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Abstract: Recent developments of satellite precipitation products provide an unprecedented
opportunity for better precipitation estimation, and thus broaden hydrological application. However,
due to the errors and uncertainties of satellite products, a thorough validation is usually required before
putting into the real hydrological application. As such, this study aims to provide a comprehensive
evaluation on the performances of Tropical Rainfall Measuring Mission Multi-satellite Precipitation
Analysis (TMPA) 3B42V7 and Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), as well as their adequacies in
simulating hydrological processes in a semi-humid region in the northeastern China. It was found
that TMPA 3B42V7 showed a superior performance at the daily and monthly time scales, and had a
favorable capture of the rainfall-intensity distribution. Intra-annual comparisons indicated a better
representation of TMPA 3B42V7 from January to September, whereas PERSIANN-CDR was more
reliable from October to December. The Soil and Water Assessment Tool (SWAT) driven by gauge
precipitation data performed excellently with NSE > 0.9, while the performances of TMPA 3B42V7-
and PERSIANN-CDR-based models are satisfactory with NSE > 0.5. The performances varied under
different flow levels and hydrological years. Water balance analysis indicated a better performance of
TMPA 3B42V7 in simulating the hydrological processes, including evapotranspiration, groundwater
recharge and total runoff. The runoff compositions (i.e., base flow, subsurface flow, and surface flow)
driven by TMPA 3B42V7 were more accordant with the actual hydrological features. This study
will not only help recognize the potential satellite precipitation products for local water resources
management, but also be a reference for the poor-gauged regions with similar hydrologic and climatic
conditions around the world, especially the northeastern China and western Russia.

Keywords: satellite precipitation product; hydrological simulation; water balance; SWAT;
northeastern China

1. Introduction

Precipitation is acknowledged as a key element in water cycle that can directly affect the
hydrologic cycle and further influence water resources management and flood control [1–3]. Over the
past few decades, monitoring of precipitation has to rely on manually ground gauges, while the high
requirements on terrain and funding investment have limited their applications worldwide [4]. As such,
the satellite remote sensing technology has brought new opportunities for better precipitation estimation.
The Tropical Rainfall Measuring Mission (TRMM), launched in 1997, was the first satellite carrying
precipitation radar, which greatly encouraged the developments of satellite precipitation products,
including TRMM Multi-satellite Precipitation Analysis (TMPA), Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Climate
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Forecast System Reanalysis (CFSR), and so on [5–7]. These products devote a lot in providing
global and quasi-global precipitation grids with high temporal and spatial resolution, and greatly
improve the knowledge of global and regional precipitation graphs. However, the accuracy of satellite
precipitation products is still questionable, and the performances of products vary with region, season,
and elevation [8,9]. Thus, the accuracy and quality of satellite products must be assessed and validated
before being put into real hydrological applications.

In addition to directly comparing the satellite products with gauge observations, hydrological
models are effective tools for assessing the ability of satellite precipitation products on predicting
watershed hydrological variables (e.g., evapotranspiration, groundwater recharge, and runoff).
A variety of hydrological models with various complexities have been used for this purpose [6,10,11],
among which the Soil and Water Assessment Tool (SWAT) is the most widely used due to its
open source feature and explicit representation of the mechanisms and physical processes in the real
system [12,13]. Zhu et al. [14] investigated the role of PERSIANN-CDR, TMPA 3B42V7 and NCEP-CFSR
in forcing hydrology simulations using SWAT over the Xiang River Basin and Qu River Basin in
China. They found that both PERSIANN-CDR and TMPA 3B42V7 presented encouraging potential
for streamflow prediction at daily and monthly scale, while NCEP-CFSR behaved less satisfying.
Li et al. [15] demonstrated that the Version-7 TRMM data performed satisfactorily in predicting the
monthly runoff and water balance in the Tiaoxi catchment (Tai Lake Basin, China), but were not
suitable for daily streamflow simulation purpose. Vu et al. [16] assessed the reliability of TMPA
3B42V7, PERSIANN and PERSIANN-CDR in streamflow simulation over the Han River Basin in South
Korea, and Tan et al. [17] assessed three Global Precipitation Mission (GPM) precipitation products
over the Kelantan River Basin in Malaysia. Overall, many satellite precipitation products have been
compared and validated over different parts of the world [18–20], and some of them have superior
abilities in reflecting spatiotemporal variabilities of precipitation and in driving hydrological processes
simulation [21–24]. However, previous studies addressed a large portion of concerns to humid
regions [3,25,26], with relatively less focus on semi-humid regions [27,28]. Such regions are actually
of particular importance since they usually suffer from great challenges in water resource allocation
and management with both water shortage and inundation risks [29]. Therefore, a comprehensive
knowledge of the accuracy of satellite precipitation products, and their feasibilities in hydrological
applications in semi-humid areas are the key to acquire reliable precipitation datasets that dominate
the entire hydro-climatic processes, so as to offer better decisions in water resources planning
and management.

