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Abstract: The surface anthropogenic heat island (SAHI) phenomenon is one of the most important
environmental concerns in urban areas. SAHIs play a significant role in quality of urban life. Hence,
the quantification of SAHI intensity (SAHII) is of great importance. The impervious surface cover
(ISC) can well reflect the degree and extent of anthropogenic activities in an area. Various actual ISC
(AISC) datasets are available for different regions of the world. However, the temporal and spatial
coverage of available and accessible AISC datasets is limited. This study was aimed to evaluate
the spectral indices efficiency to daytime SAHII (DSAHII) quantification. Consequently, 14 cities
including Budapest, Bucharest, Ciechanow, Hamburg, Lyon, Madrid, Porto, and Rome in Europe and
Dallas, Seattle, Minneapolis, Los Angeles, Chicago, and Phoenix in the USA, were selected. A set
of 91 Landsat 8 images, the Landsat provisional surface temperature product, the High Resolution
Imperviousness Layer (HRIL), and the National Land Cover Database (NLCD) imperviousness data
were used as the AISC datasets for the selected cities. The spectral index-based ISC (SIISC) and land
surface temperature (LST) were modelled from the Landsat 8 images. Then, a linear least square
model (LLSM) obtained from the LST-AISC feature space was applied to quantify the actual SAHII
of the selected cities. Finally, the SAHII of the selected cities was modelled based on the LST-SIISC
feature space-derived LLSM. Finally, the values of the coefficient of determination (R2) and the root
mean square error (RMSE) between the actual and modelled SAHII were calculated to evaluate and
compare the performance of different spectral indices in SAHII quantification. The performance
of the spectral indices used in the built LST-SIISC feature space for SAHII quantification differed.
The index-based built-up index (IBI) (R2 = 0.98, RMSE = 0.34 ◦C) and albedo (0.76, 1.39 ◦C) performed
the best and worst performance in SAHII quantification, respectively. Our results indicate that the
LST-SIISC feature space is very useful and effective for SAHII quantification. The advantages of
the spectral indices used in SAHII quantification include (1) synchronization with the recording
of thermal data, (2) simplicity, (3) low cost, (4) accessibility under different spatial and temporal
conditions, and (5) scalability.

Keywords: surface urban heat island (SUHI); impervious surface cover (ISC); spectral indices; Landsat
8; land surface temperature (LST)
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1. Introduction

The rapid and often uncontrolled growth of urbanization and built-up development over the
past years has caused a large number of environmental, climatic, and socio-economic problems at
local, regional, and global scales [1–4]. One of the most important environmental challenges in urban
areas is the increase in air and land surface temperature (LST) as a result of a lack of vegetation,
the widespread use of impervious surfaces, the increased thermal diffusivity of urban materials,
the low solar reflectance of urban materials, urban geometries that trap heat and slow wind speeds,
increased levels of air pollution, and increased energy use; these factors create surface urban heat
islands (SUHIs) [5–8].

SUHIs are one of the most common urban phenomena; in a SUHI the temperature of urban areas,
and city centers in particular, is higher than the temperature of the surrounding rural areas [9,10].
Several studies have investigated the impact of SUHIs on urban flora [11], climate [12], pollutant
concentrations [13], air quality [14,15], human health and heat-related deaths [16], global warming [17],
thermal comfort [18,19], energy consumption [20], and socioeconomic and environmental impacts [21];
thus, SUHIs play a large role in the quality of urban life [22,23]. Due to these negative effects and
considering that rapid population growth is expected in the near future, it will become increasingly
important to monitor, predict, and recognize SUHI patterns to improve the quality of urban life [24–27].

Many factors contribute to SUHI morphology and intensity in a city. These factors can be
divided into two main types of factors: (a) uncontrollable factors, such as wind speed, cloudiness,
humidity, season, and anti-cyclonic conditions and (b) controllable factors, such as geometry, structural
and biophysical characteristics of urban/non-urban areas, and anthropogenic activities and their
subsequent impacts, e.g., air pollution [28–33]. Based on the effect on the surface energy balance,
the factors contributing to SUHI formation in the city can be grouped into five main sets of factors:
(a) anthropogenic heat enhancers, (b) evaporation reducers, (c) heat storage enhancers, (d) net radiation
enhancers, and (e) convection reducers [31,34].

According to the above perspectives, the anthropogenic heat flux (AHF) in a city majorly
contributes to the increase in SUHI intensity (SUHII) [6,35,36]. AHF is released to human activity and
comes from many sources, including appliances, buildings, transportation, lighting, industrial and
manufacturing processes, and even people themselves, which convert energy into AHF [36–40].

