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Abstract: IMU preintegration technology has been widely used in the optimization-based sensor
fusion framework, in order to avoid reintegrating the high-frequency IMU measurements at each
iteration and maintain the ability of bias correction when bias estimation changes. Since IMU
preintegration technology was first proposed, several improved versions have been designed by
changing the attitude parameterization or the numerical integration method in the most current
related research. However, all of these versions have failed to take the change of gravity and the
earth rotation into consideration. In this paper, we redesign the IMU preintegration algorithm in
which the earth rotation and gravity vector are calculated from the geodetic position. Compared with
the covariance matrix form, in this paper, the uncertainty of the preintegrated IMU measurements
is propagated in the form of a square root information matrix (SRIM) for better numerical stability
and easy use in the optimization-based framework. We evaluate the improved IMU preintegration
algorithm by using the dataset collected by our sensor platform equipped with two different-grade
IMUs. The test results show that the improved IMU preintegration algorithm can cope well with
the gravity change and earth rotation. The earth rotation must be taken into consideration for the
high-grade IMU that can effectively sense the earth rotation. If the change of gravity is omitted,
the root-mean-square error (RMSE) of the horizontal attitude is about 1.38 times greater than the
geodetic displacement. Additionally, the positioning RMSE does not increase obviously within a
limited range, which means tens of kilometers and several hundred meters for the low-grade and
high-grade IMU used in the experiment, respectively.

Keywords: IMU; preintegration; graph optimization; earth rotation; change of gravity; SRIM;
GNSS; VINS

1. Introduction

Automatic robots have become a hot topic over the last few years due to a growing market
demand for products such as autonomous cars, rescue robots, and military robots. In order to
succeed in their missions, these robots usually require accurate motion information (position, velocity,
and attitude) for control and navigation. Many kinds of sensors can provide useful information
for motion estimation, locally or globally, such as a camera, the IMU, and the global navigation
satellite system (GNSS). Typically, a modern robot is equipped with several kinds of sensors with
complementary sensing capacities, in order to make motion information estimation accurate and
robust. Specifically, the inertial navigation system (INS) can provide position, velocity, and attitude
information at a high frequency by integrating IMU measurements [1–4]. However, IMU measurements

Remote Sens. 2020, 12, 3048; doi:10.3390/rs12183048 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5591-0859
http://dx.doi.org/10.3390/rs12183048
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/18/3048?type=check_update&version=2


Remote Sens. 2020, 12, 3048 2 of 22

are typically corrupted by several kinds of errors, such as the scale factor error, misalignment, biases,
and sensor-induced random output noise [5]. Such measurement errors make the long-term integration
of IMU measurements unreliable. In contrast to the short-term accuracy of the INS, the GNSS can
provide position information in the geodetic reference frame with a relatively consistent accuracy and
no position drift. However, the provided position information is low-frequency and discontinuous.
For those reasons, the INS/GNSS integrated navigation system has been well-studied over the past
several decades for providing high-precision, high-frequency motion information without drift [6–8].
However, the performance of the integrated system greatly depends on the availability of GNSS signals,
especially for the low-grade IMU [7,8]. Unfortunately, satellite signals are vulnerable to electromagnetic
interference and easily shielded by high buildings, which makes GNSS measurements unreliable.
Another well-known technique with the capacity for local motion information estimation is the
visual-inertial navigation system (VINS), which fuses the measurements provided by the camera and
the IMU [9–21]. The two sensors are complementary in many ways. The IMU makes the metric scale
and the gravity vector observable and provides accurate inter-frame motion information. The visual
information aids the IMU in bias estimation. Nevertheless, the global position and yaw estimation
of the VINS finally drifts [14], unless other sensors/systems that provide global measurements,
such as the GNSS, are integrated with the VINS [15,16]. According to the above analyses, there is
an irresistible trend to fuse the complementary information from the redundant sensors for motion
information estimation.

Information fusion of the INS/GNSS integrated navigation system can be implemented by
Bayesian filters, such as the Kalman filter or extended Kalman filter [6]. In comparison, the information
fusion algorithms of the VINS become more complex, due to the high nonlinearity of visual residual
functions and the high number of visual measurements. Generally, the information fusion algorithms of
the VINS can be divided into two categories, namely the optimization-based methods [9–13,15,16] and
the Bayesian filter-based methods [14,17–21]. The optimization-based methods typically can achieve
a higher accuracy than the filter-based methods by benefitting from the ability of re-linearization.
The computational complexity of the filtered-based methods is cubic with the number of visible
mappoints. For achieving a real-time performance, the number of mappoints in the state of the filter is
strictly limited, which also decreases the accuracy of information fusion [22]. The multistate constraint
Kalman filter (MSCKF) is a special augmented Kalman filter. It keeps a sliding window of past poses
in its state vector [20,21]. The positions of mappoints are marginalized first by using the left null space
trick. Then, a probabilistic constraint between the poses is constructed. Hence, its computational
complexity is linear with the number of mappoints and cubic with the number of poses in the window.
For the optimization-based methods, by exploring the first- and second-order sparsity structure of the
normal equation, they also become highly efficient [23,24]. However, full optimization finally becomes
infeasible as the number of measurements increases. For limiting the computational complexity,
sliding window optimization methods have been designed and widely used for solving the VINS
problem. These kinds of methods work in the spirit of optimization, but only keep a sliding window
of poses [9–13]. The states outside the sliding window are either directly fixed [9,12] or marginalized
out [10,11,13].

Typically, the sampling frequency of the IMU is high—approximately hundreds of Hertz. For the
filter-based methods, the time update is required to operate at the IMU sampling frequency. For the
optimization-based methods, it is impracticable to perform optimization at the IMU sampling
frequency. One possible solution to this problem is to integrate the IMU measurements during
the sampling interval of the other sensors working at a low sampling frequency. However, this will
cause another problem in that the initial integration values are unknown or inaccurate. Once the initial
integration values are updated at each iteration of optimization, the IMU measurements need to be
re-integrated, which makes the computational complexity increase. In order to achieve fusion with
other sensors, uncertainty of the integrated IMU measurements is also necessary. For propagating
the uncertainty, the initial uncertainty traditionally needs to be calculated by back propagating the
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measurement uncertainties of sensors after each iteration. Then, the uncertainty of the integrated IMU
measurements is re-propagated, which will also cause additional computation.

For coping with these two challenges, the IMU preintegration technique was first developed
by Lupton et al. [25,26] for the optimization-based VINS. The technique can also be used in other
optimization-based multi-sensor fusion frameworks, such as the LiDAR/IMU/GNSS integrated
navigation system [27]. In [25,26], the attitude is parametrized by the Euler angles, which causes
a singularity in specific cases [28]. In [29,30], the attitude is parametrized by the specific rotation
group SO (3), in order to avoid the singularity and carefully cope with uncertainty propagation of
the preintegrated IMU measurements. In [10], the attitude is parametrized by the attitude quaternion.
The covariance propagation of the preintegrated IMU measurements is calculated by using the dynamic
equations of the preintegration error states. In [31,32], closed-form solutions of IMU preintegration
are derived by using linear system theory. However, all of the above IMU preintegration algorithms
assume that the gravity vector is constant in the VINS reference frame. In practice, the gravity vector
changes with the position relative to the VINS reference frame. The longer the relative position,
the more obvious the change of gravity. The earth rotation is also not considered in the above IMU
preintegration algorithms. In comparison, the gravity change and earth rotation are well-modeled
in the strap-down inertial navigation algorithms [1–4], the INS/GNSS, and the INS/GNSS/Vision
integrated navigation systems [6–8], in order to remove their influence from the IMU measurements.
Motivated by these conventional INS relevant algorithms, we redesigned the IMU preintegration
algorithm by taking the change of gravity and the earth rotation into consideration. Both terms are
functions of the geodetic position. There are several kinds of geodetic reference models for the earth,
such as the geodetic reference system 1980 (GRS-80), the world geodetic system 1984 (WGS-84), and the
Chinese Geodetic Coordinate System 2000 (CGCS-2000). In the INS relevant algorithms, the WGS-84
model has been widely used. In this paper, the WGS-84 model is also adopted.