This study aims to provide an enhanced understanding of the quality of satellite precipitation
products, i.e., TMPA 3B42V7 (hereafter 3B42V7) and PERSIANN-CDR (hereafter PCDR), and their
applicabilities in evaluating the hydrological processes in semi-humid regions. The Biliu River Reservoir
Watershed (BRRW) is selected as the typical area, which is located in the Northeast Plain, China.
The specific objectives are threefold: (1) to compare the two satellite datasets, i.e., 3B42V7 and PCDR,
with ground gauge observation at different temporal (monthly and daily) and spatial (watershed and
grid) scales; (2) to assess the suitability and adequacy of satellite products for simulating streamflow
under different hydrological conditions; and (3) to analyze the water balance derived from different
precipitation datasets. This study will not only help recognize the potential satellite precipitation
products for local water resources management, but also be a reference for the poor-gauged regions
with similar hydrologic and climatic conditions around the world, especially in the northeastern China
and western Russia.

2. Materials and Methods

2.1. Study Area

BRRW is located in the upper reach of Biliu River, which is the largest river in Dalian City, Liaoning
Province, China (Figure 1a). BRRW is formed by the construction of Biliu River Reservoir (BRR),
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which is located 66 km downstream from the river head and has a drainage area of 2085 km2, accounting
for approximately 74% of the entire Biliu River Basin (BRB). The region has a semi-humid temperate
monsoon climate featured with four distinct seasons. The mean annual precipitation is about 739 mm,
with more than 70% of the precipitation occurring during the flood season from July to September
(see Figure 2 for the spatial distribution of mean annual precipitation). The mean annual air temperature
is about 10 ◦C. January has the coldest mean monthly air temperature at around −8 ◦C, and July
is the warmest month with a mean air temperature of 24 ◦C. Hilly in the northeast and northwest
regions and flat in proximity to the reservoir, the surface elevation ranges from 41 m to 1108 m. Forest
(FRST) and agricultural land (AGRL) are the two major land use types covering 72% and 19% of the
BRRW, respectively; while pasture (PAST), surface water (WATR) and residential (URLD) occupy the
remaining 9% of the total area (Figure 1b). The soils are dominated by Haplic Luvisols (LVh, 60%) and
Haplic Phaozems (PHh, 31%) (Figure 1c).
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Figure 1. The Biliu River Reservoir Watershed (BRRW): (a) watershed map showing DEM,
river networks, and the distribution stations, (b) land use map (FRST, Forest-Mixed; PAST, Pasture;
WATR, Water; URLD, Residential-Low Density; AGRL, Agricultural and Generic), (c) soil type map
(PHh, Haplic Phaozems; LVh, Haplic Luvisols; LVg, Gleyic Luvisols; CMe, Eutric Cambisols).
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Figure 2. Intersection of Thiessen polygons (black lines) with satellite grids (dashed lines, 0.25◦ × 0.25◦,
No.1–No.9). The grayish-blue filling indicates the spatial distribution of mean annual precipitation of
gauge observations.

BRR is part of the East-to-West Water Transfer Project of Liaoning Province, which is a vitally
important and backbone water conservancy project to the provincial social-economic development.
The reservoir has a total storage capacity of 9.3 × 108 m3, and a designed annual water-supply of
4.4 × 108 m3 that serves more than 80% of the domestic and industrial water uses for Dalian city.
In addition to water supply, the reservoir has multiple tasks for flood control, power generation,
and agricultural irrigation. Therefore, a comprehensive knowledge of the rainfall-runoff hydrological
process in BRRW through model simulation and prediction is the guarantee for drinking water-supply
and irrigation for millions of people.

2.2. Precipitation Datasets

2.2.1. Gauge Precipitation Data

Observed precipitation is the base to evaluate the performance of satellite precipitation products.
Figure 2 shows the locations of eight rain gauges, and their control areas (varying from 166 to 371 km2)
following the Thiessen polygon method. Daily precipitation at these gauges from 1 January 2000 to
31 December 2015 are obtained from the Hydrology Bureau of Liaoning Province; data are collected
from 0:00 UTC (Coordinated Universal Time) to 24:00 UTC of the current day. The spatial distribution
of mean annual precipitation (from 2000 to 2015) of the gauge records, interpolated by the Inverse
Distance Weight method, is displayed in Figure 2.

2.2.2. Satellite Precipitation Products

3B42V7 is the latest post real-time data of the TRMM Multi-Satellite Precipitation Analysis (TMPA)
product, which is superior to all previous versions [30]. The 3B42V7 dataset is available since January
1998 and covers the global latitude belt from 50◦ S to 50◦ N with a spatial resolution of 0.25◦ × 0.25◦

and a temporal resolution of 3-h [31]. In this study, the daily precipitation data from 2000 to 2015 are



Remote Sens. 2020, 12, 3133 5 of 20

evaluated, which can be downloaded freely from the Goddard Earth Sciences Data and Information
Services Center (https://mirador.gsfc.nasa.gov). The daily 3B42V7 data cover an accordant time span
from 0:00 UTC to 24:00 UTC with the gauge observation, which are further aggregated into the monthly
mean values.

PCDR is maintained by the University of California and National Oceanic and Atmospheric
Administration (NOAA) [32]. It is a multi-satellite precipitation product generated by the PERSIANN
algorithm using Gridsat-B1 IR satellite data [33]. The product is available since 1983, covering a
wider latitude belt from 60◦S to 60◦N and a same spatial resolution (0.25◦ × 0.25◦) compared with
3B42V7 product. In this study, the daily PCDR data from 2000 to 2015 are obtained from the Center for
Hydrometeorology and Remote Sensing (http://chrsdata.eng.uci.edu/).

