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Abstract: Soil moisture plays a vital role for the understanding of hydrological, meteorological,
and climatological land surface processes. To meet the need of real time global soil moisture datasets,
a Soil Moisture Operational Product System (SMOPS) has been developed at National Oceanic and
Atmospheric Administration to produce a one-stop shop for soil moisture observations from all
available satellite sensors. What makes the SMOPS unique is its near real time global blended soil
moisture product. Since the first version SMOPS publicly released in 2010, the SMOPS has been
updated twice based on the users’ feedbacks through improving retrieval algorithms and including
observations from new satellite sensors. The version 3.0 SMOPS has been operationally released since
2017. Significant differences in climatological averages lead to remarkable distinctions in data quality
between the newest and the older versions of SMOPS blended soil moisture products. This study
reveals that the SMOPS version 3.0 has overwhelming advantages of reduced data uncertainties and
increased correlations with respect to the quality controlled in situ measurements. The new version
SMOPS also presents more robust agreements with the European Space Agency’s Climate Change
Initiative (ESA_CCI) soil moisture datasets. With the higher accuracy, the blended data product from
the new version SMOPS is expected to benefit the hydrological, meteorological, and climatological
researches, as well as numerical weather, climate, and water prediction operations.
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1. Introductions

Soil moisture is one of the most important factors to impact land-atmosphere interactions through
controlling water and energy fluxes [1]. Therefore, it is a significant variable used in various weather,
climate, and hydrology models. Ground stations may provide good quality in situ soil moisture
measurements, but they are constrained by insufficient coverage at large scales [2]. Microwave satellite
remote sensing has opened a new era for achieving spatially and temporally continuous soil moisture
observations since the 1970s [3–7].

The microwave emission is primarily affected by the soil dielectric constant that links soil emissivity
and soil moisture [8,9]. This theory offers the opportunity to retrieve soil moisture in a relatively
direct manner through X-band (8.0–12.0 GHZ), C-band (4.0–8.0 GHZ), and L-band (1.0–2.0 GHZ)
measurements. Specifically, the passive microwave remote sensing technique uses a radiometer
to receive the land surface emission that is affected by the emissivity and physical temperature of
the Earth. Yet, active microwave radars sense the land surface backscatter through transmitting
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an electromagnetic pulse. Based on the solid radiation transfer physics, a variety of microwave soil
moisture data products have been produced in the past couple decades [1,10–13].

Considering that the individual retrievals have different data quality, archiving file formats and
spatial resolutions, as well as a user request from the National Weather Service (NWS)-National
Centers for Environmental Predictions (NCEP) of National Oceanic and Atmospheric Administration
(NOAA), a Soil Moisture Operational Product System (SMOPS) has been developed at NOAA′s
National Environmental Satellite, Data, and Information Service (NESDIS) to produce a one-stop
shop for all soil moisture products from the available soil moisture capable microwave satellite
sensors [4–6,14,15]. The SMOPS blended soil moisture data, including 6-h (00Z, 06Z, 12Z, and 18Z) and
daily data files, have been operationally available to users since 2010 [15]. The SMOPS blended product
is unique in that it provides global spatial coverage of soil moisture in near real time [14], which makes
it useful to improve drought monitoring capability [16] and enhance numerical weather forecast
accuracy [17]. With benefits of assimilating the SMOPS blended observations, land surface model,
which is an important component of hydrologic, atmospheric, and climate models, shows remarkable
improvements in comparison with the individual soil moisture data assimilations [14,18].

The SMOPS has been updated for soil moisture observations from new satellite sensors and
retirement of older satellite platforms. The newest version 3.0 SMOPS takes advantage of four advances
in soil moisture data product generation. The first advance was the passive microwave remote sensing
approach that has been developed with the ground-, airborne-, and spaceborne-based experimental
heritage [1]. The prominent feature of new generation microwave satellites is a larger antenna
reflector for passive radiometers (Table 1), which allows achieving finer spatial resolution and higher
coverage on the ground brightness temperature [19]. To overcome C-band sensor weaknesses including
shallower penetration depth and higher attenuation in the presence of vegetation, L-band microwave
radiometers on Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites
are specifically designed to sense soil moisture [1,12]. In addition, radio-frequency interference (RFI) in
the C-band and L-band context has been brought to the forefront. The Advanced Microwave Scanning
Radiometer-2 (AMSR-2) onboard the Global Change Observation Mission 1st-Water (GCOM-W) satellite
has an additional 7.3 GHZ channel to detect and mitigate the RFI impact [19]. Similarly, RFI probability
and characterization were developed to detect, localize, mitigate, and monitor the impacts on SMOS
and SMAP measurements [20,21].