The preintegrated IMU measurements can be used to construct a preintegration factor, and the
preintegration factor needs to be weighted by its square-root information matrix before being added
to the optimization. In this paper, the uncertainty of the preintegrated IMU measurements is
propagated in the form of a square root information matrix [33]. Compared with the covariance
propagation form [25,26,29–32], the square-root information matrix is directly available for weighting
the preintegrated IMU measurements and theoretically has a better numerical stability [33].
IMU measurements are typically corrupted by several kinds of errors. In this paper, we assume
that the IMU has been well-calibrated offline. Then, the remaining IMU measurement errors
include the sensor-induced random output noise and the slowly time-varying biases. In this paper,
the sensor-induced random output noise is modeled as a white noise process. Additionally, the slowly
time-varying bias is modeled as a one-order Markov process.

In order to evaluate the performance of the improved IMU preintegration algorithm,
we implement a tightly-coupled monocular visual-inertial system [34], and the GNSS positioning
results are fused in a loosely-coupled way. We perform experiments by using the dataset collected
by our sensor platform. The sensor platform is equipped with two different-grade IMUs, in order to
analyze the influence of the earth rotation and the change of gravity on different-grade IMUs.

Our contributions can be summarized as follows:

1. We have redesigned the IMU preintegration algorithm by taking the earth rotation and the change
of gravity into consideration;

2. The uncertainty of the preintegrated IMU measurements has been propagated in the form of a
square-root information matrix;

3. We have evaluated the influence of the earth rotation and the change of gravity on the
preintegrated IMU measurements by using two different-grade IMUs.



Remote Sens. 2020, 12, 3048 4 of 22

The remainder of this paper is organized as follows. In Section 2, the coordinate frames, notations,
attitude parameterizations, and geodetic reference model of the earth are introduced. In Section 3, all of
the details of the improved IMU preintegration algorithm are given, including the position, velocity,
and attitude dynamic equations in the W frame; the IMU error model; the uncertainty propagation
of preintegrated IMU measurements; and the IMU preintegration factors. In Section 4, the joint
optimization framework of the VINS is briefly described. In Section 5, all of the details of experiment
setup are introduced. In Section 6, all experimental results are given. In Section 7, we discuss the
influence of the gravity change and the earth rotation on the IMU preintegration, according to the
experimental results. In Section 8, we draw the conclusions.

2. Preliminaries

In this section, some fundamental professional knowledge used in designing the IMU
preintegration algorithm is introduced, including the definitions of coordinate frames and notations,
the attitude parameterizations, and the earth geodetic reference model. This fundamental professional
knowledge has been well-developed in the INS and GNSS research communities for several decades.

2.1. Coordinate Frames

A coordinate frame is defined by three unit vectors that are perpendicular to each other in a
right-hand form. For making a mathematical operation valid, all related free vectors and points should
be projected into the same reference coordinate frame.

The E frame is the earth-centered, earth-fixed coordinate frame, with its Z axis parallel to the earth
polar axis, its X axis passing through the Greenwich meridian, and its Y axis lying in the equatorial
plane to form a right-handed coordinate frame.

The I frame is the non-rotating and non-accelerating inertial coordinate frame used as the reference
coordinate frame for the IMU measurement. Theoretically, its orientation can be arbitrary. In this paper,
the E frame at the initial time is selected as a historically fixed inertial coordinate frame.

The L frame is the local level coordinate frame, with its X axis parallel to the east, Y axis parallel
to the north, and Z axis vertical to the local earth surface.

The B frame is the IMU coordinate frame with axes parallel to the nominal orthogonal input axes.
The C frame is the camera coordinate frame with the origin at the optical center, the X axis

horizontal and pointing to the right, and the Y axis vertical and pointing downwards.
The W frame is the reference coordinate frame for the VINS. In this paper, the L frame at the initial

position or another fixed position is selected as the W frame.

2.2. Nomenclature

A0, A1, A2 arbitrary orthogonal right-handed coordinate frames;
f specific force measured by the accelerometer, which is produced by a non-gravitational force;
g local plumb-bob gravity vector that is a function of the geodetic position;
pA0

A1 A2
position vector of frame A2 relative to frame A1, with projection in frame A0;

vA0
A1 A2

velocity vector of frame A2 relative to frame A1, with projection in frame A0;
ωA0

A1 A2
angular velocity vector of frame A2 relative to frame A1, with projection in frame A0;

CA1
A2

direction cosine matrix that transforms a vector from frame A2 to frame A1;
qA1

A2
attitude quaternion corresponding to CA1

A2
;

θA1
A2

rotation/angle-axis vector defined by the axis of rotation and the magnitude of rotation
around the axis;

In n-dimension identity matrix;
0m×n zero matrix with m rows and n columns.
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Set an arbitrary vector as V = [V1, V2, V3]
T , then

[V×] the skew-symmetric matrix of the vector, as follows: [V×] =

 0 −V3 V2

V3 0 −V1
−V2 V1 0

;

bVcq the quaternion form of the vector, as follows: bVcq =

[
0
V

]
;

V the bar above the vector means it is a constant vector;
V̂ the hat above the vector means it is an estimation;
Ṽ the tilde above the vector means it is a measurement;
.
V the point above the vector means it is the time derivative of the vector.

2.3. Attitude Parameterization

The direction cosine matrix, the rotation vector, and the attitude quaternion can be used to
parameterize the attitude (rotation) between two coordinate frames with no singularity. Moreover,
the three parameterization methods are mathematically equivalent.