Though both 3B42V7 and PCDR products are bias-corrected on a monthly basis using the Global
Precipitation Climatology Centre (GPCC) dataset [7], none of the eight rain gauges in the study area are
included in the GPCC gridded gauge-analysis product. It is therefore essential to examine the accuracy
of the two satellite products based on the ground observations, which will be a valuable reference for
such semi-humid areas where the satellite precipitation products have been less evaluated.

2.3. Accuracy Assessment of Satellite Precipitation Products

To understand the spatiotemporal variability of 3B42V7 and PCDR against gauge precipitation
data, the evaluation at different spatial (i.e., grid scale and watershed scale), and temporal scales
(i.e., daily and monthly) are conducted from 2000 to 2015. At the grid scale, the gauge observations are
compared with the satellite data of grid where the gauges are located; that are grids No.4, 5, 7, and 8 in
Figure 2. Arithmetic average is calculated for gauge data when there is more than one gauge in one
satellite grid (e.g., average of five gauges in grid No.5 is compared with the satellite data). As for the
watershed-scale comparison, the gauge-based areal precipitation is computed by Thiessen polygons,
and the satellite areal precipitation is derived by averaging the satellite data that have more than 50%
of its grid inside the watershed (i.e., grids No.4, 5, 7, and 8) [15].

Four basic statistical indices are computed to evaluate the accuracy of satellite-derived precipitation
data versus gauge observation. Correction coefficient (CC) is utilized to assess the linear correlation
between satellite- and gauge-based precipitation. Root-mean-square error (RMSE) and mean absolute
error (MAE) are both used to measure the average error magnitude, whereas the former gives greater
weight to large errors. The relative bias (BIAS) represents the systematic bias of satellite precipitation.
The above indices are expressed as follows:

CC =

∑(
Pobs,i− Pobs

)(
Psat,i− Psat

)
√∑(

Pobs,i− Pobs

)2
√∑(

Psat,i− Psat
)2

(1)

RMSE =

√
1
n
∑
(P obs,i − Psat,i

)2
(2)

MAE =
1
n
∑∣∣∣Pobs,i − Psat,i

∣∣∣ (3)

BIAS =

∑
(Psat,i − Pobs,i)∑

Pobs,i
×100% (4)

where Pobs is the observed precipitation from rain gauge, Psat is the estimated precipitation of 3B42V7
and PCDR products, Pobs and Psat are the mean values of observed and estimated precipitation,
respectively, and n is the number of samples.

To assess the ability of satellite products in detecting precipitation events, three categorical
statistical indices, including probability of detection (POD), false alarm ratio (FAR), and critical success
index (CSI) are used [34]. A threshold of 1 mm/day is used to differentiate the precipitation and

https://mirador.gsfc.nasa.gov
http://chrsdata.eng.uci.edu/
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non-precipitation events according to Feidas et al. [35]. The perfect values of POD, FAR, and CSI are 1,
0, and 1, respectively. The formulas are as follows:

POD =
H

H + M
(5)

FAR =
F

H + F
(6)

CSI =
H

H + M + F
(7)

where H is the number of hits (observed rain that was correctly detected), M is the number of
misses (observed rain that was not detected), and F is the number of false alarms (rain detected but
not observed).

2.4. SWAT Model Application

The SWAT is a time-continuous, semi-distributed, and physically based hydrological model,
designed to simulate water, sediment, nutrient, and pesticide transports at a catchment scale on daily,
monthly, or yearly time step [36–38]. The model divides a watershed into sub-basins connected by the
stream network, and further into hydrological response units (HRUs), which is the minimum element
to calculate the hydrological processes. The model has been successfully applied in many regions
in Northeast China [39,40]. More information about the model can be found in SWAT theoretical
documentation [41] and in the literatures [36,42,43].

A variety of data were collected to perform SWAT simulation, including topography, land use,
soil types, and meteorological and hydrological conditions. The digital elevation model (DEM) with
90 m resolution was downloaded from National Aeronautics and Space Administration Shuttle Radar
Topographic Mission (http://srtm.csi.cgiar.org/). The land cover and soil types with 1 km resolution were
obtained from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences
(http://www.resdc.cn). Daily records of maximum and minimum air temperature, relative humidity,
and wind speed were obtained from China Meteorological Administration (http://data.cma.cn).
Since there are no meteorological stations inside the study region, the adjacent stations of Xiongyue
(122.2◦E, 40.18◦N), Wafangdian (122.0◦E, 39.63◦N) and Zhuanghe (123.0◦E, 39.7◦N) were used, which are
approximately 18 km, 31 km, and 33 km away from BRRW, respectively. Daily streamflow at Jianchang
(JC) hydrological station during 2000–2015 and the reservoir inflow at BRR station (Figure 1a) during
1986–2015 were obtained from the Biliu River Reservoir Administration; data were further aggregated
into monthly averages to evaluate the hydrological model performance.

