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Abstract: In most previous studies of tropospheric tomography, water vapor is assumed to have
a homogeneous distribution within each voxel. The parameterization of voxels can mitigate the
negative effects of the improper assumption to the tomographic solution. An improved parameterized
algorithm is proposed for determining the water vapor distribution by Global Navigation Satellite
System (GNSS) tomography. Within a voxel, a generic point is determined via horizontal inverse
distance weighted (IDW) interpolation and vertical exponential interpolation from the wet refractivities
at the eight surrounding voxel nodes. The parameters involved in exponential and IDW interpolation
are dynamically estimated for each tomography by using the refractivity field of the last process.
By considering the quasi-exponential behavior of the wet refractivity profile, an optimal algorithm is
proposed to discretize the vertical layers of the tomographic model. The improved parameterization
algorithm is validated with the observational data collected over a 1-month period from 124 Global
Positioning System (GPS) stations of Hunan Province, China. Assessments by GPS, radiosonde,
and European Centre for Medium-Range Weather Forecasts (ECMWF) ReAnalysis 5 (ERA5) data,
demonstrate that the improved model outperforms the traditional nonparametric model and the
parameterized model using trilinear interpolation. In the assessment by GPS data, the improved
model performs better than the traditional model and the trilinear parameterized model by 54% and
10%, respectively. Such improvements are 31% and 10% in the validation by radiosonde profiles.
In comparison with the ERA5 reanalysis, the improved model yields a minimum overall root mean
square (RMS) error of 8.94 mm/km, while those of the traditional and trilinear parametrized models
are 10.79 and 9.73 mm/km, respectively. The RMS errors vertically decrease from ~20 mm/km at the
bottom to ~5 mm/km at the top layer.

Keywords: parameterized model; wet refractivity; water vapor; tomography

1. Introduction

Water vapor in the troposphere represents a mere fraction of the total atmospheric volume but
is strongly associated with climate change, atmospheric radiation, weather pattern, and hydrologic
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cycle [1–4]. Accurate information on water vapor not only leads to a better understanding of the
aforementioned fields but also to an enhanced natural hazard mitigation (e.g., floods and landslides)
because water vapor observations are crucial for initializing the numerical weather prediction (NWP)
models [5–7]. Nevertheless, atmospheric water vapor is one of the poorly described components in the
atmosphere because of its highly spatiotemporal variability [8–10].

The global navigation satellite system (GNSS)-based tropospheric tomography has become a
powerful technique for retrieving the water vapor fields with both high spatial and temporal resolutions
owing to the rapid development of the GNSS [11–16]. The first research work was carried out by Flores
et al.; they reconstructed the 3D wet refractivity fields with the tomographic method by using rays from
a global positioning system (GPS) network in Hawaii, USA [11]. After this successful trial, a number of
significant studies have been performed in terms of the theoretical models and experimental analysis
for GNSS-based tropospheric tomography [5,16–22]. The vital significance of tomographic water vapor
products for scientific research (e.g., heavy precipitation monitoring [23–25], precise point positioning
(PPP) augmentation [26], and assimilation into NWP models [27]) has justified the various efforts in
tomographic modeling.

The tomographic space is normally partitioned into many 3D closed voxels assuming that the
water vapor of each voxel is constant and evenly distributed during the modeled time period. The wet
refractivity field can be retrieved from a large number of slant wet delays (SWDs) penetrating the probed
space from various directions via the tomographic technique. The number of crossing SWDs per voxel is
dependent on the geometry defined by the constellation of GNSS satellites, the geographic distribution
of ground-based receivers, and the integration time and on the model resolution [28]. The tomographic
equation is often ill-conditioned, and some voxels are underdetermined because having enough GNSS
satellites and ground sites to allocate sufficient rays for each voxel is impossible. The following
are the four ways to mitigate the ill-posed problem in the tomographic equation: (1) Addition of
intervoxel constraints (e.g., horizontal and vertical constraints) to tomographic equations [11,16,29];
(2) assimilation of non-GNSS measurements (e.g., radiosonde, NWP, and radio occultation) [8,17,30];
(3) optimization of voxel discretization [16,20,31]; and (4) usage of advanced algorithms, such as
singular value decomposition, Kalman filter approach, and algebraic reconstruction technique, to solve
the tomographic equations [11,32,33].