Table 1. Satellite sensors of which observations are combined into the daily soil moisture operational
product system (SMOPS) blended soil moisture data products.

Sensor IFOV (km) Band Swath Altitude Antenna
Size

SMOPS
Version Reference

AMSR-E 74 × 43 6.9 GHZ ~1445 km ~705 km 1.6 m 1.0 [22]
WindSat 39 × 71 6.8 GHZ ~1025 km ~830 km 1.8 m 1.0 [11]
ASCATA 25–35 5.3 GHz ~550 km ~817 km — * 1.0–3.0 [13]
ASCATB 25–35 5.3 GHz ~550 km ~817 km — * 2.0–3.0 [13]
AMSR-2 62 × 35 6.925 GHz ~1450 km ~700 km 2.0 m 2.0–3.0 [19]
SMOS ~45 1.4 GHz ~ 900 km ~765 km 4.0 m ** 2.0–3.0 [12]
SMAP 39 × 47 1.41 GHz ~1000 km ~685 km 6.0 m 3.0 [1]

Superscripts * and ** indicate scatterometer with six antennas, and antenna arm length of interferometry, respectively.
The acronym IFOV indicates Instantaneous Field of View.

The second advance benefited from the Advanced Scatterometer (ASCAT), the operational
Meteorological Operation (MetOp) satellite system of European Organization for the Exploitation
of Meteorological Satellites (EUMETSAT), offers reliable and continuous long-term soil moisture
datasets [13]. The MetOp-A, -B, and -C were launched in October 2006, September 2012, and November
2018, respectively. Given the 5.3 GHz frequency, ASCAT sensors are able to track soil moisture changes
with active measurements. The three antennas make ASCAT backscatter measurements at two different
incidence angles, which can correct vegetation effects and in turn improve soil moisture retrieval [13].
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Based on the long-term active microwave satellite heritage, calibrations of backscatter measurements
have been well conducted to make ASCAT more suitable to measure soil moisture [23,24].

The third advance was the availability of more reliable ancillary data sets used in the passive
microwave soil moisture retrieval (PSCR) algorithm. The brightness temperature from a single
microwave channel is converted to emissivity, which is further corrected for vegetation and
surface roughness effect [6,25]. The vegetation optical depth (τ) highly relies on vegetation water
content (ω) that is traditionally estimated using static Advanced Very High Resolution Radiometer
(AVHRR)-Normalized Difference Vegetation Index (NDVI). However, the static NDVI lacks the ability
to present a near real time land surface condition and vegetation status [26,27]. The real time Suomi
National Polar-orbiting Partnership (S-NPP) vegetation index maps have thus been used in the new
version SMOPS to replace the AVHRR-NDVI multiyear climatologies [6]. The regression parameter
(b) in the linear relationship between τ and ω is associated with land cover types. In the current
PSCR implementation, the b value is simply defined as a universal constant across different land cover
types [25]. The development of S-NPP global land cover map using support vector machines [17]
offers a great opportunity to capture more accurate surface type information for the PSCR [6].

The fourth advance was the higher quality soil moisture climatology of the Global Land Data
Assimilation System (GLDAS). Individual soil moisture retrievals from different sensors have their
own climatology. Therefore, they were harmonized to GLDAS soil moisture climatology using the
cumulative distribution function (CDF)-matching method [28] (Reichle and Koster, 2004). Regardless of
the distribution shapes, the CDF matching approach corrects all quantile-dependent biases, and thus
the quality of GLDAS soil moisture simulations have great influences on SMOPS performance [29].
With suffering against forcing data quality and static variable maps such as vegetation index and
surface albedo [26], previous soil moisture simulations from GLDAS present a relative drier pattern.
Consequently, older version SMOPS blended soil moisture observations tend to underestimate soil
moisture values correspondingly (Figure 1), although their global wetness and dryness distributions
are reasonable [5]. With observation-based downward radiation and precipitation forcing data and the
optimized analyses from atmospheric data assimilation systems, the GLDAS currently incorporates
several satellite hydrological observations including leaf area index, soil moisture, snow cover, and snow
water equivalent to archive the best available long-term soil moisture simulations [30].