The direction cosine matrix CA1
A2

is a unit and orthogonal matrix, and the columns are equal to the
projections of the unit vectors along the axes of frame A2 into frame A1. For an arbitrary vector V ∈ R3

with projections VA1 , VA2 in the coordinate frame A1, A2, respectively, the following relationship
holds [1]:

VA1 = CA1
A2

VA2 , VA2 = (CA1
A2
)

T
VA1 . (1)

According to Equation (1), it is easy to derive the chain rule of the direction cosine matrix:

CA0
A2

= CA0
A1

CA1
A2

. (2)

The rotation vector θA1
A2

= φuA1
A2

is defined by a unit vector uA1
A2

and the magnitude φ around the

unit vector. According to the Rodrigues formula [1,35], the counterpart direction cosine matrix CA1
A2

is
a function of the rotation vector, as follows:

C(θA1
A2
) = cosφI3 + (1− cosφ)uA1

A2
(uA1

A2
)

T
+ sin φ[uA1

A2
×]. (3)

The attitude quaternion is composed of four elements, as follows:

qA1
A2

= qw + qxi + qyj + qzk =

[
qw

qv

]
, (4)

where qw, qx, qy, qz ∈ R, qv = [qx, qy, qz]
T ∈ R3, ||qA1

A2
||= q2

w + q2
x + q2

y + q2
z= 1. We refer readers to

reference [35] for more details about the quaternion. The attitude quaternion is also a function of the
rotation vector, as follows:

q(θA1
A2
) =

[
cos(0.5φ)

sin(0.5φ)uA1
A2

]
. (5)

The chain rule of the attitude quaternion is defined on the basis of quaternion multiplication,
as follows:

qA0
A2

= qA0
A1
⊗ qA1

A2
= [qA0

A1
]
L
qA1

A2
= [qA1

A2
]
R

qA0
A1

, (6)

where ⊗ is the quaternion multiplication operator and qA0
A1

= [q′w q′Tv ]
T

. The left and right quaternion
multiplication matrices are as follows:

[qA0
A1
]
L
=

[
q′w −q′Tv
q′v q′wI3 + [q′v×]

]
, (7)
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[qA1
A2
]
R
=

[
qw −qT

v
qv qwI3 − [qv×]

]
. (8)

The conversion relationships between the direction cosine matrix and the attitude quaternion are
as follows:

q(CA1
A2
) =

[
qw

qv

]
,

 qw =
√

tr(CA1
A2
) + 1/2

qv =
[

C32−C23
4qw

C13−C31
4qw

C21−C12
4qw

]T , (9)

C(qA1
A2
) = (2q2

w − 1)I3 + 2qw[qv×] + 2qvqT
v , (10)

where CA1
A2

=
{

Cij
}

, Cij ∈ R, i, j ∈ {1, 2, 3}. tr(CA1
A2
) is the trace of CA1

A2
, i.e., the sum of the diagonal

elements of the direction cosine matrix.

2.4. Time Derivative of the Attitude Parameter

The time derivative of the direction cosine matrix CA1
A2

is as follows:

.
C

A1
A2

= CA1
A2
[ωA2

A1 A2
×]. (11)

The time derivative of the attitude quaternion qA1
A2

is as follows:

.
qA1

A2
=

1
2

qA1
A2
⊗
⌊

ωA2
A1 A2

⌋
q
. (12)

2.5. The Earth Model

In this paper, the WGS-84 geodetic reference model is adopted for modeling the earth as shown
in Figure 1. Set the geodetic position (latitude, longitude, and altitude) in the WGS-84 reference frame
as ϕ, λ, and h. Then, the direction cosine matrix between the L frame and E frame is as follows:

CE
L (ϕ, λ) =

 − sin λ − cos λ sin ϕ cos λ cos ϕ

cos λ − sin λ sin ϕ sin λ cos ϕ

0 cos ϕ sin ϕ

. (13)

The XYZ position in the E frame can be recovered from the geodetic position, as follows:

pE
EL(ϕ, λ, h) =

 (RN + h) cos ϕ cos λ

(RN + h) cos ϕ sin λ

[RN(1− e2) + h] sin ϕ

, (14)

where e= 0.08181919104282 is the eccentricity of the earth and RN is the radius of curvature of the

prime vertical plane. It is a function of the latitude, i.e., RN(ϕ) = a/
√

1− e2 sin2 ϕ . a = 6378137 m is
the equatorial earth radius.

The geodetic position can also be recovered from the XYZ position in the E frame. The longitude
can be recovered directly as follows:

λ = arctan

(
pE

EL(1)
pE

EL(0)

)
. (15)
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The latitude and altitude need to be recovered by the following iterative algorithm. The initial
values are set as follows:

h = 0
RN = a

r =
√

pE
EL(0)

2 + pE
EL(1)

2
. (16)

Then, the latitude and altitude are iteratively calculated until convergence, as follows:

sin ϕ =
pE

EL(2)
RN(1−e2)+h

ϕ = arctan
(

pE
EL(2)+e2RN(ϕ) sin ϕ

r

)
h = r

cos ϕ − RN

. (17)

For notation convenience, the computation process of Equations (15), (16), and (17) is donated
as follows:

[ϕ, λ, h] = LLA(pE
EL). (18)

The normal gravity in the L frame is as follows:

gL
γ(ϕ, h) = [0, 0, gγ(ϕ, h)]T , (19)

where gγ(ϕ, h) is calculated by the WGS-84 gravity model parameters, as follows:

gγ(ϕ, h) = gγ(ϕ)− (3.0877− 0.0044 sin2 ϕ)× 10−6h + 0.072× 10−12h2

gγ(ϕ) = 9.7803253× (1 + 0.0053022 sin2 ϕ− 0.0000058 sin2 2ϕ)
(20)

The gravity anomaly is omitted in our algorithm. Therefore, the normal gravity is approximately
considered as the local gravity in this paper.

The earth rotation vector in the E frame is as follows:

ωE
IE = [0, 0, ΩIE]

T , (21)

where ΩIE = 7.292115× 10−5rad/s.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 24 
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The measurement of the accelerometer is a specific force. The influence of gravity needs to be
removed from the preintegrated IMU measurements, in order to recover the metric motion. Therefore,
we need to know the gravity vector projected in the W frame. The measurement of a gyroscope (rate
sensor) is the angular velocity relative to the I frame. The influence of the earth rotation needs to be
removed from the gyroscope measurement, in order to recover the real angular velocity relative to
the earth.

Set the geodetic position of the W frame as ϕ0, λ0, and h0. The XYZ position pE
EW in the E frame

can be calculated by Equation (14). Then, the direction cosine matrix CE
L0

= CE
W between the W frame

and E frame can be calculated by Equation (13).
The earth rotation vector in the W frame is calculated as follows:

ωW
IE = (CE

L0
)

T
ωE

IE. (22)

Set the position of the IMU at time t in the W frame as pW
WBt

. Then, its position in the E frame can
be calculated as follows:

pE
EBt

= pE
EW + CE

WpW
WBt

. (23)

Then, the geodetic position of IMU at time t can be calculated by Equation (18), i.e.,
[ϕt, λt, ht] = LLA(pE

EBt
). The local normal gravity vector gLt

γ (ϕt, ht) in the L frame can be calculated
by Equation (19). The direction cosine matrix CE

Lt
(ϕt, λt) can be calculated by Equation (13). Therefore,

the direction cosine matrix between the L frame and W frame is CW
Lt

= (CE
W)

T
CE

Lt
. Finally, the gravity

vector in the W frame is calculated as follows:

ĝW = CW
Lt

gLt
γ . (24)

3. The Improved IMU Preintegration Technology

The position, velocity, and attitude are obtained by integrating the IMU measurements.
For performing such integrations, the dynamic equations for the position, velocity, and attitude
should be derived first. Generally, the position, velocity, and attitude of the VINS are parametrized in
the W frame. Hence, the dynamic equations are also derived in the W frame.

First, the relationship of the positions parameterized in the W frame and I frame is as follows:

pI
IB = CI

E(p
E
IW + CE

WpW
WB), (25)

where pE
IW = pE

EW because the origins of the E frame and I frame are coincident, i.e., pE
IE = 03×1,

and the W frame is fixed with respect to the earth.
According to Equation (11), the time derivative of Equation (25) is as follows:

vI
IB = CI

E[ω
E
IE×](pE

IW + CE
WpW

WB) + CI
ECE

WvW
WB, (26)

where vI
IB =

.
pI

IB, vW
WB =

.
pW

WB. ωE
IE is the earth rotation in the E frame.