As previously stated, considerable progress has been achieved in the tropospheric tomography
in the past decades. In most previous studies, a critical deficiency in the tomographic model is to
assume that the water vapor content in each voxel follows a homogeneous distribution. Water vapor
greatly varies with space in the voxel, particularly in the vertical direction. The negative effects
caused by the improper assumption can be mitigated by applying a high resolution. This approach
will increase the computational complexity and the effect of intervoxel constraints on the solutions.
In the field of 2D image reconstruction, Andersen and Kak [34] applied the discrete approximation
to the ray integrals of a continuous image by using bilinear interpolation. Their study proved the
superior performance of the continuous image representation with bilinear elements over the traditional
pixel-based method. Ding et al. [31] reported a method to determine the water vapor density at a
certain point via inverse distance weighted (IDW) interpolation in the horizontal direction for the
troposphere tomography. However, water vapor is assumed to have no vertical variations within a
layer, which is unreasonable in cases of the large thickness of the voxel layer or strong vertical changes
in water vapor. Perler et al. [33] proposed a new voxel parameterization method by modeling the
wet refractivity at a certain point by utilizing trilinear/spline functions from its eight adjacent voxel
nodes. The new parameterized tomographic model is shown to be a valid means to reduce the impacts
of discretization while negligibly increasing the computational costs. Nevertheless, bilinear/spline
interpolations adopted in the parameterization do not consider the physical characteristic of the water
vapor changes. Chen et al. [35] applied the method of Perler et al. [33] in ionospheric tomography with
modified interpolations, showing significantly better performance than the traditional nonparametric
method. Compared with the troposphere, the spatiotemporal distribution of the ionospheric electron
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density is more stable, thus constant parameters were used in the interpolations. On the basis of the
studies of Perler et al. [33] and Chen et al. [35], we developed an improved parameterized algorithm
to refine the tropospheric tomographic model to enhance the performance of the wet refractivity
reconstruction. Horizontal IDW interpolation and vertical exponential interpolation are introduced
to our improved model, and their parameters are dynamically estimated for every tomographic
process. In addition, an optimal algorithm is proposed to determine the vertical discretization of the
tomographic model.

Section 2 describes the methodology of the improved parameterized water vapor tomography.
Section 3 presents the voxel discretization and the datasets exploited to carry out the tomographic
experiments. The assessments of the parameterized tomographic model by GPS, radiosonde, and European
Centre for Medium-Range Weather Forecasts (ECMWF) ReAnalysis 5 (ERA5) data, are also shown in
this section. Finally, Section 4 provides the conclusions and outlook of this study.

2. Retrieval of the Wet Refractivity Field with Improved Parameterized Tomography

GNSS signals will be significantly delayed due to the refraction of the neutral atmosphere as
they travel through the troposphere. The tropospheric delay is normally divided into 2 components:
A hydrostatic part caused by the neutral hydrostatic atmosphere and a wet part induced by the water
vapor. At present, the zenith tropospheric delay (ZTD) can be estimated with a high accuracy of several
millimeters. High-accuracy zenith hydrostatic delay (ZHD) can be attained using empirical models
with surface meteorological observations; thus, the zenith wet delay (ZWD) can be extracted from ZTD
minus ZHD. The SWD along the ray path from a receiver to a satellite can then be derived as follows:

SWD = (ZTD−ZHD) f (z) +
∂ f
∂z

[GNW · cos(φ) + GEW · sin(φ)] + R (1)

where z and φ are the satellite zenith distance and azimuth angle, respectively; f refers to the wet
mapping function (global mapping function is used here); GNW and GEW are the components of the
wet delay gradient in the north–south and east–west directions, respectively; and R refers to the post-fit
residuals. The exploitation of the post-fit residuals can mitigate the adverse effects of only using the
gradient terms for accounting for the anisotropy of the local troposphere [17].