With efforts over more than a decade, three version SMOPS data products have been generated at
NOAA-NESDIS. The new generation SMOPS is expected to archive a more accurate daily blended soil
moisture for the users. This study thus aims at providing the state-of-the-art of the newest version daily
SMOPS blended soil moisture data product and investigating the primary differences between the
newest version and the older versions. Results of this study will provide a foundation for the ongoing
SMOPS development and comprehensively reprocessing the SMOPS soil moisture data product.
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Figure 1. Average soil moisture (in m3/m3 unit) for (a) SMOPS version 1.0 over the 1 June 2007–3 
November 2011 period, (b) SMOPS version 2.0 over the 16 November 2011–20 September 2016 period, 
(c) SMOPS version 3.0 over the 1 April 2015–31 December 2019 period, as well as (d) global domain-
averaged frequency probability as a function of average soil moisture for the three version SMOPS 
blended soil moisture data products during the corresponding product time periods. 

With efforts over more than a decade, three version SMOPS data products have been generated 
at NOAA-NESDIS. The new generation SMOPS is expected to archive a more accurate daily blended 
soil moisture for the users. This study thus aims at providing the state-of-the-art of the newest version 
daily SMOPS blended soil moisture data product and investigating the primary differences between 
the newest version and the older versions. Results of this study will provide a foundation for the 
ongoing SMOPS development and comprehensively reprocessing the SMOPS soil moisture data 
product. 

2. Datasets and Methods 
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Research (STAR) and operated at NOAA-NESDIS Office of Satellite and Product Operations (OSPO). 
To increase the temporal and spatial coverage of soil moisture product for NOAA and other 
operational users, SMOPS also provides a blended data layer that combines individual soil moisture 
retrievals from each of the available satellite sensors [4–6,14,15]. SMOPS has been operationally 
running at OSPO since 2010. In the first version, soil moisture observations from WindSat, ASCAT 
onboard the MetOp-A satellite, and AMSR-E on the Earth Observation Satellite (EOS) Aqua operated 
by the National Aeronautics and Space Administration (NASA) were used to produce the blended 
datasets (Table 1). Compared to version 1.0, SMOPS was improved in version 2.0 in the following 
ways: (1) With the SMOS product officially available, SMOPS started to merge SMOS soil moisture 
retrievals in 2010; (2) soil moisture observations from the ASCAT sensor onboard the MetOp-B 

Figure 1. Average soil moisture (in m3/m3 unit) for (a) SMOPS version 1.0 over the
1 June 2007–3 November 2011 period, (b) SMOPS version 2.0 over the 16 November 2011–20 September
2016 period, (c) SMOPS version 3.0 over the 1 April 2015–31 December 2019 period, as well as (d) global
domain-averaged frequency probability as a function of average soil moisture for the three version
SMOPS blended soil moisture data products during the corresponding product time periods.

2. Datasets and Methods

2.1. SMOPS

The SMOPS was developed by the NOAA-NESDIS Center for Satellite Applications and Research
(STAR) and operated at NOAA-NESDIS Office of Satellite and Product Operations (OSPO). To increase
the temporal and spatial coverage of soil moisture product for NOAA and other operational users,
SMOPS also provides a blended data layer that combines individual soil moisture retrievals from each
of the available satellite sensors [4–6,14,15]. SMOPS has been operationally running at OSPO since 2010.
In the first version, soil moisture observations from WindSat, ASCAT onboard the MetOp-A satellite,
and AMSR-E on the Earth Observation Satellite (EOS) Aqua operated by the National Aeronautics
and Space Administration (NASA) were used to produce the blended datasets (Table 1). Compared to
version 1.0, SMOPS was improved in version 2.0 in the following ways: (1) With the SMOS product
officially available, SMOPS started to merge SMOS soil moisture retrievals in 2010; (2) soil moisture
observations from the ASCAT sensor onboard the MetOp-B satellite was ingested in the system;
(3) WindSat soil moisture was excluded and replaced by the AMSR-2 in the SMOPS (Table 1).