The BRRB is delineated into 33 sub-basins and further 212 HRUs. Grid centers of satellite
products are assumed as virtual meteorological stations to drive the model. The entire simulation is
divided into a warm-up period (2000–2001), a calibration period (2002–2009), and a validation period
(2010–2015). The SUFI-2 (Sequential Uncertainty Fitting, ver.2) algorithm built in the SWAT-CUP
software is employed for sensitivity analysis and auto-calibration [44]. Through sensitive analysis,
13 parameters are selected for model calibration. Three goodness-of-fit measures, namely coefficient of
determination (R2), Nash-Sutcliffe Coefficient of Efficiency (NSE) [45], and relative bias radio (Bias)
were adopted to evaluate the performance of streamflow simulation, which are expressed as follows:

R2 =

(∑(
Qo,i− Qo

)
(Q m,i− Qm))

2

∑(
Qo,i− Qo

)2 ∑(
Qm,i− Qm

)2 (8)

NSE = 1−

∑(
Qo,i −Qm,i

)2

∑(
Qo,i −Qm

)2 (9)

http://srtm.csi.cgiar.org/
http://www.resdc.cn
http://data.cma.cn


Remote Sens. 2020, 12, 3133 7 of 20

Bias =

∑(
Qm,i −Qo,i

)∑
Qo,i

×100% (10)

where Qo,i and Qm,i represent the observed and simulated streamflow in the ith time period, respectively;
Qo and Qm represent the average of observed and simulated streamflow, respectively.

To evaluate the application potential of satellite precipitation estimates in hydrological
simulation, each of the three precipitation datasets (i.e., ground gauge, 3B42V7, and PCDR) is
used independently to drive the model and to obtain their own optimal parameter values. This would
be helpful in understanding the accuracy and reliability of the specified satellite data in producing
hydrological variables in case it is the sole source of precipitation in the study region. The simulated
streamflow and water budget components (i.e., surface runoff, subsurface runoff, groundwater flow,
and evapotranspiration) based on different precipitation datasets are analyzed and discussed in
Sections 3.2 and 3.3.

3. Results and Discussion

3.1. Evaluation of Satellite Precipitation Products

3.1.1. Daily Precipitation

Figure 3 shows the scatter plots of daily data from two satellite products (3B42V7 and PCDR),
versus rain gauges at the grid and watershed scales, as well as the corresponding statistical indices.
During the evaluation period from 2000 to 2015, there are, in total, 23,376 points for grid-based
comparison and 5844 pairs for watershed-based comparison.
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Figure 3. Scatter plots of daily precipitation from 3B42V7 and PCDR versus rain gauges data at the (a)
grid scale and (b) watershed scale.

At the grid scale, the 3B42V7 and PCDR both had a small BIAS at −3.95% and 2.09%, respectively,
indicating an underestimation of 3B42V7 and an overestimation of PCDR overall. 3B42V7 had a larger
CC (0.63), and a smaller MAE (1.93 mm) than PCDR (CC: 0.56, MAE: 2.2 3mm); whereas PCDR reported
a smaller RMSE (6.79 mm) and a smaller BIAS of 2.09% than 3B42V7 (RMSE: 6.87 mm, BIAS −3.95%).
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It should be noted that compared to MAE, RMSE retains the difference in magnitude as it can avoid
the fact that positive and negative differences cancel each other out, reflecting the randomness of
the errors [4,46].

Regarding the contingency of satellite precipitation estimates, 3B42V7 and PCDR both displayed
moderate ability in detecting the gauge precipitation events with POD at 0.60 and 0.78, respectively.
Although PCDR outperformed 3B42V7 in POD, the higher FAR obviously decreased its overall skill,
which showed that 62% of the detected events were false. This further resulted in a lower CSI of PCDR
(CSI: 0.34) compared to 3B42V7 (CSI:0.42).

The fitness between satellite data and gauge data differed among grid. As shown in Table 1,
grid No.5 generally has a better agreement between the satellite-based and gauge-based data,
as indicated by the higher CC and CSI, and smaller RMSE, MAE, and FAR. This is probably attributed
to the five gauge stations scattered over the grid that can better represent the areal precipitation
within this grid. As reminded by previous studies [14,47], the gauge observations that are usually
used as reference datasets may be subject to uncertainties due to errors in recording and deficits of
regionalization, and the rain gauges density may affect the evaluation results.

Table 1. Evaluation indices of daily 3B42V7 and PCDR products versus gauge observation from 2000
to 2015 for each grid.

Grid CC RMSE (mm) MAE (mm) BIAS (%) POD FAR CSI

3B42V7

No.4 0.60 6.99 1.95 −6.12 0.57 0.41 0.41
No.5 0.66 6.44 1.89 −3.22 0.58 0.37 0.44
No.7 0.62 7.08 1.98 −6.55 0.59 0.45 0.40
No.8 0.64 6.94 1.89 0.30 0.61 0.41 0.43

PCDR

No.4 0.52 6.95 2.25 −0.30 0.76 0.62 0.34
No.5 0.60 6.28 2.15 1.93 0.77 0.60 0.36
No.7 0.58 7.00 2.28 −0.82 0.79 0.62 0.34
No.8 0.57 6.91 2.23 7.84 0.80 0.63 0.34

At the watershed scale, both 3B42V7 and PCDR showed a better agreement compared with the
grid scale, because all statistical indices are closer to their corresponding perfect values, except for the
BIAS of PCDR. In general, 3B42V7 outperformed PCDR at both spatial scales, as indicated by the higher
CC and CSI, and smaller RMSE (for watershed scale only), MAE, BIAS, and FAR of 3B42V7 dataset.