The relationship between SWD and wet refractivity along the signal from a satellite to a receiver
can be expressed by:

SWD =

∫
l
Nwdl (2)

where Nw is the wet refractivity, and l is the propagation path of the signal through the troposphere.
Given that the effect of a ray bending to SWD can be neglected for elevations greater than 15◦ [36], l is
usually taken as a straight line in the tomography. The model space is discretized into many voxels to
reconstruct the wet refractivity field from the massive SWDs interweaving in the troposphere across
different directions (Figure 1). The water vapor distribution is generally assumed to be homogeneous
for each voxel over the reconstruction period. In this case, each SWD is approximately equal to the
sum of the product of wet refractivity and the length of the ray path crossing each voxel. Therefore,
Equation (2) can be approximated by:

SWD =
n∑

i=1

Ni
wdi (3)

where n is the number of voxels along the SWD ray path, Ni
w is the wet refractivity in voxel i, and di is

the intercept of ray by voxel i.
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Figure 1. Schematic representation of voxel discretization for the tomographic model.

In the parameterized tomographic model, the wet refractivity of each voxel is no more regarded as
invariable but varies with the position. The wet refractivity of a generic point is expressed by a weighted
mean of the wet refractivity values at the 8 voxel nodes, where the point is located. For example,
Figure 1 demonstrates that the wet refractivity of any point along P1–P5 can be determined from
the 8 nodes (i.e., N1, N2, · · · , N8) of voxel 4. Accordingly, the SWD can be expressed as an integral
of the wet refractivities at the voxel nodes. The integral can hardly be analytically expressed;
thus, the Newton–Cotes quadrature is used to solve the integral [33]. Figure 1 displays that the integral
of wet refractivity along P1–P5 can be discretized as follows:∫ P5

P1
Nwdl =

DP1P5

90
{
7[Nw(P1) + Nw(P5)] + 32[Nw(P2) + Nw(P4)] + 12Nw(P3)

}
(4)

where DP1P5 is the intercept of ray l by voxel 4; P1, P2, P3, P4, and P5 are 5 equidistant points on the
intercept; and the 4 constant values (i.e., 90, 7, 32, and 12) are coefficients for the 4-order Newton–Cotes
quadrature formula. Perler et al. [33] adopted trilinear and bilinear/spline functions to interpolate the
wet refractivity of point Pi. In this work, an improved parameterization method was developed by
considering the characteristic of the water vapor changes. The wet refractivity vertically follows the
exponential distribution [8], thus taking P3 as an instance, and its wet refractivity can be vertically
interpolated by using points V1 and V2:

Nw(P3) =
hP3 − hV1

(hV2 − hV1)·eα(hV2−hP3)
Nw(V2) +

hV2 − hP3

(hV2 − hV1)·eα(hV1−hP3)
Nw(V1) (5)

where hV1, hV2, and hP3 refer to the altitudes of points V1, V2, and P3, respectively; and α is a parameter
describing the exponential variation of the wet refractivity, and it can be estimated from the following
expression:

Nw(hi) = Nw(h0)eα(hi−h0) (6)

where h0 represents the elevation of the lower surface of the vertical layer, and hi represents the elevation
of a generic point within the layer. Variable α is estimated for each voxel by using the wet refractivity
profiles of the last tomographic period to improve the modeling performance. The initial profiles are
derived from the National Centers for Environmental Prediction (NCEP) FNL Analysis products.
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The wet refractivities of V1 and V2 are determined by the IDW interpolation:

Nw(Vi) =

∑4
j=1

1
(d j)

u ·Nw
(
N j

)
∑4

j=1
1

(d j)
u

(7)

where d j is the distance between Vi and N j; u is the power of the distance; and Nw
(
N j

)
( j = 1, 2, 3, 4)

represent the 4 neighboring voxel nodes of the grid surface, where point Vi is located. For example,
Figure 1 shows that the 4 surrounding nodes of point V1 are N1, N2, N3, and N4. Here, we propose to
estimate u for each tomographic process to refine the modeling. In each voxel layer, u is estimated
from Equation (7) by using the wet refractivity field of the last tomographic period.