The new generation (version 3.0) of SMOPS was developed in 2016 and officially released in 2017
with merging all available individual satellite soil moisture retrievals including ASCATA, ASCATB,
AMSR-2, the SMOS, and SMAP (Table 1). The SMOPS produced a six-hourly product with 3-h latency
and a daily product with 6-h latency for operational uses [15]. Considering that SMAP and SMOS
official products are not meeting the latency requirements (2–6 h generally) for the operational users,
SMOPS version 3.0 retrieves near real time (NRT) SMAP and SMOS soil moisture data products
were used to reduce the time latency using the NRT Level-1 brightness temperature observations [6].
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Figure 2 shows the process flow of producing the daily SMOPS blended soil moisture data product.
SMOPS version 3.0 generates two sets of daily blended data including NRT and archived global
gridded products. The NRT daily SMOPS was operationally generated at 00:00 UTC everyday with
merging all soil moisture retrievals acquired during the past 24 h, while the archived daily SMOPS has
two-day latency. When the SMOPS retrieval mode is turned on, the ancillary data will be used in the
newest version SMOPS soil moisture retrieval algorithm, which include the surface temperature data
from the operational Global Forecast System (GFS) and the land cover and weekly NDVI maps from
S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) observations [6]. The individual soil moisture
retrievals from different multiple satellite sensors have their own spatial resolutions, data qualities,
and achieving file formats. To generate a blended soil moisture product, the available observations
from those satellite platforms were extracted from their original archiving files, regridded to SMOPS
0.25◦ lat/lon grids, and bias corrected to GLDAS-Noah version 2.0 soil moisture climatology for 0–10 cm
soil layer [30] using the CDF-matching method [28]. For each of the version upgrades, CDF climatology
was updated with the newest available GLDAS data set. All global retrievals acquired within the
previous 24-h windows were composited for the daily blended product and then combined into one
value for each grid over the global domain using equal weights [5,14,15]. In this paper, the daily
SMOPS blended soil moisture data products version 1.0 during the 1 June 2007–3 November 2011
period, version 2.0 during the 16 November 2010–20 September 2016 period, and version 3.0 during
the 1 April 2015–31 December 2019 period were employed with quality control using the snow and
frozen ground flags, which are based on land surface temperature simulations from the Global Forecast
System (GFS).
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2.2. SCAN

The Soil Climate Analysis Network (SCAN) of United States Department of Agriculture is
designed to provide in situ soil climate measurements to support natural resources assessments. It is
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composed of over 200 stations with focusing on agricultural areas of the US [31]. Hourly soil moisture
observations are automatically recorded with device measuring the soil dielectric constant for the limits
of the sensors [31,32]. In this paper, the SCAN measurements were reprocessed to match the daily
temporal resolution of SMOPS. The observations from each SCAN site were quality controlled through
detecting problematic data sets. The quality control strategies specifically include: (1) Soil moisture
measurements outside of the physically possible range were excluded [32]; (2) data under frozen
conditions on the basis of SCAN soil temperature measurements were excluded [27,32]; (3) SCAN
sites providing fewer than 500-day of observations were also excluded. There are a total of 128,
162, and 174 sites that had valid data covering SMOPS versions 1.0, 2.0, and 3.0 time periods in the
contiguous United States (CONUS), respectively.

2.3. ESA_CCI Soil Moisture

In support of climate research, the European Space Agency’s Climate Change Initiative (ESA_CCI)
soil moisture data products were developed to bridge the short-term gap of individual satellite
missions [7]. After bias corrected both active and passive observations to GLDAS climatology,
the ESA_CCI merged them to generate the daily combined soil moisture datasets with a 0.25◦ spatial
resolution [7]. The ESA_CCI soil moisture version 4.5 product was publicly released in December
2019 with a one-year latency [33]. Instead of merging the pre-merged active and passive products,
the combined product in version 4.5 combined all active and passive level-2 products directly. Given that
ESA_CCI provides consistent quality controlled soil moisture data records from 1978 to 2018, the daily
global SMOPS products were complementarily evaluated with the ESA_CCI version 4.5 combined
products over the 2007–2018 period.

