges, rubble, rims, and surface deformation as MYI. The following steps
are implemented to mitigate these problems.

In the fourth step, the morphological image processing is used to improve the identification of
MYI floes (Figure 6g). It includes morphological closing, eroding, and filling holes. Closing is a dilation
followed by an erosion. We used the structuring element with 5 × 5 pixels for closing and eroding in
this step. Closing and eroding can remove some small ridges and some connection between the ice
floes. Filling holes can fill some dark area in the MYI floes.

In the fifth step the objects with area less than 1000 pixels (i.e., small areas) are removed (Figure 6h).
This was performed to save processing time in the next (and last) step of “shape features” that appears
in the flowchart in Figure 2. The MYI ice floes has more rounded edges than younger ice types which
are caused by the more frequent collision of floating floes [44]. This information is used in the sixth step.

The sixth step is about quantifying some features that qualify the surviving regions as being MYI
floes. It simply keeps bright objects with round shape and reject those with linear or non-defined
shapes (i.e., ridges and deformed ice). Three features were used: eccentricity, area, and extent. The first
feature is the eccentricity of the ellipse that has the same second-moments as the object. It is the ratio
of the distance between the foci of the ellipse and its major axis length. The value is between 0 and 1.
An ellipse whose eccentricity is 0 is a circle, while an ellipse with eccentricity of 1 is a line segment.
We used this feature to remove some deformed FYI objects with high backscatter similar to that of
MYI but assume a long linear shape. Area is defined as the actual number of pixels in the object to be
labeled. Extent is the ratio of number of pixels inside the region to pixels in the total bounding box
around the region. A threshold of the eccentricity is set to 0.95. If the eccentricity is greater than this
threshold, the region is not considered to be MYI floe. The result is shown in Figure 6i (a long linear
shape in the upper left corner of the image is removed). If the area is less than 5000 pixels and the
extent is less than 0.5, the region will be removed. This step removes ridges with high backscatter.
The final result in shown in Figure 6j.

After identifying MYI floes, we used the neural network model to classify the rest of the image
into FYI or OW/OIT types. Three GLCM texture features were selected as input: Mean (W = 11, D = 1,
K = 32) and Homogeneity (W = 25, D = 1, K = 32) from σo

hv data and mean (W = 11, D = 1, K = 32)
from σo

hh.

3.4. The TPO Method

Although Figure 5 demonstrates the difficulty of using GLCM only to classify FYI and MYI,
the TPO method is used to classify these two surfaces in addition to the OIT in order to demonstrate the
advantage of employing the above-mentioned steps in the TEMS-N method. For this task, we selected
the following texture features: Mean (W = 11, D = 1, K = 32), Homogeneity (W = 25, D = 1, K = 32),
Entropy (W = 25, D = 1, K = 32), Second Moment (W = 25, D = 1, K = 16) (all from σo

hv data) and
mean (W = 11, D = 1, K = 32) from σo

hh. Then the five texture features were put into the neural
network scheme.

3.5. Neural Network Classification Algorithm

The neural network is a computation model whose layered structure resembles the networked
structure of neurons in the brain, with layers of connected nodes [45]. Many studies have demonstrated
the usefulness of this model in sea ice classification [46–49]. We used single-layer feedforward networks
model in MATLAB (The MathWorks, Inc., Natick, MA, USA). The chosen network training function
updates weight and bias values according to Levenberg-Marquardt optimization. This function is
often the fastest backpropagation algorithm in the toolbox of MATLAB. The hidden layer size is
10. The normalization step is applied to both the input vectors and the target vectors in the dataset.
The training images are shown in Table 1. The images for classification were not used in training.
For the TEMS-N method, there are two and three neurons in the input and output layer, respectively.
For the TPO method, the input layer has five input neurons from GLCM features and the output layer
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has three neurons. The training data are composed by GLCM features values of three sea ice types,
which are input into model for training after normalization.