For obtaining the acceleration information, we need to further derive the time derivative of
Equation (26) as follows:

aI
IB = CI

E[ω
E
IE×][ωE

IE×](pE
IW + CE

WpW
WB) + 2CI

E[ω
E
IE×]C

E
WvW

WB + CI
ECE

W
.
vW

WB, (27)

where aI
IB =

.
vI

IB.

Substituting the equation [ωE
IE×] = CE

W [ωW
IE×]C

W
E into Equation (27), we have

aI
IB = CI

W [ωW
IE×][ωW

IE×](pW
IW + pW

WB) + 2CI
W [ωW

IE×]vW
WB + CI

W
.
vW

WB. (28)
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Let us left-multiply both sides of Equation (28) by CB
I . After re-organization, we have

CW
B aB

IB = [ωW
IE×][ωW

IE×](pW
IW + pW

WB) + 2[ωW
IE×]vW

WB +
.
vW

WB. (29)

According to the theory of the force composition and decomposition, the acceleration aB
IB relative

to the inertial space is the resultant force of the specific force fB and the gravitational force GB, i.e.,
aB

IB = fB + GB. Substituting the equation into Equation (29), we have

.
vW

WB = CW
B fB + GW − [ωW

IE×][ωW
IE×](pW

IW + pW
WB)− 2[ωW

IE×]vW
WB

= CW
B fB + gW − 2[ωW

IE×]vW
WB

, (30)

where gW = GW − [ωW
IE×][ωW

IE×](pW
IW + pW

WB) is the gravity in the W coordinate frame. 2[ωW
IE×]vW

WB
is the well-known Coriolis acceleration.

Equation (30) is the velocity differential equation. The position differential equation can be easily
expressed as follows:

.
pW

WB = vW
WB. (31)

The attitude is parameterized by the attitude quaternion. Furthermore, its time derivative can be
derived according to Equation (12), as follows:

.
qW

B = 1
2 qW

B ⊗
⌊
ωB

WB
⌋

q = 1
2 qW

B ⊗
⌊
ωB

IB −ωB
IE −ωB

EW
⌋

q
= 1

2 qW
B ⊗

⌊
ωB

IB − C(qB
W)ωW

IE
⌋

q
. (32)

Then, the position, velocity, and attitude can be reckoned by numerically integrating the three
dynamic equations, as follows:

pW
WBk+1

= pW
WBk

+ vW
WBk

∆tk.k+1 +
∫ ∫ tk+1

tk
CW

Bt
fBt dt +

∫ ∫ tk+1
tk

gW
t dt− 2[ωW

IE×]
∫ ∫ tk+1

tk
vW

WBt
dt

≈ pW
WBk

+ vW
WBk

∆tk.k+1 + CW
Bk

αk,k+1 +
1
2 gW

k ∆t2
k.k+1 − 2[ωW

IE×]∑
i=N
i=1 (pW

WBi
− pW

WBk
)∆ti

, (33)

where ∆tk.k+1 = tk+1 − tk. tk is written as k in many subscripts and superscripts for convenience. N is
the sampling number during [tk, tk+1] and ∆ti is the IMU sampling interval. The change of gravity
is negligible during [tk, tk+1]. Therefore, gW

k is used to represent the gravity during the time interval.
Moreover, αk,k+1 is the so-called IMU position preintegration, as follows:

αk,k+1 =
∫ ∫ tk+1

tk

CBk
Bt

fBt dt. (34)

The velocity is reckoned as follows:

vW
WBk+1

= vW
WBk

+
∫ tk+1

tk
CW

Bt
fBt dt +

∫ tk+1
tk

gW
t dt− 2[ωW

IE×]
∫ tk+1

tk
vW

WBt
dt

= vW
WBk

+ CW
Bk

βk,k+1 + gW
k ∆tk,k+1 − 2[ωW

IE×](pW
WBk+1

− pW
WBk

)
, (35)

where βk,k+1 is the so-called IMU velocity preintegration, as follows:

βk,k+1 =
∫ tk+1

tk

CBk
Bt

fBt dt. (36)

Finally, the attitude increment is the so-called IMU attitude preintegration. It can be reckoned by
integrating Equation (32), as follows:

γ
Bk
Bk+1

=
∫ tk+1

tk

1
2

qBk
Bt

⌊
ωBt

IBt
− C(qBt

W)ωW
IE

⌋
q
dt. (37)



Remote Sens. 2020, 12, 3048 10 of 22

3.1. IMU Error Model and Preintegrated IMU Measurements

Typically, the IMU measurements are corrupted by several kinds of errors, such as the scale factor
error, misalignment, sensor-induced random output noise, and slowly time-varying biases. In this
paper, we assume that the IMU has been well-calibrated offline. Therefore, the scale factor error and
misalignment are negligible. The sensor-induced random output noise is modeled as a white noise
process. The slowly time-varying biases are molded as one-order Markov processes. Then, the IMU
measurements are modeled as follows:

f̃
Bt

= fBt + bAcc,t + ηAcc,t

ω̃Bt
IBt

= ωBt
IBt

+ bGyro,t + ηGyro,t
, (38)

where ηAcc,t and ηGyro,t are Gaussian white noise processes, and ηAcc,t ∼ N (0, σ2
Acc), ηGyro,t ∼

N (0, σ2
Gyro). N (∗, ∗) denotes a normal distribution. bAcc,t and bGyro,t are IMU time-varying biases and

are modeled as follows: .
bAcc,t = − 1

τACC
bAcc,t + nAcc,t

.
bGyro,t = − 1

τGyro
bGyro,t + nGyro,t

, (39)

where τAcc and τGyro are the correlation times of Markov processes. nAcc,t and nGyro,t are driving
Gaussian white noise processes, and nAcc,t ∼ N (0, σ2

bAcc
), nGyro,t ∼ N (0, σ2

bGyro
).

The IMU preintegration Equations (34), (36), and (37) can be solved by numerical integration.
The initial body frame Bk is selected as the reference frame for integration. Additionally, the initial
values are known and independent of the position, velocity, and attitude in the W coordinate frame,
i.e., αk,k = 03×1, βk,k = 03×1, C(qBk

Bk
) = I3. This is the core idea of the IMU preintegration algorithm.

Set the IMU preintegrations at time ti as α̂k,i, β̂k,i, and γ̂
Bk
Bi

, and the IMU bias estimations as b̂Gyro,k

and b̂Acc,k. When new IMU measurements f̃
Bj and ω̃

Bj
IBj

are received, ti < tj ∈ [tk, tk+1], and the IMU
preintegrations are updated recursively, as follows:

γ̂
Bk
Bj

= q̂Bk
Bj

= γ̂
Bk
Bi
⊗
[

1.0

0.5(ω̃
Bj
IBj
− C(q̂Bi

W)ωW
IE − b̂Gyro,k)∆tij

]
α̂k,j = α̂k,i + β̂k,i∆tij + 0.5× C(γ̂Bk

Bj
)(̃f

Bj − b̂Acc,k)∆t2
ij

β̂k,j = β̂k,i + C(γ̂Bk
Bj
)(̃f

Bj − b̂Acc,k)∆tij

, (40)

where ∆tij = tj − ti.