2.4. Validation Strategy

The choice of performance metrics is primarily depending on the variable, nature,
and characteristics. Each metric is sensitive to some characteristics of environmental variables,
and it means a single metric is not able to well capture all the variable attributes [34]. The performances
of the SMOPS soil moisture data products were estimated by three widely used metrics [34] including
correlation coefficient (r), root mean square error (RMSE)/difference (RMSD), and unbiased RMSE
(ubRMSE). The correlation coefficient provides a measure of the dynamic trend agreements between in
situ and SMOPS soil moisture observations. The RMSE measures the differences between SMOPS and
SCAN soil moisture observations. Considering that satellite soil moisture measurements generally
have considerable mean and seasonal biases from stationary biases associated ancillary surface data
and retrieval algorithms [34,35], the ubRMSE is a widely used metric for unbiased estimations with
removing the climatological biases.

Given SCAN (MSCAN) and SMOPS (MSMOPS) soil moisture observations, the metrics are:

r =

∑N
i=1

(
Mi

SCAN −MSCAN
)
(Mi

SMOPS −MSMOPS)√∑N
i=1

(
Mi

SCAN −MSCAN
)2

√∑N
i=1

(
Mi

SMOPS −MSMOPS
)2

(1)

RMSE =

√√√ N∑
i=1

(
Mi

SCAN −Mi
SMOPS

)2
/(N − 1) (2)

ubRMSE =

√√√ N∑
i=1

((
Mi

SCAN −MSCAN
)
− (Mi

SMOPS −MSMOPS
)
)2/(N − 1) (3)
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Similarly, with respect to the ESA_CCI soil moisture product (MESACCI), the RMSD is given:

RMSD =

√√√ N∑
i=1

(
Mi

SCAN −Mi
ESACCI

)2
/(N − 1) (4)

where the sample size N for the SMOPS version 1.0 is 1616 since there are 1616 days from 1 June 2007
to 3 November 2011. Similarly, the sample sizes for SMOPS versions 2.0 and 3.0 are 2015 and
1735, respectively.

3. Results

3.1. Validations with SCAN Soil Moisture Measurements

The daily SMOPS blended soil moisture data products were validated with the quality controlled
SCAN soil moisture measurements. Figure 3a–c showed the SCAN measurements-based correlation
coefficients with the blue (red) indicating robust positive (negative) correlations. Given that C- and
X-band measurements are struggling in moderately and densely vegetated (greater than ~3 kg/m2)
areas, soil moisture retrievals from ASCATA, AMSR-E, and WindSat, which were used to generate
SMOPS version 1.0 blended data sets, may show modest behaviors in the eastern CONUS. ASCATA
retrievals were problematic over mountainous regions due to the fact that the backscattering coefficient
was sensitive to the surface roughness conditions [13]. As a result, SMOPS version 1.0 presented
a weak agreement with the quality controlled SCAN observations in the western mountain areas.
With benefits of replacing WindSat as AMSR-2 and combining SMOS retrievals, the second generation
SMOPS exhibited a relative stronger consistent with in situ observations, but the lower r values can be
still found in the western and eastern CONUS.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 16 
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Figure 3. With respect to the quality controlled soil climate analysis network (SCAN) observations,
correlation coefficients (r) for (a) SMOPS version 1.0 over the 1 June 2007–3 November 2011 period,
(b) SMOPS version 2.0 over the 16 November 2011–20 September 2016 period, (c) SMOPS version 3.0
over the 1 April 2015–31 December 2019 period, as well as (d) contiguous United States (CONUS)
domain-averaged frequency probability as a function of correlation coefficients for the three versions
SMOPS blended soil moisture data products during the corresponding product time periods with
curves shifting toward the right (left) indicating stronger (weaker) correlations.
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Compared to the older versions, the SMOPS version 3.0 was more successful to track the top
10 cm soil moisture changes with significantly raising the SCAN measurements-based correlations
over the CONUS domain. Long-term observations offered a good opportunity to improve ASCAT
retrieval algorithms and in turn making the newest ASCAT retrievals comparable to SMOS data [13,36].
In addition, the weights of L-band soil moisture observations in the new generation SMOPS were
significantly increased along with merging SMAP retrievals. Considering that both SMAP and SMOS
were sensitive to soil moisture through dense vegetation (~5 kg/m2), it was thus expected that the
newest version SMOPS exhibited a more robust agreement with SCAN measurements in the eastern
regions. Statistical results documented that the curve for version 3.0 apparently shifts toward the
right (Figure 3d), which indicated the relationships between the new generation SMOPS and SCAN
observations were much stronger than that for the older versions.