3.6. Validation Method

Visual classification of ice types in SAR images was used to evaluate results from TEMS-N and
TPO methods. This was performed using one image every month from March to September. Decision
on ice types from selected points was compared with TPO and TEMS-N results from the same point.
Stratified random sampling is employed to derive the sampling points, which is a commonly used
sampling technique in the accuracy assessment of land cover maps [50,51]. It satisfies the basic
accuracy assessment objective and most of the desirable design criteria. It can also increase the
sample size in classes occupying areas to reduce the standard errors of the class-specific accuracy
estimates for these rare classes. The user’s accuracy, product’s accuracy, kappa coefficient and overall
accuracy were calculated from confusion matrices (shown in Section 4.2) as tools of assessment. Finally,
classification maps from TEMS-N are compared with operational ice charts and ice type estimates from
two microwave radiometer and scatterometer-based algorithms in order to compare ice type mapping
in coarse-resolution products against SAR fine-resolution results.

4. Results

4.1. Qualitative Comparison of Classification Maps against SAR Images

In this section, we present comparison of classification maps from using TEMS-N and TPO
methods against selected σo

hv images from dates and areas listed in Table 1. Visual interpretation of the
images is used for the comparison.

The top image in Figure 7, acquired on 16 January 2016, shows a section in the M’Clintock Channel.
This channel is a pathway of sea ice from the central Arctic, but it does not end at an open sea. Therefore,
numerous MYI floes usually accumulate in the channel (appear as bright rounded objects in the σo

hv
images). The figure shows that TEMS-N method identifies most of the visible MYI floes in the σo

hv
image and avoids misidentification of the relatively high backscatter from deformed FYI as being MYI.
On the other hand, the TPO method overestimates the areal extent of the MYI because the texture of the
surrounding FYI is very similar to that of MYI. TEMS-N and TPO methods have similar classification
results of OW/OIT. Similar classification performance of the two methods was observed in the other
image of M’Clintock Channel acquired on 21 April 2018 (not shown here).

The middle image in Figure 7 is from Lancaster Sound at a location near its eastern end where it
connects to the Baffin Bay. The image was acquired during late fall (26 November 2016). The freeze-up
at this location usually starts during the first week of October though it may be delayed by a month
because of strong wind and tidal activity. Moreover, ice consolidation rarely prevails in this location [52].
MYI floes appear bright with identifiable rounded shape in the σo

hv image. The surrounding deformed
FYI appears in different grey shades. Dark areas could be smooth FYI or OIT. The TEMS-N method
seems to reproduce the individual MYI floes while the TPO method reproduces a fewer number of
floes. Similar TEMS-N performance was found in the scene of 27 December 2017 in the Lancaster
Sound though the TPO method reproduces more floes. The good contrast between MYI floes and the
background in both images of the Lancaster Sound allows the extended-maxima function to identify
the MYI floes easily. The separation of the floes and their fairly well rounded shape justify the use of
morphology processing and shape features. The TPO method could not classify MYI effectively in
both images.

The bottom scene shows a scene located in the Viscount Melville Sound, acquired on 23 March
2017. This location is a choke point on the western part of the Northwest Passage where old ice
concentration was observed to be relatively high in the 2000′s (~40%), up from 30–50% in the 1970′s [53].
Nevertheless, the σo

hv image reveals only a few MYI floes with small size. The thermal noise is apparent
in this scene and is replicated in the results from both methods. Both methods misclassified OW/OIT
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as FYI in the areas with thermal noise. The TEMS-N method identifies MYI floes in this scene though
more floes are identified than what is already visible in the σo

hv images. This is apparent in the areas
marked by the red ellipse and yellow circle (the latter is enlarged in Figure 8). The well-identified
rounded MYI floe is reproduced in the TEMS-N image. However, other MYI floes in TEMS-N map
originate from bright areas which may not form circular shapes in the original σo

hv image. The uneven
distribution of backscatter, hence texture, from MYI or deformed FYI adds to the complication of MYI
floe identification. The FYI (grey areas in the σo

hv images) is fairly well identified by TPO method in
the scene of 23 March 2017 but misidentified as MYI in the scene of 24 February 2019 in the Viscount
Melville Sound and 4 October 2018 over the M’clure Strait (not shown here) because it has high
backscatter and texture, both similar to the MYI.
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4.2. Accuracy of the Classification Schemes