3.2. Uncertainty Propagation and Jacobian Matrix of Bias Correction

The uncertainty propagation of IMU preintegration is similar to the time update of the Bayesian
filter used in the INS/GNSS integrated navigation system. Due to the IMU preintegration errors being
time-varying, we also need linear dynamic equations for tracking the errors, just like Psi- and Phi-
angle error equations in the INS/GNSS integrated navigation system [36]. The Jacobian matrices
for belated bias correction are contained in the transition matrix of the IMU preintegration errors.
For iteratively updating the transition matrix, we also need the linear dynamic equations of the IMU
preintegration errors. Hence, in this section, we will derive the linear dynamic equations first.

(1). Attitude preintegration error dynamic equation: The attitude preintegration error is defined in a
right perturbation form. Set the attitude preintegration error at time t as δθ

Bk
Bt

. Then we have

CBk
Bt

= ĈBk
Bt
(I + [δθ

Bk
Bt
×]), (41)

where ĈBk
Bt

= C(q̂Bk
Bt
) = C(γ̂Bk

Bt
).
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The gyroscope bias error is defined as follows:

bGyro,k = b̂Gyro,k + δbGyro,k. (42)

Substituting the Equations (41) and (42) into Equation (2), we have

ĈBk
Bt
(I3 + [δθ

Bk
Bt
×]) = ĈBk

Bi
(I3 + [δθ

Bk
Bi
×])CBi

Bt

CBi
Bt
≈ I3 + ∆t[(ω̃Bt

IBt
− ĈBt

W(I3 + [δθBt
W×])ω

E
IE − b̂Gyro,k − δbGyro,k − ηGyro,t)×]

, (43)

where tk < ti < t, and ∆t = t− ti, ∆t is sufficiently small.
The expanded form of Equation (43) is as follows:

[δθ
Bk
Bt
×] = ĈBt

Bi
[δθ

Bk
Bi
×]ĈBi

Bt − ĈBt
Bi
(I3 + [δθ

Bk
Bi
×])[(δbGyro,k + ηGyro,t)∆t×]

≈ [δθ
Bk
Bi
×]− [ω̂Bt

WBt
×][δθ

Bk
Bi
×]∆t + [δθ

Bk
Bi
×][ω̂Bt

WBt
×]∆t− [(δbGyro,k + ηGyro,t)∆t×]

= [δθ
Bk
Bi
×]− [([ω̂Bt

WBt
×]δθ

Bk
Bi
)×]∆t− [(δbGyro,k + ηGyro,t)×]∆t

, (44)

where ω̂Bt
WBt

= ω̃Bt
IBt
− ĈBt

WωE
IE − b̂Gyro,k, ĈBt

WωE
IE ≈ ĈBt

W(I3 + [δθBt
W×])ω

E
IE because the magnitudes of

ωE
IE and δθBt

W are both quite small. Moreover, ĈBt
Bi

= I3 − [ω̂Bt
WBt

∆t×]. All second-order small terms
are omitted.

Then, the attitude preintegration error dynamic equation can be derived as follows:

δ
.
θ

Bk
Bi

= lim
∆t→0

δθ
Bk
Bt
− δθ

Bk
Bi

∆t
= −[ω̂Bi

WBi
×]δθ

Bk
Bi
− δbGyro,k − ηGyro,i. (45)

(2). Velocity preintegration error dynamic equation: The velocity preintegration error is defined
as follows:

βk,t = β̂k,t + δβk,t, (46)

where δβk,t is the velocity preintegration error at time t.
The accelerometer bias error is defined as follows:

bAcc,k = b̂Acc,k + δbAcc,k. (47)

According to the Equations (40), (41), (46), and (47), we have

β̂k,t + δβk,t = β̂k,i + δβk,i + ĈBk
Bt
(I3 + [δθ

Bk
Bt
×])(̃fBt − b̂Acc,k − δbAcc,k − ηAcc,t). (48)

The expanded form of Equation (48) is as follows:

δβk,t ≈ δβk,i + ĈBk
Bt
[δθ

Bk
Bt
×]f̂Bt ∆t− ĈBk

Bt
(δbAcc,k + ηAcc,t)∆t, (49)

where f̂Bt = f̃
Bt − b̂Acc,k.

Then, the velocity preintegration error dynamic equation can be derived as follows:

δ
.
βk,i = lim

∆t→0

δβk,t − δβk,i

∆t
= −ĈBk

Bi
[f̂Bi×]δθ

Bk
Bi
− ĈBk

Bi
δbAcc,k − ĈBk

Bi
ηAcc,i. (50)

(3). Position preintegration error dynamic equation: The position preintegration error is defined
as follows:

αk,t = α̂k,t + δαk,t, (51)

where δαk,t is the position preintegration error at time t.
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The position preintegration is the integration of velocity preintegration, so

δ
.
αk,i = δβk,i. (52)

Rewriting the Equations (39), (45), (50), and (52) in a matrix form, we have

δ
.
αk,i

δ
.
βk,i

δ
.
θ

Bk
Bi

δ
.
bAcc,i

δ
.
bGyro,i

 =



03×3 I3 03×3 03×3 03×3

03×3 03×3 −ĈBk
Bi
[f̂Bi×] −ĈBk

Bi
03×3

03×3 03×3 −[ω̂Bi
WBi
×] 03×3 −I3

03×3 03×3 03×3 − 1
τAcc

I3 03×3

03×3 03×3 03×3 03×3 − 1
τGyro

I3




δαk,i
δβk,i

δθ
Bk
Bi

δbAcc,i
δbGyro,i

+

+


03×3 03×3 03×3 03×3

−ĈBk
Bi

03×3 03×3 03×3

03×3 −I3 03×3 03×3

03×3 03×3 I3 03×3

03×3 03×3 03×3 I3




ηACC,i
ηGyro,i
nACC,i
nGyro,i


. (53)

Rewriting Equation (53) in compact form,

δ
.
zi = Fiδzi + Biui, (54)

where δzi = [δαT
k,i, δβT

k,i, δθ
Bk
Bi

T , δbT
Acc,i, δbT

Gyro,i]
T

and ui = [ηT
Acc,i, ηT

Gyro,i, nT
Acc,i, nT

Gyro,i]
T .