As suffering from the modest performance of ASCAT datasets in the mountain areas, the SMOPS
version 1.0 showed larger uncertainties in the western CONUS (Figure 4a). Due to the great weights of
C-band observations that yielded to dense vegetation, both old versions exhibited humble performances
in the eastern areas (Figure 4a,b). The negative situations were significantly improved by the new
generation SMOPS with presenting reasonable errors (RMSE ≤ 0.10 m3/m3) at 60.8% SCAN sites
(Figure 4c). Figure 4d showed statistical results for the three version SMOPS blended soil moisture
data products during the corresponding product periods. Curves shifting toward the left indicate
improvements in reducing the probability of larger RMSEs, whereas shifting toward the right indicate
degradations. Compared to the older versions, the SMOPS version 3.0 presented a significantly left
shifting tendency with raising probability of giving lower errors. With respect to the quality controlled
SCAN soil moisture measurements, the CONUS domain-averaged RMSE values for SMOPS versions
1.0, 2.0, and 3.0 were 0.124, 0.114, and 0.093 m3/m3 (33.3% reduction versus version 1.0 and 22.6%
reduction versus version 2.0), respectively.
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Figure 4. With respect to the quality controlled SCAN observations, root mean square errors (RMSEs in
m3/m3 unit) for (a) SMOPS version 1.0 over the 1 June 2007–3 November 2011 period, (b) SMOPS version
2.0 over the 16 November 2011–20 September 2016 period, (c) SMOPS version 3.0 over the 1 April 2015–31
December 2019 period, as well as (d) CONUS domain-averaged frequency probability as a function of
RMSE for the three versions SMOPS blended soil moisture data products during the corresponding
product time periods with curves shifting the toward left (right) indicating lower (greater) errors.
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The low correlations and high RMSEs of SMOPS version 1.0 were well mirrored in the ubRMSE
estimations (Figure 5a). Relatively, version 2.0 presented a reasonable performance in the southwestern
and southeastern areas, whereas showed larger unRMSE values in the mountainous and densely
vegetated regions (Figure 5b). Statistical results revealed that the SMOPS version 2.0 presented
reasonable performance (ubRMSE less than 0.05 m3/m3) at 15.4% stations, which was raised to 29.3%
(13.9% increase versus version 2.0) by the new generation SMOPS (Figure 5c). With respect to the quality
controlled SCAN observations, the CONUS domain-averaged frequency probability as a function
of ubRMSE for the three version SMOPS data products can be found in Figure 6d. Relative to the
older versions, the curve for the new generation SMOPS clearly shifted toward the left, which means
improvements in the decreasing probability of larger ubRMSE values. The CONUS domain-averaged
ubRMSEs for SMOPS versions 1.0, 2.0, and 3.0 were 0.105, 0.072, and 0.059 m3/m3 (78.0% reduction
versus version 1.0 and 22.0% reduction versus version 2.0), respectively.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 16 
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are significantly reduced in comparison with the older versions. Specifically, the statistical results 
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Figure 5. With respect to the quality controlled SCAN observations, unbiased root mean square errors
(ubRMSEs in m3/m3 unit) for (a) SMOPS version 1.0 over the 1 June 2007–3 November 2011 period,
(b) SMOPS version 2.0 over the 16 November 2011–20 September 2016 period, (c) SMOPS version 3.0
over the 1 April 2015–31 December 2019 period, as well as (d) CONUS domain-averaged frequency
probability as a function of RMSE for the three versions SMOPS blended soil moisture data products
during the corresponding product time periods with curves shifting toward the left (right) indicating
lower (greater) errors.
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Figure 6. With respect to the European Space Agency’s Climate Change Initiative (ESA_CCI)
observations, root mean square differences (RMSDs in m3/m3 unit) for (a) SMOPS version 1.0 over the 1
June 2007–3 November 2011 period, (b) SMOPS version 2.0 over the 16 November 2011–20 September
2016 period, (c) SMOPS version 3.0 over the 1 April 2015–31 December 2019 period, as well as (d) global
domain-averaged frequency probability as a function of RMSD for the three versions SMOPS blended
soil moisture data products during the corresponding product time periods with curves shifting toward
the left (right) indicating lower (greater) errors.