Confusion matrices were calculated to summarize the accuracy of the two classification methods
against the visual classification. Results are presented in Table 3 (for TPO method) and Table 4 for
(TEMS-N method). The average overall classification accuracy from the eight scenes are 75.81% for the
TPO method and 93.26% for the TEMS-N method. The overall user’s and producer’s accuracy are
highest for the OW/OIT class and lowest for the MYI class, with the producer’s accuracy always higher.
The overall user’s accuracy of all classes from the TEMS-N classification are higher than the TPO
classification (e.g., for MYI it is 80.35% and 47.60% from TEMS-N and TPO, respectively). The overall
producer’s accuracy is also higher from TEMS-N. The TPO method often overestimate MYI areas.

Table 3. Classification results from the TPO method.

No. Coverage Date
User’s Accuracy (%) Producer’s Accuracy (%)

Kappa Overall
Accuracy (%)OW/OIT FYI MYI OW/OIT FYI MYI

1 MCC 16-01-2016 92.93% 97.82% 78.36% 99.20% 80.30% 97.81% 0.8659 91.59%
2 MCC 21-04-2018 99.54% 69.25% 79.78% 59.23% 75.39% 98.88% 0.6809 79.06%
3 LS 27-12-2017 100.00% 88.77% 77.69% 77.34% 94.64% 72.22% 0.7413 87.29%
4 LS 26-11-2016 97.60% 90.44% 97.80% 100% 98.84% 62.24% 0.8569 92.71%
5 VMS 23-03-2017 100.00% 86.13% 91.00% 90.04% 98.03% 65.47% 0.8290 90.31%
6 VMS 24-02-2019 100.00% 92.08% 19.39% 91.19% 42.20% 98.29% 0.4264 59.75%
7 BS 30-09-2016 99.63% 54.49% 89.00% 68.29% 100% 48.11% 0.5908 73.33%
8 MCS 04-10-2018 99.69% 99.63% 12.30% 99.69% 28.84% 100.00% 0.3565 50.73%

Overall 98.19% 83.69% 47.60% 84.58% 69.37% 81.53% 0.6191 75.81%

Table 4. Classification results from the TEMS-N method.

No. Coverage Date
User’s Accuracy (%) Producer’s Accuracy (%)

Kappa Overall
Accuracy (%)OW/OIT FYI MYI OW/OIT FYI MYI

1 MCC 16-01-2016 98.75% 83.65% 95.00% 98.75% 97.44% 65.52% 0.8679 91.73%
2 MCC 21-04-2018 100.00% 90.41% 98.00% 86.98% 99.64% 76.56% 0.8696 93.27%
3 LS 27-12-2017 98.92% 97.48% 84.85% 97.87% 97.87% 83.17% 0.8931 96.30%
4 LS 26-11-2016 100.00% 99.71% 86.87% 100.00% 98.12% 97.73% 0.9553 98.31%
5 VMS 23-03-2017 95.20% 91.74% 83.00% 91.54% 94.07% 81.37% 0.8532 91.73%
6 VMS 24-02-2019 100.00% 97.89% 52.00% 97.73% 90.61% 92.86% 0.8715 93.02%
7 BS 30-09-2016 100.00% 78.76% 94.06% 74.28% 98.45% 80.51% 0.7749 86.66%
8 MCS 04-10-2018 100.00% 100.00% 49.00% 95.61% 92.95% 100.00% 0.8752 94.00%

Overall 98.97% 93.48% 80.35% 91.51% 96.17% 81.58% 0.8715 93.26%
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The kappa coefficient is a statistical measure of agreement between two raster images (in this
study, they are the result from the classification methods and the manual classification) [54]. Kappa
ranges from 0 to 1, with 1 means perfect agreement and 0 means agreement equivalent to chance.
It scores overall values (i.e., from all scenes) of 0.6191 and 0.8715 from TPO and TEMS-N, respectively.