A large sparse system of linear equations is established by collecting all the SWD measurements
over the tomographic period (30 min in this study):

y = Ax (8)

where y is a column vector with a set of SWDs, x is the unknown parameter vector that consists of
the wet refractivities of all voxel nodes, and A is a matrix with elements denoting the contributions
of x on the SWDs. An inversion algorithm should be carried out to solve the unknowns. However,
not all the voxels have ray crossings in most cases; thus, design matrix A in Equation (8) is a large
sparse matrix. To overcome the problem of ill-posedness, the horizontal and vertical constraints were
imposed to regularize the linear least-square inversion. These constraints were added according
to Equations (4) and (6). The a priori wet refractivity field provided by the National Centers for
Environmental Prediction Final (NCEP FNL) analysis dataset was used to constrain the solution.
The Helmert variance component estimation method was adopted to determine the weight of the a
priori information for the tomographic solution [8].

However, the tomographic solution obtained from Equation (8) was just an approximate wet
refractivity field. We thus further implemented the multiplicative algebraic reconstruction technique
(MART) to improve the least square solution from Equation (8) due to its advantage of converging to a
good result within a short processing time [16,32]. In the kth MART iteration, the ratio between the
observed y and reconstructed 〈A, xk−1

〉 is computed to produce corrections for involved voxel nodes.
Given the generic ith ray and the generic jth voxel node, the xk

j wet refractivity after the kth iteration is
calculated as follows:

xk
j = xk−1

j ·

(
yi

〈Ai, xk−1〉

) λAi jx
k−1
j∑n

j=1 Ai jx
k−1
j (9)

where λ is the relaxation parameter (an empirical value of 0.9 used here). The wet refractivity field
solved by Equation (8) was used as the initial for the iteration. The iteration was terminated when the
standard deviation of the differences between GNSS-estimated and tomographically reconstructed
SWDs was less than 0.5 mm. For cases the MART solution was unable to converge to 0.5 mm,
the maximum iterations were set to 50. An accurate wet refractivity field will be obtained after
performing the combined reconstruction algorithm [30,36–38]. Tomographic results solved from
the parameterized method were wet refractivities of the voxel nodes. The vertical interpolation
in Equation (5) and horizontal interpolation in Equation (7) must be implemented using the wet
refractivities of the 8 voxel nodes of that voxel to obtain the wet refractivity of a generic point within
a voxel. In the traditional tomography, the wet refractivity of a generic point is equal to that of its
located voxel.
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3. Validation of the Improved Parameterized Tomography

3.1. Experiment Description and Voxel Discretization

Various tests have been conducted to validate the performance of the proposed improved
parameterized tomographic model. The tomographic experiment is carried out based on GPS
observations collected from 124 stations with an average separation distance of 41 km (Figure 2)
from the CORS network of Hunan Province, China. The time span of the GPS data used in the tests
was from 1 to 30 June 2018, which is the most humid month in that year in Hunan. Tomography
was consecutively implemented with an interval of 30 min. The SWDs from HNRC (113.34◦E,
25.54◦N, 499.061 m), SYDK (110.61◦E, 27.03◦N, 321.878 m), and XTXX (112.51◦E, 27.75◦N, 70.008 m)
stations (black triangles shown in Figure 2) were excluded in the input dataset; they were used for
self-consistency validation purposes. Most GPS stations were equipped with Trimble or Leica receivers
and had a typical sampling rate of 30 s. In this work, Bernese 5.2 software was exploited to estimate the
ZTDs with the PPP technique [39]. The ZTDs and horizontal gradients were estimated every 30 min
and 12 h, respectively, while the global mapping function (GMF) was adopted [40] in the estimation.
The comparison with radiosonde measurements revealed an accuracy of ~9 mm for our estimated
ZTDs [41]. The quality-assured atmospheric profiles observed at 3 radiosonde stations (blue diamonds
in Figure 2) from the Integrated Global Radiosonde Archive (IGRA) [42] will be used to validate the
tomographic solutions.
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The tomographic region covered from 108.85◦E–114.05◦E in longitude and 24.85◦N–30.05◦N
in latitude. Radiosonde profiles revealed that wet refractivities approached zero at the altitude of
11 km. Therefore, the selection of 11 km as the top boundary of the tomographic region in Hunan
and regarding the atmosphere above 11 km as dry air was reasonable. The water vapor variations
in the latitude and longitude directions were comparable; thus, a uniform resolution of 0.4◦ in the
2 horizontal directions was adopted. The water vapor content rapidly decreased with altitude and was
negligible in the upper troposphere. Considering the quasi-exponential behavior of the wet refractivity
profile, we derived the following expression to determine the vertical layer distribution:

hi =

 hmin + ln
(

i
n eα(hmax−hmin) + n−i

n

)
/α i = 1, · · · , n− 1

hmax i = n
(10)

where hi denotes the altitude of the upper boundary of layer number i, n is the total number of
vertical layers, hmin is the minimal surface altitude within the target area, hmax is the top height of the
tomographic region, and α is the exponential variation parameter that can be determined using (6)
with history radiosonde data. Within the bottom and uppermost layer, this expression was established
to distribute the intermediate layers for ensuring that the integral of the wet refractivity (i.e., ZWD) in
each layer was approximately constant.

In this study, hmin and hmax were set as 0 and 11 km, respectively. A value of −0.28 was
estimated for α by using the historical radiosonde profiles collected over the whole month of June
2017. Flores et al. [11] suggested that the thickness of a vertical layer should be more than 350 m;
otherwise, the noise will affect the tomographic solutions. Accordingly, the total number of layers
was determined as 10 to ensure that the thickness of the lowest layer was larger than 350 m. Finally,
10 nonuniform layers were discretized with their thicknesses of 358, 398, 448, 513, 598, 719, 902, 1209,
1842, and 4013 m. The SWDs with elevation angles <10◦ were rejected in the tomography to minimize
the multipath effects. Three schemes were used in the tomographic modeling to assess the performance
of the improved method.

Tomo-I: Using the traditional nonparametric method that water vapor was assumed to have a
homogeneous distribution within each voxel.

Tomo-II: Using the trilinear parameterization method developed in Perler et al. [33]. The bilinear/spline
approach was not included here since it has a worse performance than the trilinear one in the assessment
with real data. The wet refractivity at a generic point within a voxel was determined by trilinear
interpolation from the wet refractivities at the 8 nodes of that voxel.

Tomo-III: Using the improved parameterized method developed in this study. As previously stated,
the wet refractivity of any point within a voxel was expressed via vertical exponential interpolation
and horizontal IDW interpolation by using the 8 refractivity values of the voxel corners.

3.2. Self-Consistency Validation by GPS Data

As previously mentioned, 3 GPS stations (i.e., HNRC, SYDK, and XTXX) were excluded from the
tomographic experiment; however, they were adopted for self-consistency validation. The SWD along
a generic ray path was calculated by an integral of wet refractivities with respect to its propagation
path by using the tomographic results. The tomographic SWDs were then directly compared with
those estimated from GPS measurements. Figure 3 exhibits the overall statistical results derived from
the 3 stations during the period of 1–30 June 2018. The SWD derived from Tomo-I performed badly
because its root mean square (RMS) error of 24.68 mm was approximately twice those of schemes
Tomo-II and Tomo-III. With regard to the mean bias, the 3 schemes consistently yielded positive values
in the range of 1.50 to 3.50 mm. This phenomenon was likely due to the neglect of the troposphere
above altitude 11 km in the tomographic model as GPS-derived SWDs contained a small portion from
the space above 11 km. RMS errors obtained from both the parameterized schemes were much smaller
than the nonparametric scheme. The improvements attained by the parameterized method were 49%
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and 54% for schemes Tomo-II and Tomo-III, respectively. Tomo-III achieved the best performance with
an RMS error of 11.40 mm, which corresponds to an improvement of approximately 10% with respect
to Tomo-II.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 15 
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Figure 3. Biases and root mean square (RMS) errors of the tomographic slant wet delays (SWDs) solved
using schemes Tomo-I, Tomo-II, and Tomo-III.