3.2. Evaluation with ESA_CCI Soil Moisture Product

The quality controlled SCAN measurements-based validations indicated that the newest version
SMOPS had better performance in comparison with the old versions. However, the SCAN sites are
limited not only in the CONUS but also from low density networks, and thus it is still unknown the
behaviors of SMOPS data products on the entire global terrestrial domain. These types of constrains can
be compensated for by comparing with a gridded soil moisture data product that have been widely used
in the communities. To a certain time period, ESA_CCI provides the historical soil moisture records [7].
It also provides a combined active and passive microwave product with combining various soil moisture
observations from single sensors. Instead of RMSE, the terminology RMSD is used here since the
ECA_CCI data product does not represent the real soil moisture “truth”. With respect to the ESA_CCI
data, Figure 6a–c showed the time series RMSDs for three version SMOPS soil moisture products.
Areas shading in blue color indicate smaller differences between SMOPS and ECV_CCI datasets,
whereas in red color indicate larger RMSD values. The SMOPS version 1.0 presented lower RMSD
values in the Arabian Peninsula, Sahara, China, and the southern Australia. Relatively, version 2.0
showed slight improvements in Australia and southern Africa over the first version. With benefits
of the new generation SMOPS, the RMSD values on the global domain are significantly reduced in
comparison with the older versions. Specifically, the statistical results documented that the SMOPS
versions 1.0, 2.0, and 3.0 exhibited reasonable differences (RMSD less than 0.06 m3/m3) in 30.8%, 35.0%,
and 51.6% areas over the global terrestrial domain. As a result, the curve for the SMOPS version 3.0 in
Figure 6d clearly shifted toward the left in comparison with the versions 1.0 and 2.0, which means
improvements in decreasing the probability of larger ECV_CCI product-based RMSD values.
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3.3. Inter-Comparison with ECV_CCI Data

To make effective use of all available microwave-based datasets, methodologies must be
developed to merge and harmonize the available soil moisture data products to provide daily
global estimates. One such dataset, the ECV_CCI data products benefit from its long-term historical
soil moisture records during a certain period [7]. With the strong support of CCI program, the
ESA has officially released the multi-decadal, combined, global satellite soil moisture datasets since
2012 [7,33]. An additional dataset, the SMOPS provides NRT daily global blended soil moisture
observations. Compared to ESA_CCI, the new generation SMOPS shows lower uncertainties in
the western and eastern CONUS, whereas presents negligible differences in the central great plain
(Figure 7). The CONUS domain-averaged RMSEs for SMOPS version 3.0 and ESA_CCI version 4.5 are
0.093 and 0.089 m3/m3, respectively. This is an unfair comparison due to the NRT nature of SMOPS,
but the SMOPS version 3.0 is comparable to the ESA_CCI soil moisture data (Figure 7) with respect to
the quality controlled SCAN observations.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 16 
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4. Discussion

With respect to the quality controlled in situ observations, results in Section 3 clearly indicate
that the SMOPS version 3.0 presents more robust correlations and lower uncertainties (Figures 3–5).
The newest version SMOPS is also more successful to reduce the ECV_CCI soil moisture product-based
RMSD values (Figure 6). These positive evaluation results allow the new generation SMOPS to better
meet the users’ requirements. However, considerations relevant to the further development of the
SMOPS product in the near future are needed to produce much better satellite soil moisture datasets
for users.

4.1. Advantages of NRT Satellite Soil Moisture

Land surface model (LSM) is an important component of current weather forecast models.
However, LSM simulations are typically prone to the forcing data uncertainties and errors from the
lack of well understanding in model physics [5,14,37]. NOAA-NCEP provides regional and global
weather prediction services using the North American Mesoscale Model (NAM) and Global Forecast
System (GFS), respectively. Surface soil moisture is estimated in both NAM and GFS are based on LSM
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simulations, which could be erroneous and even contain large uncertainties and eventually resulting
in unreliable weather predictions [17,37]. These weather forecast models provide guess fields for the
full forecasts typically at 00:00, 06:00, 12:00, and 18:00 UTC cycles. With 6-h latency, the NRT daily
SMOPS can well meet soil moisture data needs of weather predictions within the 6-h cut-off time limit.
Specifically, the GFS soil moisture simulations with benefits of assimilating the daily SMOPS data have
better agreement with the in situ measurements. As a result, the GFS had a better capability to forecast
surface air temperature, surface humidity, precipitation, and 500 hPa height anomaly correlations [17].