Analyzing the contribution of AHF to urban temperature can help to reduce the uncertainties
in our quantitative and qualitative knowledge of the SUHII [35]. Additionally, due to excessive
population growth, urban area expansion, increased energy consumption, increasing human activities,
and increasing anthropogenic heat in major global cities, monitoring and recognizing surface
anthropogenic heat islands (SAHIs) are very important [6,37,38,41]. The effects of human activity
on air temperature, LST, and energy balance equilibrium and their spatial distribution in the urban
environment have been studied and modelled in various studies.

Hu, et al. [42] found that no AHF was generated by nonartificial surfaces; only some impervious
surface layers were involved in AHF, such as roads, residential structures (low-rise and high-rise
dwellings), industrial structures (factories), airports, commercial areas, and so on. Zhang, Balzter and
Wu [35] analyzed the spatial distribution of AHF across land cover types, impervious surface areas,
and vegetation coverages. It is apparent that the contribution of AHF is lower in suburban areas and
higher in high-density urban areas. The variation in AHF is influenced by urban expansion, land-cover
change, and increasing energy consumption. Chen and Hu [41] showed that the spatial distribution of
AHF results is generally centered on urban areas and gradually decreases towards suburbs. The spatial
pattern of the AHF results within urban areas corresponds well to the distribution of population
density, building density, and industrial districts. Wang, Hu, Chen and Yu [38] showed that high-value
AHF areas are mainly distributed at airports, railway stations, industrial areas, and commercial centers.
Previous studies have shown that AHF differs across different land covers and is highly correlated
with impervious surface cover (ISC) [38,41–47].
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Firozjaei, et al. [48] developed a physical approach based on a triple-source surface energy balance
(triple-SEB) to model LST due to AHF and SAHI intensity (SAHII). They showed that LST due to AHF
in Beijing, Tehran, Istanbul, Athens, Atlanta, and Los Angeles over the past three decades ranged from
0.72, 0.58, 0.64, 0.61, 0.55, and 2.02 to 2.76, 2.32, 1.19, 1.66, 1.73, and 2.99 ◦C, respectively. Additionally,
the SAHII value for these cities increased by 1.32, 0.95, 0.98, 0.95, 0.92, and 0.73 ◦C, respectively.
They showed a high spatial correlation between ISC and LST due to AHF. Single date Landsat 8 images
in each year were used to model LST due to AHF and SAHII variations over the past three decades.

Various studies have shown that the ISC can well reflect the degree and extent of human activity in
an area. However, the accurate extraction of ISC from satellite imagery is a major challenge. Different
actual ISC (AISC) datasets are available for different parts of the world. For example, the National Land
Cover Database (NLCD) dataset represents surface imperviousness information for the United States
of America (USA) for 1992, 2001, 2006, 2011, and 2016. The High Resolution Imperviousness Layer
(HRIL) database also contains information on European impervious surfaces for 2006, 2009, 2012,
and 2015. However, the temporal and spatial coverage of available and accessible AISC datasets are
limited. Therefore, it is necessary to use remote sensing (RS)-based indices and methods to extract ISC
information for different environmental applications.

In previous studies, various spectral indices and methods, such as the urban index (UI) [49,50],
the normalized difference bareness index (NDBaI) [50], the normalized difference built-up index
(NDBI) [51], the index-based built-up index (IBI) [52], the modified NDBI [53], the band ratio for
built-up area (BRBA) and the normalized built-up area index (NBAI) [54], the built-up index (BUI) [55],
the new built-up index (NBI) [56], the bare soil index (BI) [57], soil index (SI), normalized built-up and
bare soil index (NBBSI) [58], the built-up area extraction method (BAEM) [59], the enhanced built-up
and bareness index (EBBI) [60], and the automated built-up extraction index (ABEI) [61], have been
proposed for the extraction of built-up and impervious lands. The advantages of these indices include
(1) synchronization with the recording of thermal data, (2) simplicity, (3) low cost, (4) accessibility
under different spatial and temporal conditions, and (5) scalability [61]. Therefore, using these indices
can be useful for SAHI quantification.

The objective of this study was to evaluate the spectral indices efficiency to daytime SAHII
(DSAHII) quantification. The innovations and distinguishing features of the present study are (1)
SAHII modelling based on spectral indices and (2) evaluation of the DSAHII of some European and
American cities.

2. Study Area

To evaluate and compare the performance of different spectral indices through SAHI modelling,
14 test sites with different conditions were selected. The test sites were Budapest, Bucharest, Ciechanow,
Hamburg, Lyon, Madrid, Porto, and Rome in Europe and Minneapolis, Dallas, Phoenix, Los Angeles,
Chicago, and Seattle in the USA. The geographical locations of these cities are shown in Figure 1.

To select these cities, various criteria including (1) geographical conditions, (2) surface characteristics,
(3) climatic conditions, (4) varied physical size, and (5) population density were considered [61,62].
The characteristics of selected cities are summarized in Table 1.
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Table 1. Summary characteristics of selected cities in the USA and Europe.