Additionally, it is generally recognized that the distribution pattern of precipitation with different
intensities is an important feature and has significant effects on streamflow modeling and flood
forecasting [48,49]. Therefore, the occurrence frequency of daily precipitation and the corresponding
contribution to the total precipitation are evaluated for different intensities at the watershed scale (Figure 4).

It can be seen that the “non-rainy” days (0 mm) was the class that most frequently occurred,
with an occurrence rate of 66.5% for gauge observation and 3B42V7, and 41.5% for PCDR. The second
largest class was “0–1 mm” for the gauge and 3B42V7 data, occurring in 15.6% and 15.2% of the total
number of days, respectively, followed by the class of “1–10 mm”, occurring in 12.3% and 12.8%,
respectively. In general, the 3B42V7 under “non-rainy” and “light rain” classes had a similar occurrence
rate compared to the gauge data. This is different with some previous studies, stating that TMPA
product is less effective in correctly specifying the moderate and light rain rates [2,15].

However, for PCDR, more “0–1 mm” (occurrence rate: 25.2%)” and “1–10 mm” (occurrence rate:
28.5%) days were recorded compared to gauge observation. The discrepancies were also evident in the
contribution pattern, where PCDR had an overestimation in light rainfall class (0–1 mm and 1–10 mm)
and an underestimation in high rainfall classes (>25 mm). Similar findings on the performance of
PCDR were reported in Northeastern China [50], the contiguous United States [33], and Italy [51].
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Besides, no events above 100 mm were recorded in PCDR, while both the gauge and 3B42V7 data
had two events larger than 100 mm, reflecting an inadequate ability of PCDR in detecting extreme
precipitation events. The 3B42V7, however, showed a similar contribution pattern against the gauge
data for all classes, with an acceptable discrepancy within ±5%, indicating that the 3B42V7 data is
more adequate in characterizing the rainfall structure of the gauge observation.

Further, the performance of daily precipitation of 3B42V7 and PCDR products under different
rainfall intensities was assessed at the watershed scale (Figure 5). Four indices, i.e., CC, RMSE, MAE,
and BIAS, were applied for comparison. CC increased from 0.20 to 0.42 (on average of the two products)
as the rainfall intensity increased; whereas RMSE, MAE, and BIAS indicated a falling performance
of both satellite-based products as the rainfall intensity increased. The performances of two satellite
products differed in terms of rainfall intensities. 3B42V7 showed better agreement in torrential rains
(>50 mm), whereas PCDR preceded in heavy rainfall events (25–50 mm) except for the BIAS index.
As for light (1–10 mm) and moderate (10–25 mm) events, performances of the two products were
comparable as indicated by the larger CC and smaller bias for 3B42V7, and the smaller RMSE and
MAE for PCDR.
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3.1.2. Monthly Precipitation

Figure 6 shows the comparison results of monthly satellite precipitation and gauge data.
The assessment on the capability in detecting precipitation events is not able to perform at the monthly
scale, because all months of the three datasets have precipitations larger than 1 mm. The correlation
relationship is greatly improved at the monthly scale. The CC values were larger than 0.90 for both
products at the grid and watershed scales.

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 21 

Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

 

Figure 5. Statistical indices of 3B42V7 and PCDR data under different precipitation intensities at daily scale. 

3.1.2. Monthly Precipitation 

Figure 6 shows the comparison results of monthly satellite precipitation and gauge data. The 

assessment on the capability in detecting precipitation events is not able to perform at the monthly 

scale, because all months of the three datasets have precipitations larger than 1 mm. The correlation 

relationship is greatly improved at the monthly scale. The CC values were larger than 0.90 for both 

products at the grid and watershed scales. 

 

Figure 6. Scatter plots of monthly precipitation from two satellite products versus rain gauges data at 

the (a) grid scale and (b) watershed scale. 

Figure 6. Scatter plots of monthly precipitation from two satellite products versus rain gauges data at
the (a) grid scale and (b) watershed scale.

Due to the intra-annual variabilities of precipitation, the performance of satellite products for
each month is further evaluated. Figure 7 shows the statistical indices of CC, RMSE, and BIAS for each
month. Overall, both 3B42V7 and PCDR can capture the monthly precipitation pattern of the gauge
observation. The linear relationships were satisfactory with the CC above 0.80 for 3B42V7 and above
0.70 for PCDR during all months except for September. RMSE increased as the monthly precipitation
increased, with the maximum RMSE occurred in August for both satellite products. The variations in
BIAS showed clearly the underestimation during the high-precipitation period from June to September
(for PCDR only in June and August), while overestimation during other months. It is worthy to
recognize that the systematic errors were relatively small in the wet season (i.e., from June to September)
with the absolute values of BIAS lower than 20%, while large in the dry season (i.e., from December to
next March) with a BIAS up to 60%. In general, 3B42V7 produced a smaller absolute value of BIAS
throughout the year (10.6% for 3B42V7 and 18.1% for PCDR on average), and was slightly superior
in CC and RMSE from January to August; while PCDR outperformed 3B42V7 from September to
December as indicated by its larger CC and smaller RMSE.
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3.2. Evaluation of Streamflow Simulation

3.2.1. Streamflow Simulation

Table 2 shows the calibrated values of 13 parameters, and all values lie within their proper ranges.
Figure 8 shows the observed and simulated monthly streamflow at JC and BRR stations (Figure 1a);
the corresponding statistical indices are summarized in Table 3.