Data from individual scenes (Tables 3 and 4) show that TEMS-N method has higher kappa and
overall accuracy than TPO method from all tested scenes. The lowest kappa from TEMS-N is 0.7749
estimated from the 30 September 2016 image. In this image, the misclassification of OW/OIT as FYI
caused low producer’s accuracy of OW/OIT and low user’s accuracy of FYI. The errors of OW/OIT
in this image are mainly caused by thermal noise. The lowest kappa from TPO is 0.3565, obtained
from the 4 October 2018 image. TPO classified many FYI ice floes with high brightness as MYI in the
4 October 2018 image. This caused low producer’ accuracy of FYI and low user’s accuracy of FYI.
The TEMS-N method demonstrates better performance of identifying MYI compared with the TPO
method. Two images located in the MCS and VMS (acquired on 24 February 2019) have lower user’s
accuracy of MYI from the two methods, with the lowest value from the TPO method. Many FYI pixels
were misclassified as MYI by the TPO method in other images, which caused low user’s accuracy
of MYI. Most of images have high user’s and producer’s accuracy of OW/OIT by both methods.
FYI classification errors is caused mostly by the similarity of texture features between FYI and MYI.

4.3. Comparison against Other MYI Classification Data

Three datasets of ice type/concentration maps (all from coarse-resolution sources) have been
used for comparison against the output from TEMS-N method. These are the CIS weekly ice charts
(concentration of MYI), MYI concentration maps from ECICE algorithm produced by Bremen University
and maps of Arctic sea ice classification (FYI and MYI) produced a published study [9]. The latter
is referred to as ZR (Zhang’s results). The three products are described in Section 2.3. Examples
of comparison from the four methods, along with the original σo

hv images, are shown in Figure 9.
The figures aim at assessing the results from the coarse-resolution sources against the fine-resolution
TEMS-N results.

In the CIS charts in Figure 9 each polygon is assigned MYI concentration (including second-year
and older ice). The ZR product assigns one ice type, MYI or FYI, to each pixel of 4.45 km. The ECICE
product uses a combination of passive and active microwave observations (same as the ZR method)
and provides the concentration of MYI at grid spacing of 12.5 km. It should be noted that the resolution
of the TEMS-N results from Sentinel-1 is much finer than the resolution of all the comparison datasets.
Table 5 includes quantitative comparison of ice type concentration from TEMS-N versus CIS and
ECICE. The digital values of the concentrations are not available from the ZR.

In the top scene of the MCC site (Figure 9), acquired on 11 January 2016, maps of MYI from
CIS, ZR and ECICE reproduce nearly same concentration observed in the fine-resolution TEMS-N
(particularly in polygon 4). The only exception is the failure of ZR to reproduce the concentration that
appears in the lower part of the image (polygon 1). From Table 5, polygons 1 in the CIS map of this
scene show 40% MYI concentration while TEMS-N show 10%. These are not the best polygons for
comparison because part of the polygon extends outside the SAR frame. Please note that the 0% MYI
concentration in polygons 2 and 3 is reproduced in TEMS-N data and to some extent in ECICE data.
In the scene of 21 April 2018 over M’Clintock Channel, the difference between MYI concentration from
TEMS-N and both CIS and ECICE is large possibly because of the large difference between the spatial
resolution of the two data sets.
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Figure 9. Comparison of TEMS-N results against other classification data in the M’Clintock Channel
scene (top), Lancaster Sound scene (middle) and Viscount Melville Strait (bottom) scenes. In the top
row CIS map is from 11 January 2016 and the rest of the maps from 16 January 2016. In the middle row
the CIS map is from 21 November 2016 and the rest from 26 November 2016. In the bottom row the
CIS map is from 20 March 2017 and the rest of the maps from 23 March 2017. The color of CIS chart
indicates MYI concentration of the polygon.

Table 5. Comparisons among the CIS chart, ECICE and the TEMS-N result in regions in some scenes.