Figure 4a shows the RMS errors of the SWD comparison at 8 different elevation intervals. The RMS
errors quickly decreased with the increase in elevation in all comparisons. The RMS errors of the
SWD differences for elevations between 10◦ and 20◦ were 2.7, 4.0, and 4.5 times those for elevations
80◦–90◦ for Tomo-I, Tomo-II, and Tomo-III, respectively. The significant increase of the RMS error
with elevation decrease occurred because the GPS rays will cost a longer time to travel through the
troposphere at a low elevation, thereby leading to a larger wet delay. For this reason, Figure 4b further
displays the change of relative RMS with elevations. The relative RMS was defined as the averaged
GPS-estimated SWD divided by the corresponding RMS error. Tomo-I obtained relative RMS varying
from 3% to 5%, whilst much smaller relative RMS values in the range of 1.5% to 2% were yielded for
parameterized methods Tomo-II and Tomo-III. The relative RMS of Tomo-I, in general, increased with
the elevation increase; however, slight decreases were found for Tomo-II and Tomo-III. This finding
shows that the parameterized method was more robust than the traditional one because no evident
changes in performance were observed at different elevations. Table 1 further illustrates the respective
statistics of the reconstructed SWDs by the 3 schemes at the 3 GPS stations. Consistent with the overall
statistics, Tomo-III performed best at all the stations, followed by Tomo-II.

Table 1. Biases and RMS errors of the differences between GPS-estimated SWDs and tomographic
SWDs using schemes Tomo-I, Tomo-II, and Tomo-III.

Station
Tomo-I Tomo-II Tomo-III

Bias (mm) RMS (mm) Bias (mm) RMS (mm) Bias (mm) RMS (mm)

HNRC 5.20 24.37 0.82 12.33 2.87 11.24
SYDK 0.54 24.12 6.12 16.40 0.51 11.37
XTXX 4.50 25.49 0.68 9.16 0.86 9.06
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3.3. Validation of the Tomographic Solutions by Radiosonde Profiles

Although the tomographic SWDs were in agreement with the GPS-estimated ones, the vertical
profiles of wet refractivity were not necessarily correctly modeled. In this section, we further exploit
radiosonde data to assess the tomographic wet refractivity profiles. Figure 2 shows that 3 radiosonde
stations were located in Hunan Province. However, only 2 stations (i.e., RSCZ and RSHH) can
provide observations for the period of the tomographic experiment. The measured radiosonde and
the reconstructed tomographic wet refractivity profiles were resampled to heights with an interval
of 200 m to conduct a straightforward comparison. In the traditional method, the wet refractivity
of an arbitrary point was equal to that of the voxel where the point was located. The matchup wet
refractivities of the parameterized methods were obtained by two steps: (1) Searching the voxel where
the point was located; and (2) interpolating the wet refractivities of the 8 voxel nodes to the point by
trilinear interpolation for Tomo-II or exponential/IDW interpolation for Tomo-III. The comparison
between radiosonde and Tomo-I yielded a bias of 0.69 mm/km and an RMS error of 10.17 mm/km,
respectively. The bias and RMS error of the wet refractivity profiles for Tomo-II were 0.27 and
7.81 mm/km, respectively. In scheme Tomo-III, the obtained bias and RMS error were −0.33 and
7.00 mm/km, respectively. The overall statistics showed that the tomographic profiles by Tomo-III
have a great agreement with those observed by the radiosonde.

Figure 5 exhibits the change of RMS errors and relative RMS at various altitudes. Here, the relative
RMS was defined as the averaged radiosonde-observed wet refractivity divided by the corresponding
RMS of the layer. Tomo-III consistently showed the optimal performance with the RMS error decrease
from ~10 mm/km at the bottom layers (0–1 km) to ~3 mm/km at the upper layers (9–11 km). The RMS
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errors of Tomo-I were larger than those of Tomo-II at various altitudes, particularly exceeding 30 mm/km
at the bottommost layer. The relative RMS values for Tomo-III increased from 8% at the lowest layer to
443% at the uppermost layer with altitude. Figure 5b demonstrated that the relative RMS exceeded
100% at an altitude above 8 km for all the schemes. In the worst scheme Tomo-I, the relative RMS
approached 1100% at the uppermost layer. This finding indicates the difficulty of tomography in
reconstructing water vapor profiles of high-altitude layers. The water vapor content in the upper layers
is small, and a minor error in the tomographic modeling would cause relatively large discrepancies in
wet refractivity for the top layers.
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Figure 5. (a) RMS errors and (b) relative RMS of the differences between the wet refractivity profiles
derived from radiosonde and tomography on the different altitude layers.