The simulated streamflow driven by gauge data exhibited a closer agreement with the observed
data than model simulations using 3B42V7 and PCDR data. The NSE and R2 were particularly high
for the gauge-based simulation; the NSE ranged from 0.92 to 0.96, and R2 ranged from 0.93 to 0.97.
The good fitness demonstrates that the model is capable of capturing the key features of the observed
hydrograph at monthly scale when forced by gauge precipitation. Therefore, the model is considered
robust and provides a sound basis for further testing the precision and applicability of satellite products.

Table 2. Best fitted parameters for gauge-, 3B42V7- and PCDR-based models for monthly streamflow simulation.

Parameter Lower Bound Upper Bound
Optimal Value

Process
Gauge-Based Model 3B42V7 PCDR

ESCO 0.01 1 0.09 0.18 0.15 Evaporation
EPCO 0.01 1 0.09 0.07 0.85 Evaporation
CN2 −20 15 7.34 10.14 −4.01 Runoff

SOL_AWC −0.2 0.2 0.09 0.01 0.04 Soil
SOL_K −0.8 0.8 −0.49 0.03 −0.26 Soil
CH_K2 1 25 19.98 12.88 14.46 Channel
CH_N2 0.01 0.1 0.09 0.10 0.01 Runoff

RCHRG_DP 0 0.5 0.21 0.14 0.24 Ground water
GW_REVAP 0.02 0.2 0.19 0.18 0.09 Ground water
REVAPMN 0 500 458.5 286.5 175.5 Evaporation

GW_DELAY 1 365 5.00 4.28 2.82 Ground water
ALPHA_BF 0.001 1 0.58 0.24 0.63 Runoff
GWQMN 0 500 384.5 141.5 18.5 Ground water
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Table 3. Statistical indices for streamflow simulation at JC and BRR stations using three precipitation inputs.

Precipitation Dataset Station Period NSE R2 Bias (%)

Gauge JC Calibration 0.95 0.96 6.6
Validation 0.96 0.97 7.9

BRR Calibration 0.95 0.97 −23.3
Validation 0.92 0.93 −9.9

TMPA 3B42V7 JC Calibration 0.53 0.57 17.2
Validation 0.83 0.83 2.3

BRR Calibration 0.71 0.73 −22.0
Validation 0.80 0.80 −14.6

PERSIANN-CDR JC Calibration 0.43 0.49 22.3
Validation 0.68 0.69 −12.5

BRR Calibration 0.57 0.58 −19.4
Validation 0.73 0.75 −26.4

The model performances driven by two satellite products were lower than the gauge-based
simulation. At BRR station, 3B42V7-based model led to a slightly better model efficiency and a lower
systematic error than PCDR, as indicated by a larger NSE of 0.76 (PCDR: 0.65), a larger R2 of 0.77
(PCDR: 0.67), and a smaller Bias of 18.3% (PCDR: 22.9%) on average during calibration and validation
periods. Similarly, 3B42V7 outperformed PCDR in producing the streamflow at JC station, with the
NSE of 0.68 and 0.56, R2 of 0.70 and 0.59, and Bias of 9.8% and 17.4% for 3B42V7 and PCDR, respectively.
Overall, consistent with the quality evaluation of the two satellite products, 3B42V7 exhibited a better
performance than PCDR in depicting streamflow hydrographs.

3.2.2. Performance under Different Flow Levels and Hydrological Years

In addition to the overall hydrographs, the ability of capturing the flow peaks and low flow
conditions are of particular importance for flood control and drought prevention. To investigate
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the model performance at different flow levels, the monthly observed streamflow exceeding its 90%
quantile is defined as high flow and that less than its 50% quantile is defined as low flow; the streamflow
between these two is defined as moderate flow. On this basis, the entire study period is divided into
16 months of high flow, 84 months of moderate flow, and 68 months of low flow. The statistical indices
of streamflow simulation under different flow conditions are summarized in Table 4.

Table 4. Statistics indices of streamflow simulation forced by the three precipitation inputs at different
flow levels.