According to the linear system theorem [37], the system can be discretized as follows:

δzj ≈ (I15 + Fi∆tij)δzi + ∆tijBiu
equ
ij = Φjiδzi + Giu

equ
ij , (55)

where uequ
ij is the equivalent noise during [ti, tj], as follows:

uequ
ij =

1
∆tij

∫ tj

ti

uτdτ. (56)

The mean of uequ
ij is zero. The covariance is calculated as follows:

cov(uequ
ij ) =

1
∆t2

ij

∫ tj

ti

cov(uτ)dτ =
Q

∆tij
= Qequ

ij , (57)

where Q = diag(σ2
Acc, σ2

Gyro, σ2
bAcc

, σ2
bGyro

). Additionally, the equivalent noise uequ
ij is a Gaussian white

noise sequence.
Hence, the square root information matrix of the equivalent noise is as follows:

Λ
equ
ij = diag


√

∆tij

σAcc
I3,

√
∆tij

σGyro
I3,

√
∆tij

σbACC

I3,

√
∆tij

σbGyro

I3

. (58)

The transition matrix from tk to tk+1 is propagated as follows:

Φk+1,k = ∏
ti<tj

Φji, (59)

where ti and tj are adjacent IMU sampling epochs, and ti, tj ∈ [tk, tk+1].
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Set the square root information matrix of the IMU preintegration errors at time ti as Λi. Then,
the square root information matrix Λ j can be calculated by performing QR decomposition on the
following data matrix [33], as follows:

Uij

[
Λ

equ
ij 03×3

ΛiΦ
−1
ji Gi −ΛiΦ

−1
ji

]
=

[
Λa Λb

03×3 Λ j

]
, (60)

where Uij is a unitary matrix. The right side of Equation (60) is an upper triangular matrix. The initial
square-root information matrix at time tk should be large enough, because the initial values of IMU
preintegration are deterministic. In our implementation, the initial square-root information matrix is
set as Λk = 108 × I15.

3.3. IMU Preintegration Factor

Given the preintegrated IMU measurements, all residual functions are listed as follows:

rα =
(

CW
Bk

)T{
rW

WBk+1
− rW

WBk
− vW

WBk
∆tk,k+1 − 0.5× ĝW

k ∆t2
k,k+1

+2[ωW
IE×]∑

i=N
i=0 (p̂W

WBi
− p̂W

WBk
)∆ti

}
− α̂k,k+1

−J∂α/∂bAcc
k,k+1 (bAcc,k − b̂Acc,k)− J

∂α/∂bGyro
k,k+1 (bGyro,k − b̂Gyro,k)

rβ =
(

CW
Bk

)T
(vW

WBk+1
− vW

WBk
− ĝW

k ∆tk,k+1 + 2[ωW
IE×](p̂W

WBk+1
− p̂W

WBk
))

−β̂k,k+1 − J∂β/∂bACC
k,k+1 (bAcc,k − b̂Acc,k)− J

∂β/∂bGyro
k,k+1 (bGyro,k − b̂Gyro,k)

rγ = 2
[(

qW
Bk+1

)−1
⊗ qW

Bk
⊗ γ̂

Bk
Bk+1
⊗ δγ

Bk
Bk+1

]
v

rbACC = JAcc
k+1,kbAcc,k − bAcc,k+1

rbGyro = JGyro
k+1,kbGyro,k − bGyro,k+1

, (61)

where J∂α/∂bACC
k,k+1 = Φk+1,k[1 : 3, 10 : 12], J

∂α/∂bGyro
k,k+1 = Φk+1,k[1 : 3, 13 : 15],J∂β/∂bACC

k,k+1 = Φk+1,k[4 : 6, 10 :

12], J
∂β/∂bGyro
k,k+1 = Φk+1,k[4 : 6, 13 : 15], J

∂γ/∂bGyro
k,k+1 = Φk+1,k[7 : 9, 13 : 15], JAcc

k+1,k = Φ[10 : 12, 10 : 12],

and JGyro
k+1,k = Φ[13 : 15, 13 : 15]. The function Φk+1,k[a : b, c : d] means the sub-block of Φk+1,k from a to

b rows and C to d columns. Additionally,

δγ
Bk
Bk+1

=

[
1

0.5J
∂γ/∂bGyro
k,k+1 (bk − b̂k)

]
.

All of the above residual functions should be weighted by the square-root information matrix
Λk+1 before adding them to optimization.

4. Nonlinear Joint Optimization

We use the hybrid sliding window nonlinear optimization for state estimation (more details can
be found in our previous work [34]).

The full state vector is defined as follows:

χ = [xn, · · · , xn+N , tBC, ψm, · · · , ψm+M], (62)

where
xk = [pW

WBk
, vW

WBk
, qW

Bk
, bAcc,k, bGyro,k], k ∈ [n, n + N],

tBC = [pB
BC, qB

C]
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where ψm is the inverse depth parameter of the m-th mappoint from its first observing keyframe, N is
the number of keyframes in the sliding window, M is the number of visible mappoints, and tBC is the
camera-IMU calibration parameter.

The joint optimization problem can be formulated as a nonlinear least-squares problem. The cost
function is the sum of the prior and the Mahalanobis norm of all measurement residuals within the
sliding window, as follows:

χ∗ = arg minχ

∣∣∣∣∣∣∣∣rp −Hpχ

∣∣∣∣∣∣∣∣2 + ∑
k∈B

∣∣∣∣∣∣rIMU
k+1,k(χ)

∣∣∣∣∣∣
Λk+1

+

∑
(l,j)∈C

ρ

(∣∣∣∣∣∣rCj
l (χ)

∣∣∣∣∣∣
Λ

Cj
l

)
+ ∑

k∈G

∣∣∣∣rG
k (χ)

∣∣∣∣
ΛG

k

, (63)

where rp and Hp represent the prior information; B, C, and G are the measurement set of the IMU,
camera, and GNSS, respectively; rIMU

k+1,k(χ) is the IMU preintegration residual function, as shown in

Equation (61); r
Cj
l (χ) is the re-projection residual function of the l-th mappoint in the j-th image (more

details can be found in [34]); ρ(∗) is the Huber loss function for coping with potential outliers [38];

Λ
Cj
l is the square root information matrix of the visual measurement; and rG

k (χ) is the GNSS residual
at time tk, as follows:

rG
k = pW

WBk
+ C(qW

Bk
)pB

Bgnss − CW
E (p̃E

Egnss − pE
EW), (64)

where CW
E and pE

EW are functions of the geodetic position of the selected world frame; pB
Bgnss is the

lever arm vector between the GNSS antenna and IMU, measured manually; and p̃E
Egnss is the XYZ

position of the GNSS antenna in the E frame, and provided by the GNSS receiver.

5. Experiments

In order to evaluate the performance of the proposed IMU preintegration algorithm, we conducted
experiments by using the dataset collected by our sensor platform. Our sensor platform consists
of a left-right stereo camera and two different grades of IMU, as shown in Figure 2. The stereo
camera consists of two Prosilica GT 1910 monocular cameras by AVT. Both of them are global shutter
monochrome CCD cameras which deliver 1920 × 1080 images. The cameras are synchronously
triggered by an Arduino Uno R3 microcontroller at 10 Hz. The microcontroller parses GPS time from
the NMEA messages provided by Ublox NEO-M8N. The two cameras are equipped with LM8HC
lenses by Kowa. The horizontal field of view of the lens is about 60 degrees. The two IMUs are
MTi-G-710 and POS620, respectively. The MTi-G-710 is an industrial-grade MEMS-based IMU by
Xsens. The POS620 is a quasi-navigation-grade IMU by the MPSTNAV company of China, and contains
three-axis high-precision fiber optic gyroscopes (FOGs).
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The technical parameters of the two different-grade IMUs are listed in Table 1. During data
collection, the two IMUs were sampled at 200 Hz.

Table 1. The technical parameters of MTi-G-710 and POS620.