3.4. Comparison of the Wet Refractivity Fields between Tomography and ERA5 Reanalysis

The limited spatial coverage of the benchmark datasets of the above 2 assessments hampered
the comprehensive understanding of the tomographic solutions. ERA5 was the latest (5th generation)
European Centre for Medium-Range Weather Forecasts atmospheric reanalyses of the global climate,
which will replace its predecessor ERA-Interim within several years [43]. ERA5 reanalysis has
been greatly upgraded in the spatiotemporal resolution and assimilation method compared with
ERA-Interim [44]. ERA5 can provide hourly atmospheric parameters at 37 pressure levels from 1000 to
0.1 hPa at horizontal grids of 0.25◦ × 0.25◦. ERA5 reanalysis offers us a chance to assess our tomographic
solutions from the perspective of high spatial and temporal resolutions. Tomo-I, Tomo-II, and Tomo-III
yielded biases of 3.27, 3.67, and 2.79 mm/km, respectively, by stacking 1-month comparison data
of all voxels. The RMS errors of 10.79, 9.73, and 8.94 mm/km were obtained for Tomo-I, Tomo-II,
and Tomo-III, respectively. Tomo-III had the optimal overall agreement with ERA5 data.

Figure 6a–c present the spatial distribution of the RMS errors of the wet refractivity differences
between ERA5 and tomography over the study region. At each horizontal grid, the RMS error was
calculated considering all the vertical voxels over this grid. The RMS errors of Tomo-I, Tomo-II,
and Tomo-III varied from 7.0 mm/km to 16.8 mm/km, 5.9 mm/km to 15.8 mm/km, and 6.0 mm/km
to 11.0 mm/km, respectively, depending on the location. In Tomo-I, large RMS errors exceeding
15 mm/km occurred in the southeast portion of the study area. In Tomo-II, the north part of the study
area achieved a worse performance with RMS errors greater than 12 mm/km, with reasons unknown.
In Tomo-III, a majority of the area was populated with RMS errors less than 10 mm/km, thereby
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showing an evidently enhanced consistency with ERA5. Figure 6d–f display the RMS differences
between each of the two schemes. Figure 6d exhibits that the RMS errors of Tomo-I are larger than
those of Tomo-II in most regions, except for the north above 29◦N where the RMS differences of −1
to −3 mm/km are found. Tomo-III significantly performed better than Tomo-I because positive RMS
differences were observed in the vast majority of the study area (Figure 6e). In Figure 6f, positive
values could be observed everywhere, thereby demonstrating the improvements brought by Tomo-III
versus Tomo-II for the parameterized method. The large RMS errors occurred in the boundary regions
as less GPS rays interweaved in the troposphere. The southwest consistently obtained relatively good
performance in all the 3 schemes, while no GPS sites were located there. The tomographic solutions of
voxels over the southwest were highly dependent on the initial information due to the lack of GPS ray
crossings. In this study, the NCEP FNL analysis was used to provide the a priori water vapor fields for
the tomography. The NCEP FNL analysis had a good consistency with the ERA5 reanalysis, thereby
leading to a low RMS error in the southwest. Figure 7 further shows the RMS error and relative RMS
at 10 vertical layers. The RMS errors basically decreased with the increase in altitude from ~20 mm/km
at the bottom to ~5 mm/km at the top. The relative RMS values decreased from approximately 20% at
the bottom to over 90% at the top. The Tomo-III again outperformed the other 2 schemes at various
vertical layers.
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Figure 6. Maps of the RMS error of the wet refractivity differences between ERA5 and (a) Tomo-I,
(b) Tomo-II, and (c) Tomo-III over the study area. Maps of (d–f) are the RMS differences between
Tomo-I and Tomo-II, Tomo-I and Tomo-III, and Tomo-II and Tomo-III, respectively. The purple triangles
represent the GPS sites used in tomography.
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Figure 7. Changes of the (a) RMS error and (b) relative RMS of the wet refractivity differences between
ERA5 and tomography at different vertical layers.