Coverage Date
Polygon CIS TEMS-N ECICE

No. FYI MYI OW/OIT FYI MYI MYI

MCC 16-01-2016

1 60% 40% 36.70% 53.27% 10.03% 19.59%
2 100% - 92.56% 7.42% 0.01% 7.45%
3 100% - 70.57% 28.04% 1.39% 5.29%
4 20% 80% 17.07% 65.77% 17.16% 39.88%

LS 26-11-2016
1 90% 10% 1.32% 80.54% 6.56% 1.32%
2 100% - 0.00% 84.58% 3.95% 0.00%
3 90% 10% 0.00% 87.94% 7.53% 0.00%

VMS 23-03-2017

1 100% - 63.74% 35.46% 0.80% 15.61%
2 50% 50% 6.75% 78.45% 14.80% 57.50%
3 10% 90% 37.56% 57.37% 5.07% 83.36%
4 10% 90% 17.14% 72.52% 10.35% 69.31%
5 100% - 61.42% 36.96% 1.62% 29.34%

In the middle scene in Figure 9 (26 November 2016) the 10% MYI concentration in polygon 1
matches an area where several MYI floes in TEMS-N is observed while the 0% MYI concentration
in polygon 2 ignores a few visible floes. Once again, the advantage of producing maps at the better
spatial resolution of SAR is evident. In this image, the concentrations of MYI and FYI from TEMS-N
are not significantly different from those obtained from the other three datasets. In the 27 December
2017 image MYI concentration from CIS also agree with TEMS-N while ECICE overestimates it.
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In the bottom scene of the VMS (Figure 9), a few MYI floes appear as bright spots in the σo
hv image

and are replicated in the TEMS-N results. However, a larger and continuous MYI cover is shown in
the three coarse-resolution comparison maps. Based on visual interpretation of SAR image and the
TEMS-N results, all three methods identified areas between the visible MYI floes as MYI. These areas
usually contain deformed FYI if the ice regime is highly mobile, which is the case in the western Arctic
region. More discussions of the physical reason are presented in Section 5. It is interesting to note
that the CIS map in the bottom panel of Figure 6 captures the leads in polygon 4, which is visible in
the original σo

hv. This is an advantage of the visual analysis when the polygon is narrowed down to
capture a single feature in the SAR image. The apparent FYI in polygon 1 and 5 are correctly classified
in all other maps.

The striking quantitative information from the 23 March 2017 data in Table 5 is the significantly
lower MYI concentration in polygons 3 and 4 from TEMS-N (5% and 10.3%, respectively) compared
to 90% from the CIS chart and average of 75% from ECICE. Although estimates of ice types and
concentrations in operational ice charts are usually conservative (see next section), it is also possible
that TEMS-N underestimates the MYI concentration in this scene because of thermal noise.

5. Discussion

Operational ice charts are generated to identify sea ice types and their partial concentrations
in delineated areas (called polygons) generated manually by trained ice analysts. The information
is used by marine operators to support navigation decisions particularly regarding avoidance of
hazardous ice such as MYI. With the assumption of uniform distribution of concentration of each ice
type inside the polygon, identification of individual MYI floes (the hazardous objects) is missing in
the ice charts. This information, however, is available in the fine-resolution SAR images and, in fact,
is retrieved through the visual analysis of the images. Although many research studies were performed
to automate this retrieval, an automated detection method is still far from achieving the robustness
required by an operational scheme. This study is an attempt to develop an automated tool to identify
MYI floes in SAR images, then classify the rest of the scene.

Prior methods of using texture to detect MYI are disadvantaged by the intensive computations
required to generate the texture parameters and the non-inclusive classification results due to
overlapping texture values from different ice types. This problem is more severe in the present
data set than what has been reported in previous studies [25,48,55] because we found no texture
parameter can discriminate between MYI and FYI.

The challenge of identifying MYI cover using radar imagery data is the heavy overlap between
the MYI backscatter (and texture) and the deformed FYI in the surrounding. The deformed ice results
from the mobility of the ice cover, especially in the presence of MYI floes, which is usually intensive
in the western section of the Arctic due to the Beaufort Sea Gyre [56]. Due to the coarse resolution
of the comparison data used in the present study, particularly the operational ice mapping product,
the deformed ice is usually considered part of the MYI cover. Physically speaking, the deformed ice
between MYI floes is likely to be seasonal ice, not MYI. This is because during the melt season (which
MYI floes survive) all surface roughness/deformation forms, including protruding upturned ice blocks,
usually melt, leaving the MYI floes with smooth undulating surface, which features hummocks and
flat depressions (i.e., frozen melt pond). The floe shape is typically rounded or elliptic, i.e., not angular
or elongated. This assumption is used in the present method. Although it is well-recognized and
usually true because of the continuous collision of the floes with the surrounding ice during its long life,
any deviation from this typical shape presents a limitation on the application of the present method.