IMU
Gyroscope Accelerometer

Angular Random Walk
(deg/

√
h)

Bias Instability
(deg/h)

Velocity Random Walk
(m/s/

√
h)

Bias Instability
(mGal)

MTi-G-710 0.6 100 0.048 2000

POS620 0.005 0.02 0.01 25

Our dataset contains two sequences collected at two different places in Wuhan city of China,
namely the Wuhan Research and Innovation Center (WRIC) and the Guanggu financial harbor (GFH).
There are many low-slung buildings and trees in the two places. These static objects provide a
high-quality texture for visual measurements, as shown in Figure 3. Additionally, navigation satellite
signals are not easily shielded or reflected in the two places. The GNSS raw data was recorded by the
Trimble receiver. Furthermore, we used the GINS software developed by the MPSTNAV company
of China to post-process the recorded GNSS raw data, in order to obtain high-precision real-time
kinematic (RTK) positioning results.
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Generally, the RTK positioning error was less than 0.10 m. The integrated navigation results of
fusing the RTK positions and the POS620 measurements by Rauch-Tung-Striebel (RTS) smoothing
served as the ground truth data. The dataset was used to evaluate the proposed IMU preintegration
algorithm. It did not contain GNSS deny environment and visual challenges, such as overexposure,
illumination changes, and poorly textured scenes. The motions performed by the vehicle during
data collection were variable, including linear acceleration and deceleration, zero-speed motion,
turning motion, and backward motion, i.e., almost all motions that can be performed by a ground
vehicle. Additionally, changing slopes also exist in the two places. Therefore, the motions in the
collected dataset were complicated enough to evaluate the proposed IMU preintegration algorithm.

Because it is quite difficult to obtain sufficient disparities from images recorded by a monocular
camera when a vehicle runs along a straight road, we could not initialize the monocular visual-inertial
system. For coping with this issue, stereo images were used to initialize the VINS. After initialization,
only the images of the left side camera were used in optimization.
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It is well-known that the earth is an approximate spheroid, and the direction of gravity
approximately points to the center of the earth. Therefore, the direction and amplitude of gravity
change with the position on the earth. For two positions that are far apart, the gravity vectors will be
quite different. Therefore, it is imprecise for the traditional IMU preintegration algorithms to assume
that the gravity vector is constant in the W frame, especially after the vehicle has traveled a long
distance. An example is where the VINS system (maybe another system where the IMU preintegration
technology is used) was initialized at city A and traveled to city B, where the W coordinate frame
was located at city A. To simulate this situation, i.e., to amplify the influence of the change of gravity,
we deliberately moved the W coordinate frame a certain distance from the starting position of the
testing dataset. Specifically, if the geodetic position of the starting position was ϕ, λ, and h, the geodetic
displacement was δϕ, δλ, and δh, respectively. Then, the new position of the W coordinate frame was
ϕ + δϕ, λ + δλ, and h + δh, respectively. The new position of the W frame may not be located in a
living area, and may be a mountain or a lake. However, this does not affect the evaluation of the
proposed algorithm mathematically. In order to systematically evaluate the influence of the change
of gravity, the geodetic displacement of the world frame was incrementally set as 0, 0.1, 0.25, 0.5, 1.0,
and 2.0 degrees, where δϕ = δλ, δh = 0. The corresponding Euclidean displacements were 0, 14.7,
36.7, 73.3, 146.4, and 292.1 kilometers. The new positions of the W frame were drawn in Google Earth,
as shown in Figure 4.
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In order to achieve good alignment with the geodetic frame, the RTK positions were added into
optimization during the initial period, i.e., we directly used the RTK positioning results. Then, the RTK
positions were removed after initialization, for better reflecting the impact of the IMU preintegration.
At this time, the VINS system will have accurate prior information. For analyzing the influence of the
earth rotation, the performance of the proposed IMU preintegration algorithm was also evaluated
with or without a consideration of the earth rotation. Finally, the performance of the proposed IMU
preintegration algorithm was evaluated under one of the four settings, as follows:

Setting A: Both the change of gravity and the earth rotation are considered, i.e., the proposed
algorithm is used in a normal way;

Setting B: The change of gravity is considered, but the earth rotation is omitted;
Setting C: The change of gravity is omitted, but the earth rotation is considered;
Setting D: Both the change of gravity and the earth rotation are omitted, and the proposed IMU

preintegration algorithm degenerates to a traditional IMU preintegration algorithm.
During the initial period, the proposed IMU preintegration algorithm was used under Setting A.

6. Results

The root-mean-square errors (RMSEs) of the estimated position, horizontal attitude, and yaw
were calculated by comparing the estimated states with the ground truth data. All results are listed in
Tables 2–4. Because all states were estimated from noisy sensor measurements by joint optimization,
the final results were random due to the keyframe selection method and the change of the initial
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condition. However, the variation tendency of RMSEs was still obvious under different settings,
especially for the RMSEs of the POS620 due to its high-precision measurements. The estimation
results were diverged under Setting B and Setting D if the POS620 measurements were used in our
implementation. Therefore, the RMSEs are not listed in Table 4. Additionally, the diverged estimation
errors of POS620 are plotted in Figure 5.

The trajectories of the two IMUs for the sequences WRIC and GFH under different settings and
two-degree geodetic displacements are plotted in Figure 6.

Due to the limited space of the paper, only some of the RMSEs obtained under different settings
and different geodetic displacements are plotted in Figures 5 and 7–9.

Table 2. The root-mean-square errors (RMSEs) of the position, horizontal attitude, and yaw of
MTi-G-710 under different settings for the sequence at the test area of the Wuhan Research and
Innovation Center (WRIC).

Shifting
Distance

(deg)

Setting A
The Proposed Solution

Setting B
With Gravity ChangeNo

Earth Rotation

Setting C
No Gravity ChangeWith

Earth Rotation

Setting D
The Traditional Solution

P(m) H(deg) Y(deg) P(m) H(deg) Y(deg) P(m) H(deg) Y(deg) P(m) H(deg) Y(deg)

0 5.46 0.077 0.52 5.53 0.064 0.37 4.23 0.073 0.25 5.00 0.065 0.47

0.1 4.90 0.068 0.42 5.26 0.070 0.56 4.65 0.161 0.41 3.84 0.172 0.61

0.25 5.54 0.066 0.51 5.34 0.074 0.44 5.51 0.350 0.49 4.75 0.355 0.66

0.5 4.44 0.079 0.35 5.67 0.082 0.41 8.73 0.680 0.37 8.75 0.681 0.57

1.0 5.11 0.076 0.49 4.28 0.085 0.50 9.55 1.338 0.64 9.13 1.339 0.67

2.0 5.03 0.070 0.36 5.69 0.073 0.33 20.9 2.640 0.42 15.9 2.654 0.49

Table 3. The RMSEs of the position, horizontal attitude, and yaw of MTi-G-710 under different settings
for the sequence at the test area of the Guanggu financial harbor (GFH).

Shifting
Distance

(deg)

Setting A
The Proposed Solution

Setting B
With Gravity Change

No Earth Rotation

Setting C
No Gravity Change
With Earth Rotation

Setting D
The Traditional Solution

P(m) H(deg) Y(deg) P(m) H(deg) Y(deg) P(m) H(deg) Y(deg) P(m) H(deg) Y(deg)

0 3.05 0.064 0.48 2.72 0.066 0.48 2.58 0.064 0.55 3.07 0.065 0.73

0.1 2.67 0.070 0.42 2.45 0.059 0.68 2.64 0.154 0.51 2.83 0.162 0.69

0.25 2.96 0.076 0.63 2.42 0.065 0.54 2.59 0.339 0.59 3.02 0.347 0.54

0.5 2.40 0.065 0.52 3.18 0.064 0.36 3.76 0.673 0.57 3.83 0.674 0.36

1.0 3.03 0.068 0.50 2.59 0.074 0.55 5.21 1.334 0.50 4.92 1.330 0.49

2.0 2.74 0.065 0.68 3.17 0.065 0.48 9.04 2.643 0.75 9.16 2.644 0.50

Table 4. The RMSEs of the position, horizontal attitude, and yaw of POS620 under Setting A and
Setting C for the dataset.