4. Conclusion and Outlook

The water vapor within each voxel is assumed to have homogeneous distribution in the
tomographic modeling, which is unreasonable for cases with coarse voxel discretization and highly
variable water vapor changes in the space. The parameterization of voxels can reduce the effects of
discretization. In this study, we presented an improved parameterized algorithm for tropospheric
tomography and validated its superiority in several tests. In the improved algorithm, the wet refractivity
of a generic point is expressed via vertical exponential interpolation and horizontal IDW interpolation
by using the eight refractivity values at the voxel nodes in which the point is located. The parameters
involved in exponential and IDW interpolation are dynamically estimated for each tomography by
using the wet refractivity field of the last process. In addition, an optimal expression is derived to
discretize the vertical layers of the tomographic model, considering the quasi-exponential behavior of
the wet refractivity profile. Various tomographic tests were carried out using SWD measurements
estimated from 124 GPS sites of Hunan, China, over the whole month of June of 2018 to examine
the performance of the improved parameterized method. Tomographic tests using the traditional
nonparametric model and parameterized model with trilinear interpolation were also performed for a
straightforward comparison with the improved model.

The tomographic water vapor results were fully evaluated with independent datasets derived
from GPS, radiosonde, and ERA5 reanalysis. All assessments demonstrated the better performance
of the improved model over the nonparametric model and the trilinear parameterized model. In the
assessment by GPS-inferred SWD measurements, the improved model outperformed the traditional
model and the trilinear parameterized model by 54% and 10%, respectively. In the evaluation of the
wet refractivity profiles by radiosonde, the improved model yielded an RMS error of 7.00 mm/km
with respect to 10.17 and 7.81 mm/km for the traditional model and the trilinear parameterized model,
respectively. The RMS error vertically decreases from ~10 mm/km at the lowest layers (0–1 km) to
~3 mm/km at the uppermost layers (9–11 km). The relative RMS values increase from 8% (from the
bottom) to 443%. The improved model achieved an optimal consistency with ERA5 reanalysis data
with an overall RMS error of 8.94 mm/km. The RMS errors of the refractivity differences between ERA5
and the improved model vary from 6.0 mm/km to 11.0 mm/km throughout the study area. In the
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vertical profiles, the relative RMS increases from ~20% at the bottom to ~90% at the altitude of 9 km.
Both assessments of the vertical profiles by radiosonde and ERA5 reanalysis reveal the difficulty of
tomography in the reconstructing wet refractivity of altitudes above 8 km because the relative RMS
may reach up to 1000% in the uppermost layer.

The high-quality water vapor fields retrieved by the tomography have many application
potentials (e.g., atmospheric research, rainfall monitoring and forecasting, and GNSS positioning).
In our study, the improved voxel parameterization methods have been developed to refine the spatial
modeling. Future work will focus on the parameterized tomographic modeling with high temporal
resolution (e.g., 5 min). The improvement in the standard and precise point positioning brought by
the tomographic SWDs will be examined. The assimilation of the tomographic refractivity fields into a
numerical prediction model to enhance the capability of precipitation forecasting should be considered
in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

ECMWF European Centre for Medium-Range Weather Forecasts
ERA5 ECMWF ReAnalysis 5
GNSS Global Navigation Satellite System
GPS Global Positioning System
GMF Global Mapping Function
IDW Inverse Distance Weighted
IGRA Integrated Global Radiosonde Archive
MART Multiplicative Algebraic Reconstruction Technique
NWP Numerical Prediction Model
NCEP National Centers for Environmental Prediction
NCEP FNL NCEP Final
PPP Precise Point Positioning
RMS Root Mean Square
SWD Slant Wet Delay
ZHD Zenith Hydrostatic Delay
ZTD Zenith Tropospheric Delay
ZWD Zenith Wet Delay
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