TEMS-N method combines texture with extended-maximum operator, morphological, and shape
features to identify individual MYI floes. Subsequently, a neural network scheme, trained by a few
texture parameters is applied to perform the classification. A few advantages of the steps involved
in TEMS-N are demonstrated in this paper. The extended-maxima operator can extract areas with
higher intensity in SAR images (potential MYI floes) to adapt the change of backscatter of MYI with
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days and seasons. When the backscatter or its texture varies inside the same MYI floe, the morphology
operator in TEMS-N can resolve the identification of the whole floe by filling “holes” inside the floe.
In high latitude areas, such as M’clure Strait and Viscount Melville strait, deformed FYI returns high
backscatter and texture similar to that of MYI, using texture parameters alone in a classification scheme
lead to misidentification as MYI. The shape features, including eccentricity, area, and extent, could
remove misidentification of deformed FYI or ridges.

Although TEMS-N has improved the identification of MYI floes, the deformed FYI could still
complicate the classification result. It is difficult to ensure the accuracy in the presence of extensive and
heavy deformed ice cover. This is evident in the three images in VMS and MCS, which typically have
high concentration mixtures of deformed, thick FYI and MYI. This leads to low MYI user’s accuracies
as shown in Tables 3 and 4. Classification results are also affected by thermal noise, an inherent feature
in Sentinel-1 images. In this study, thermal noise removal is performed based on the given information.
However, the remaining thermal noise still leads to misclassification of OW/OIT as FYI. Although
methods for thermal noise removal was developed (e.g., [57]), there is still no simple and effective
method to remove the noise completely. A better thermal noise removal approach could improve
the classification.

Operational ice charts usually provide conservative information, tending to overstress thicker
and older ice types such as MYI [58]. This is favored by operational community. They provide gross
information about ice type composition and their partial concentration within identified polygons but
details about the number, location, and size of hazardous ice floes are sometimes become critically
needed. Comparison of results from TEMS-N method against CIS ice charts serves to shed light
on this issue. An example is shown in the case of the VMS images (Figure 9 and Table 5). Here,
the gross MYI concentration from CIS charts reveals 100% or near 100% in the shown polygons.
The corresponding concentration of the identified floes from TEMS-N reveals only a range from 5%
to 12%. Field observations or just airborne photos are still needed to reveal the true composition.
Nevertheless, the present study demonstrates the advantage of the detailed information output from
an automated SAR-based approach compared to the coarse-resolution operational maps based on
subjective analysis of SAR images within large polygons. Information provided by TEMS-N method
is needed for tactical navigation purposes when a ship sails in a hazardous ice field. So far, in this
situation timely SAR images are provided to the ship to be analyzed by an expert onboard.

The conservative estimates of MYI concentration in the CIS charts are sometimes backed by
estimates from ECICE algorithm as shown in a few cases such as the MCC scene of 16 January 2016,
the VMS scene of 23 March 2017 (both shown in Figure 9) and MCS scene of 30 September 2016
(not shown). MYI concentration from the CIS charts is found to be identical to the results from TEMS-N
in most cases. An example is found in two scenes of LS. The accuracy of CIS operational charts is
demonstrated also in capturing the leads which are visible in the original σo

hv image in the VMS scene
of 23 March 2017 (Figure 9). This is an advantage of the visual analysis of SAR images when polygons
are narrowed down to focus on a single/uniform ice type.