Levels Precipitation JC Station BRR Station

Inputs R2 Bias (%) R2 Bias (%)

High flow Gauge 0.92 8.1 0.85 −4.0
3B42V7 0.63 −13.8 0.54 −21.7
PCDR 0.38 −22.4 0.44 −28.4

Moderate flow Gauge 0.69 7.3 0.74 −30.0
3B42V7 0.16 44.6 0.27 −3.8
PCDR 0.21 41.1 0.19 −8.8

Low flow Gauge 0.29 0.5 0.01 −35.7
3B42V7 0.16 73.7 0.01 −37.8
PCDR 0.27 57.9 0.04 −40.5

Under the high flow condition, the gauge-based model generated a perfect simulation result with
R2 of 0.92 and 0.85 at JC and BRR, respectively. The calculated Bias was also small within a range of
±10%. However, both 3B42V7- and PCDR-based models yielded an underestimation of streamflow,
as indicated by the negative Bias ranging from −13.8% to −28.4%. Model performance using 3B42V7
data was better than that using PCDR, with a larger R2 of 0.63 and 0.54 at JC and BRR, respectively,
and a smaller Bias of −13.8% and −21.7% at JC and BRR, respectively. The better performance of
3B42V7-based model during high flow condition is probably due to the better representation of 3B42V7
in capturing torrential rains (Figures 4 and 5).

As regards to the moderate flow, the gauge-based model generated a satisfactory R2 of 0.69 and
0.74 at JC and BRR, respectively, but a larger Bias of −30% at BRR. The model performances utilizing
3B42V7 and PCDR data were relatively lower. The R2 ranged from 0.16 to 0.27, and the Bias was larger
than 40% at JC whereas lower within −10% at BRR. Therefore, the gauge observations are more accurate
in depicting runoff process under moderate flow conditions; whereas, the satellite products match well
in the amount of streamflow (at BRR only). Unfortunately, at the low flow level, model simulations
driven by the three precipitation datasets all produced unsatisfactory results, with R2 ranging from
0.01 to 0.29, and absolute values of Bias larger than 35% (except for gauge-based simulation at JC).
As demonstrated in previous studies, the poor performance under relatively low flow levels may
be attributable to the uncertainties of other input data (such as soil type) and parameters, as well
as the limitation of SWAT internal algorithms under low-flow conditions [52,53]. Therefore, reliable
precipitation data, along with improved model algorithms, are both essential to enable a more accurate
and realistic streamflow simulation [54].

The performances of satellite precipitation datasets in generating streamflow are also evaluated at
different hydrological years. Prior to evaluation, the historical sequence of streamflow at BRR station
during 1986 to 2015 is used to plot the annual runoff frequency curve. Then the annual runoff frequency
(F) of 37.5% and 62.5% are adopted as the classification standard [55,56], and the 16-year simulation
period is divided into wet years (F ≤ 37.5%, including years of 2005, and 2010 to 2013), normal years
(37.5% < F ≤ 62.5%, including years of 2004, 2006, 2007, 2008, and 2015) and dry years (F > 62.5%,
including years of 2002, 2003, 2009, and 2014).

Table 5 lists the evaluation indices of streamflow simulation during the wet, normal and dry
years. The gauge-based model gained preferable results than 3B42V7-and PCDR- based models for all
indices, with R2 above 0.9 for the wet and normal years, and above 0.5 for the dry years. Generally,
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simulation results got worse as the frequency increased, as indicated by the decreased R2 and increased
absolute values of Bias. The performances of 3B42V7-and PCDR- based models were satisfactory
during the wet and normal years, with R2 ranging from 0.54 to 0.83; however, they yielded remarkable
underestimation at BRR, with Bias ranging from −17.1% to −32.8%. Generally, 3B42V7 produced
a relatively better performance than PCDR in wet years with larger R2 and smaller Bias, while the
performance of these two products were comparable in the normal years. In the dry years, both 3B42V7-
and PCDR-based simulations showed poorer correlations with the observed streamflow.

Table 5. Statistical indices of the simulated monthly streamflow using three precipitation inputs during
the wet, normal, and dry years.

Class of
Frequency Precipitation JC Station BRR Dtation

Inputs R2 Bias (%) R2 Bias (%)

F ≤ 37.5% Gauge 0.98 6.1 0.93 −7.4
(Wet years) 3B42V7 0.83 −3.7 0.80 −17.1

PCDR 0.64 −9.7 0.69 −21.0
37.5% < F ≤ 62.5% Gauge 0.92 12.6 0.95 −21.9

(Normal years) 3B42V7 0.54 10.9 0.75 −29.4
PCDR 0.61 9.5 0.77 −32.8

F > 62.5% Gauge 0.73 3.1 0.53 −46.7
(Dry years) 3B42V7 0.34 102.3 0.30 17.0

PCDR 0.33 59.0 0.23 −8.8

3.3. Evaluation of Hydrologic Process Simulation

3.3.1. Water Balance

In addition to streamflow predictions, the ability in producing hydrological variables is another
important indicator for assessing the satellite precipitation data [3]. Water balance analysis was carried
out to compare the major components of hydrological cycle from monthly simulations driven by the
three precipitation datasets. The SWAT model partitions precipitation into evaporation, transpiration,
ground discharge (including base flow), and runoff (including surface runoff, base flow, and subsurface
flow) [38]. Numerical comparisons of the averaged water balance components from 2002 to 2015 are
shown in Table 6.

Table 6. Water balance components of the gauge-based, and 3B42V7- and PCDR-based simulations.