Shifting
Distance

(deg)

Setting A
The Proposed Solution

Setting C
No Gravity Change
With Earth Rotation

Sequence WRIC Sequence GFH Sequence WRIC Sequence GFH

P(m) H(deg) Y(deg) P(m) H(deg) Y(deg) P(m) H(deg) Y(deg) P(m) H(deg) Y(deg)

0 1.50 0.017 0.45 0.55 0.011 0.09 1.27 0.017 0.38 0.55 0.011 0.10

0.1 1.78 0.017 0.52 0.81 0.012 0.19 2.36 0.133 0.34 1.83 0.134 0.23

0.25 1.52 0.017 0.49 0.70 0.012 0.11 8.28 0.323 1.90 — — —

0.5 1.86 0.017 0.60 0.62 0.012 0.09 — — — — — —

1.0 1.28 0.018 0.41 0.78 0.012 0.18 — — — — — —

2.0 1.40 0.019 0.44 0.63 0.012 0.09 — — — — — —

Note: The notation — means that the estimation diverged and crashed under this setting.
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7. Discussion

In this section, we will discuss the influence of the gravity change and the earth rotation on the
IMU preintegration, according to the results presented in the previous section.

According to the RMSEs of the horizontal attitude of the MTi-G-710 and POS620 under Setting A
and Setting C presented in Tables 2–4, we can observe that ignoring the change of gravity makes the
horizontal attitude errors increase as the geodetic displacement increases linearly. The RMSEs of the
horizontal attitude error are about 1.38 times greater than the geodetic displacement. This tendency is
also obvious in Figures 8b and 9b, where the pitch and roll errors fluctuate sharply. If the vehicle moves
in a small area, i.e., the geodetic displacement is almost 0 degrees, ignoring the change of gravity does
not have much of an influence on the horizontal attitude errors, as shown in Tables 2–4, under Setting
C. This phenomenon can also be directly observed in Figure 7.

According to the position RMSEs of MTi-G-710 under Setting A and Setting C presented in Table 2,
we can observe that the RMSEs of the position are lower than 5.6 m under Setting A. The position
RMSEs increase and become greater than 8.73 m under Setting C in Table 2, if the geodetic displacement
is greater than 0.5 degrees. We can also observe a similar tendency under Setting A and Setting C in
Table 3. The increase of the position RMSE becomes obvious when the geodetic displacement is greater
than 1 degree, due to the short length of the sequence GFH.
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According to the position RMSEs of POS620 under Setting A and Setting C presented in Table 4,
we can observe that the position RMSEs are lower than 1.9 m in sequence WRIC and lower than
0.85 m in sequence GFH under Setting A. Additionally, the position RMSEs become greater than
2.36 m in sequence WRIC and 1.83 m in sequence GFH, if the geodetic displacement is greater than
0.1 degrees. The motion estimation results diverge under Setting C, if the geodetic displacement is
greater than 0.25 degrees in the sequence WRIC and 0.1 degrees in the sequence GFH. Compared with
the MTi-G-710, the POS620 is more sensitive to the change of gravity, due to its high-precision
measurements, which means that it has a greater weight during information fusion. If the vehicle
moves in a small area, i.e., the geodetic displacement is almost 0 degrees, ignoring the change of gravity
has no obvious influence on the position errors for both low-grade and high-grade IMUs, as shown in
Tables 2–4 under Setting C.

According to the RMSEs of the MTi-G-710 under Setting A and Setting B presented in Tables 2
and 3, we can observe that ignoring the earth rotation has no obvious influence on the accuracy of the
position and the horizontal attitude. From another perspective, the RMSEs of MTi-G-710 under Setting
B and Setting D presented in Tables 2 and 3 show that the positioning accuracy is obviously increased
under large geodetic displacement by taking the change of gravity into consideration, but ignoring the
earth rotation. Therefore, the earth rotation can be safely omitted for the industrial-grade MEMS-based
IMU. In contrast, the motion estimation results diverge if the earth rotation is omitted from the
measurements of the navigation-grade IMU (POS620), as shown in Figure 5. This is because the earth
rotation is about 15deg/h, and the gyro bias instability and noise density of the angler random walk
of the MTi-G-710 are 100deg/h and 0.6deg/

√
h, respectively, making it impossible to sense the earth

rotation. In contrast, the gyro bias instability and noise density of the angler random walk of the
POS620 are about 0.02deg/h and 0.005deg/

√
h, respectively. Therefore, the POS620 can sense the earth

rotation effectively. At the same time, it should be noted that the higher noise density of MTi-G-710
makes the weight of its preintegrated IMU measurements lower, which makes the visual constrains
more significant. However, the high grade of POS620 results in a greater weight of the preintegrated
IMU measurements and reduces the effect of the visual constrains, making the system solution more
sensitive to the modeling error of the earth rotation.

Since the yaw state is unobservable for the VINS and therefore cannot be estimated effectively [14],
the drift of the yaw angle is completely random, making the yaw RMSEs stochastic under different
settings and geodetic displacements, as shown in Tables 2–4.

8. Conclusions

In this paper, we have redesigned the IMU preintegration algorithm used in the
optimization-based sensor fusion framework by taking the earth rotation and the change of gravity
into consideration. Both of the two terms are functions of the geodetic position. In order to evaluate
the proposed algorithm, we collected a dataset by using our sensor platform equipped with two
different-grade IMUs. Then, the proposed algorithm was systematically evaluated by using the
collected field dataset under different settings and test conditions. The test results led to the following
conclusions: (1) The earth rotation can be safely omitted for industrial-grade MEMS-based IMUs that
cannot sense the rotation effectively. However, for quasi-navigation-grade IMUs that can effectively
sense the earth rotation, the earth rotation must be considered so as to maintain the positioning
accuracy of the VINS; (2) if the change of gravity is omitted, the horizontal attitude error increases
linearly as the geodetic displacement increases. Moreover, the RMSEs of the horizontal attitude error
are about 1.38 times greater than the geodetic displacement. If the accuracy of the horizontal attitude
matters, the change of gravity must be carefully considered; (3) if the change of gravity is omitted,
the position error does not increase much within the limited working area. Furthermore, the threshold
of the size of the limited working area is related to the IMU grade. According to the test results,
for industrial-grade IMUs, the positioning error will not obviously increase within 0.25-degree geodetic
displacement (36.7 km) if the gravity change is omitted. Additionally, for quasi-navigation-grade
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IMUs, the positioning error will also not increase if the limited size is about several hundred meters;
(4) the performance of the proposed algorithm is consistent under different geodetic displacements
and settings. Therefore, the proposed algorithm can cope well with the change of gravity and the earth
rotation, forming a more robust GNSS/VINS solution.
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