4.2. ASCATC Soil Moisture

The MetOp-C was launched in November 2018. As the last mission of a series of three MetOp
satellites, soil moisture retrievals from the MetOp-C has been operationally produced since May 2019
and became available in January 2020. Thus, there are currently three ASCAT instruments (A, B, and C)
onboard MetOp satellites to operationally provide soil moisture observations. Considering that the
MetOp-A will be likely de-orbited in 2022, ASCATC observations will be combined in the SMOPS
blended soil moisture data product in the near future. With the planned integration, the ASCATC
will be quantitatively assessed to objectively assign its weight. With benefits of combining ASCATC
retrievals, the daily SMOPS blended soil moisture data will have a much higher spatial coverage
globally. The SMOPS that merges ASCATC operationally is expected to have a better performance in
the specific regions [36] where ASCAT generally performs better.

4.3. Long-Term Historical SMOPS Data Product

Long-term historical soil moisture records are fundamental for understanding of climatological
dynamics, changes, and tendencies in continental water, carbon, and energy cycles [7]. Given the
reasonable performances of the newest version SMOPS, reprocessing SMOPS datasets is expected to
improve the quality of older version data through using the latest retrieval and blending algorithms,
better soil moisture climatology, and real time ancillary information. As a result, the reprocessed
SMOPS product will offer a long-term reliable and continuous global soil moisture dataset for users
in the near future. Two advantages of this kind of long-term SMOPS product will benefit users.
The first advantage benefits from the long-term high quality consistent soil moisture records. It will
meet the requirements of the climate community and in turn is used to investigate soil moisture
climatological trends [38], understand soil moisture-precipitation feedbacks [39], identify the role
of soil moisture on climate change [40], explain impacts of soil moisture on global biogeochemical
cycles and ecology [41], and apply soil moisture in the context of hydrological and meteorological
studies [29,37,42]. The second advantage is from near real time updating soil moisture datasets with
short latency. The soil moisture status is an important indicator to monitor agricultural drought [16].
The near real time long-term SMOPS will allow better understanding of drought development through
assessing soil moisture deficits over the historical records [41]. In addition, climate models require
initial and boundary conditions to start model running [43]. These initial conditions are unreliable,
and thus spin-up through multiyear is needed to make climate models run stably [43,44]. In a specific
soil moisture data assimilation system, the climatological SMOPS may be used to spin up climate
models and the real time SMOPS will improve the future projections.

4.4. Weights of Individual SM Retrievals

In version 3.0, the SMOPS blended product is produced through merging all available individual
microwave satellite soil moisture retrievals with the relative importance of each quantity on
average [14,15]. This equal-weight approach subjectively assumes that high-and poor-quality individual
retrievals have equal weights. Objectively assigning weights for the individual soil moisture retrievals
are primarily limited by the lack of well understanding in errors of different microwave satellite
data products. Traditional validation activities are typically based on comparisons with in situ
observations [36]. The weights of individual retrievals cannot be directly determined by such
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comparisons, since the ground soil moisture measurements are from sparse networks and are not able
to provide global scale validations. Recent studies have reported that this challenge can be addressed
by the triple collocation technique [16,36]. In the near future, it is expected to further improve SMOPS
blended soil moisture accuracy through decreasing weight for low-quality individual soil moisture
retrieval and increasing high-quality retrieval weight in combination processing.

5. Conclusions

The SMOPS version 3.0 was developed in 2016 and officially released in 2017. Significant differences
in climatological averages between the latest and old versions result in remarkable distinctions in
data quality. In terms of validations with in situ measurements and ECV_CCI observations, the new
generation SMOPS archives are more stable and the higher accurate daily blended soil moisture
data product significantly reduced the uncertainties. Such a capability is a critical milestone in
developing the near real time satellite blended soil moisture product system. With the added data
reliability, the new generation SMOPS bended data product can benefit the hydrological, meteorological,
and climatological science and support decision-making process on climate change adaptation and
extreme events mitigation.
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