Results from this study demonstrate potential application of the method to reveal distribution of
hazardous MYI floes in the route of an operational marine activity (e.g., ship navigation). This can offer
a special product when it is crucially needed. In this study, we just selected SAR images from September
to March of following year to avoid the summer season when the difference between FYI and MYI in
SAR images diminishes and neither backscatter nor texture becomes useful for classification. However,
ships often plan to navigate the Arctic waters through summer. Therefore, the sea ice classification,
particularly MYI, from SAR in the melt season should be a focus of future studies. Although we just
selected eight scenes for application in this paper, much more validation is needed.
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6. Conclusions

In this study, we propose an automatic sea ice classification approach (TEMS-N) to identify
individual MYI floes in SAR image and then classify the rest of the image through a neural network
approach trained by a few texture parameters. The first part of the method employs texture,
an extended-maxima operator, morphological, and shape features. The method has been applied to
eight scenes of Sentinel-1 SAR images with pixel spacing of 40 m in a study area that includes a few
passages within the CAA. This region needs detailed monitoring of MYI floes as they constitute hazard
for marine operations through parts of the Northwest Passage. The selected SAR images cover the
period from September to March of 2016 to 2019.

Results from TEMS-N classification compare favorably with visual analysis of Sentinel-1 SAR
images. Comparison of classification results from TEMS-N and another classification scheme that uses
texture parameters only (referred to as TPO) shows that adding morphological and geometrical
processing in the former improves the classification accuracy (particularly MYI identification)
significantly. TEMS-N achieves higher overall kappa coefficient (0.87) from all ice types compared
to 0.25 from the latter. This shows TEMS-N has better agreement with manual visual classification
than TPO. The overall MYI user’s and product’s accuracy from the TEMS-N method were 80.35%
and 81.58%, respectively, while the TPO method accuracies are 47.60% and 81.53%. The overall FYI
user’s and product’s accuracy from TEMS-N method were 93.48% and 96.17% which were higher than
TPO method. The TEMS-N and TPO methods have similar and relatively low OW/OIT classification
accuracy since the effect of thermal noise is more obvious for OW/OIT.

TEMS-N ice classification results were compared qualitatively and quantitatively against MYI
concentration from the weekly ice charts of the CIS, an ice type concentration and ice type product from
coarse microwave observations. The three sources are generated at a much coarser spatial resolution
than SAR. Comparison has shown that identification of individual MYI floes by TEMS-N produce MYI
concentration remarkably less than what is shown in the coarse-resolution products in most of the
eight cases studied. Nevertheless, good agreement is found in a few cases.

In conclusion, the TEMS-N method is proven to be an effective method to classify sea ice and
identify MYI floes using dual-polarized Sentinel-1 imagery. Future studies are needed to be focus on
the thermal noise removal of image and sea ice classification, particularly MYI, in the melt season.
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Abbreviations

The following abbreviations are used in this manuscript:

Acronym Stands for
NWP Northwest Passage
MYI multi-year ice
FYI first-year ice
SAR Synthetic Aperture Radar
CAA Canadian Arctic Archipelago
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CIS Canadian Ice Service
ESA European Space Agency
SMOS Soil Moisture and Ocean Salinity
GLCM grey level co-occurrence matrix
ARKTOS Advanced Reasoning using Knowledge for Typing of Sea ice
MCC M’Clintock Channel
VMS Viscount Melville strait
MCS M’clure Strait
BS Barrow Strait
LS Lancaster Sound
SM Stripmap
IW Interferometric Wide Swath
EW Extra Wide Swath
WV Wave
GRD Ground Range Detected
TOPSAR Terrain Observation with Progressive Scans SAR
ECICE Environment Canada’s Ice Concentration Extractor
AMSR-E Advanced Microwave Scanning Radiometer for EOS
ERA-Interim European Reanalysis
ASCAT Advanced Scatterometer
SSMI/S Special Sensor Microwave Imager/Sounder
AMSR-2 Advanced Microwave Scanning Radiometer 2
OW Open water
OIT other ice type
SNAP Sentinel Application Platform
LUT look-up table
TEMS-N the new method
TPO method that uses texture parameters only in a neural network scheme
SNAP Sentinel Application Platform
W window size
D displacement
K quantization level
ZR Zhang’s results
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