Components Gauge-Based Model 3B42V7-Based Model PCDR-Based Model

Volume
(mm/y) P% R% Volume

(mm/y) P% R% Volume
(mm/y) P% R%

Precipitation 731.7 719.9 762.2
Evaporation and

Transpiration 538.1 73.5 530.1 73.6 571.6 75.0

Groundwater recharge 101.5 13.9 75.3 10.5 144.8 19.0
Total runoff 186.2 25.5 198.7 27.6 155.8 20.4

Surface runoff 86.1 46.2 91.0 45.8 18.1 11.6
Subsurface flow 20.3 10.9 42.7 21.5 27.7 17.8

Base flow 79.9 42.9 65.0 32.7 110.0 70.6

Note: P% stands for the composition ratio of precipitation; R% stands for the composition ratio of total runoff.

In the case of gauge-based simulation, 73.5% of precipitation was exhausted through evaporation
and transpiration, and a very similar rate of 73.6% was produced by 3B42V7; whereas the corresponding
rate in PCDR was slightly overestimated (75%). As a key component determining the amount of base
flow, the groundwater recharge accounted for 13.9%, 10.5%, and 19% of precipitation in the gauge-,
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3B42V7- and PCDR-driven simulations, respectively. As for the total runoff, the 3B42V7-based model
generated a similar total runoff to the gauge-based model, 198.7 mm and 186.2 mm, respectively.
Less total runoff was produced in the PCDR case (155.8 mm), although the precipitation estimate
of PCDR was larger than that of gauge observation and 3B42V7 estimate, probably due to the
overestimated exhaust through evaporation, transpiration and groundwater recharge. The differences
in runoff components were notable between PCDR- and gauge-based models, especially for the surface
runoff, (i.e., 86.1 mm for gauge and 18.1 mm for PCDR), and the base flow volume (i.e., 79.9 mm for
gauge and 110.0 mm for PCDR).

3.3.2. Annual and Monthly Runoff Distributions

The runoff distributions (i.e., monthly and annually) and components (i.e., surface flow, subsurface
flow, and base flow) are of great concerns in evaluating the water resources from different sources.
Figure 9 displays the annual total runoff partitioning into surface runoff, base flow and subsurface
flow from 2002 to 2015. Generally, two satellite datasets captured well the overall trends of annual
precipitation and total runoff. Both gauge- and 3B42V7-based results indicated that surface runoff was
the dominant contributor to total runoff, followed by base flow, while PCDR led to an overestimation
in base flow simulation and an underestimation in surface runoff simulation.
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Figure 10 further displays the compositions of monthly runoff driven by gauge, 3B42V7 and
PCDR data. The monthly variations of total runoff were consistent among the three simulations,
with more than two thirds of total runoff occurring in July and August. In general, 3B42V7 generated a
similar contribution pattern with the gauge-based simulation; that is, surface runoff was the dominate
component from January to August, and subsurface flow and base flow became the major contributors
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during September to December. Unfortunately, PCDR was not able to produce the intra-annual runoff

compositions, which tended to overestimate the base flow most of the time from March to November
and underestimate the role of surface flow.
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4. Conclusions

This study assessed the accuracy of two satellite precipitation products, i.e., 3B42V7 and PCDR,
and their utilities in driving hydrological simulation over a semi-humid region in the Biliu River
Reservoir Watershed (China).

Results indicated that 3B42V7 generally outperformed PCDR in estimating the gauge precipitation.
Performance of both satellite products improved with the time and space aggregations from daily to
monthly scale, and from grid to watershed scale. The abilities in detecting precipitation events were
comparable between the two satellite datasets. Dividing the precipitation into different intensities,
it was found that 3B42V7 was superior in determining the rainfall occurrence under all intensities,
whereas PCDR overestimated the light rainfall (1–10 mm) and underestimated the moderate (10–25 mm)
and high rainfalls (>25 mm). Evaluation indices for different grids showed a better agreement between
the daily satellite estimates and gauge precipitation in a data-rich grid. Therefore, it is worth to thicken
the network of precipitation measurements with further precipitation stations, which would increase
the amount of data necessary in the validation processes in the future.

The R2, NSE, and Bias were applied to evaluate the monthly hydrological model performance.
The 3B42V7-based simulation showed a better agreement between the simulated and observed
streamflow compared to model simulation using PCDR. Specifically, the gauge data were well suited



Remote Sens. 2020, 12, 3133 17 of 20

for simulating the high and moderate flows, and 3B42V7 data were also applicable in the high flow
simulation. However, neither 3B42V7 nor PCDR were capable in modeling the moderate and low flow
conditions. Further, water balance analysis indicated that the 3B42V7 data and gauge observations
denoted very similar water balance and runoff compositions, while PCDR overestimated the base flow
and underestimated the surface flow most of the time. Overall, results in this study suggested the
adequacy and applicability of 3B42V7 in describing hydrological features in the study area, which is
vital in water resources planning and management in case there is less gauge-based observation.

To date, there are more than 30 global precipitation datasets available that can serve as alternative
precipitation data sources including gauge-based, reanalysis, and satellite data [57]. Although many
of them are proven to have great potential in the real hydrological applications, there is still much
room to improve the accuracy of satellite products for various hydrologic purposes, such as flood
forecasting, drought prevention, and water supply. Therefore, further studies need to carry out the
in-depth work of satellite precipitation correction and validation over different parts of the world,
in order for decision-makers to find alternative precipitation sources for water resources planning
and management.
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