Centre Point
Coordinate (Lon,

Lat-WGS84)
Country Area

(km2)
Mean Alt.

(m) Climate Population
(2020)

European cities

Rome 12.45, 41.85 Italy 631.7 50 Mediterranean >4,250,000

Madrid −3.70, 40.41 Spain 2332.3 650 Mediterranean
and semi-arid >6,670,000

Porto −8.60, 41.16 Portugal 481.4 80 Mediterranean >1,309,000

Lyon 4.83, 45.76 France 1143.6 175 Humid
subtropical >1,710,000

Ciechanow 20.60, 52.82 Poland 81.1 151 Humid
subtropical >44,000

Hamburg 10.02, 53.60 Germany 1097.5 10 Oceanic >1,795,000

Budapest 19.07, 47.59 Hungary 3664.3 120
Oceanic and

Humid
subtropical

>1,764,000

Bucharest 26.10, 44.42 Romania 1385.7 85 Humid
continental >1,815,000

American cities

Minneapolis −93.26, 44.97

United States

8719.6 253 Humid
continental >432,110

Fort Worth −96.95, 36.85 14,998.1 199 Humid
subtropical >875,000

Phoenix −112.09, 33.12 8543.8 331 Midlatitude
desert >1,632,000

Seattle −122.25, 45.47 11,497.5 52 Marine West
coast >3,406,000

Chicago −87.66, 41.86 12,685.1 182 Humid
continental >2,705,000

Los Angeles −118.22, 34.00 11,127.4 282 Mediterranean >4,000,000

3. Data and Methods

3.1. Data

A set of Landsat 8 satellite image data, MODIS products, and AISC datasets were used. Details on
the data used are shown in Table 2.

Landsat 8 images were used to model surface properties such as LST and various built-up
indices. According to previous studies, Landsat images are suitable data for modelling and monitoring
environmental conditions due to their spatial, temporal, and radiometric resolution [24,31]. The characteristics
of the Landsat 8 bands are given in Table 3.
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Table 2. Details of the data utilized in the study.

Landsat 8

Selected Cities Date Row Path Spatial Resolution Source

Rome

12 April 2015,

191 031

30 m for reflective
and 100 m for
thermal bands

United States Geological
Survey (USGS) website

14 May 2015,
30 May 2015,
1 July 2015,
17 July 2015

Madrid

2 April 2015,

197 028

20 May 2015,
21 June 2015,
7 July 2015,

23 July 2015,
25 September 2015

Porto

7 April 2015,

204 032

16 May 2015,
17 June 2015,
3 July 2015,

12 July 2015,
28 July 2015,

4 August 2015,
29 August 2015,

21 September 2015

Lyon

6 April 2015,

196 023

25 June 2015,
4 July 2015,

5 August 2015,
21 August 2015,
28 August 2015,

29 September 2015

Ciechanow

23 April 2015,

189 023
3 July 2015,

4 August 2015,
13 August 2015

Hamburg

15 April 2015,

201 34
24 April 2015,
11 June 2015,
4 July 2015,

21 August 2015

Budapest

16 April 2015,

188 027
10 June 2015,
12 July 2015,

13 August 2015,
29 August 2015

Bucharest

13 April 2015,

182 029

15 May 2015,
7 June 2015,
9 July 2015,

25 July 2015,
3 August 2015,

26 August 2015,
4 September 2015

Minneapolis

19 May 2016,

027 029

20 June 2016,
6 July 2016,

22 July 2016,
23 August 2016,

8 September 2016
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Table 2. Cont.

Landsat 8

Selected Cities Date Row Path Spatial Resolution Source

Dallas

03 May 2016,

027 037
6 July 2016,

22 July 2016,
7 August 2016,

8 September 2016

Phoenix

23 April 2016,

037 037

9 May 2016,
25 May 2016,
12 July 2016,
28 July 2016,

29 August 2016,
14 September 2016

Seattle

31 May 2016,

046 027

27 July 2016,
3 August 2016,

12 August 2016,
19 August 2016,

13 September 2016

Chicago

05 April 2016,

021 031

14 April 2016,
23 May 2016,
8 June 2016,
17 June 2016,
24 June 2016,

4 August 2016,
12 September 2016

Los Angeles

19 April 2016,

041 037

22 June 2016,
8 July 2016,

24 July 2016,
9 August 2016,

25 August 2016,
10 September

2016,
26 September 2016

MODIS products

MOD07 Landsat 8
overpass dates

- 5000 m Atmosphere Archive and
Distribution System (AADS)

websiteMOD11A1 1000 m

AISC dataset

NLCD
imperviousness 2016 - 30 m

USGS at the
https://www.mrlc.gov/data

website

HRLI 2015 20 m

Copernicus Global Land
Service (CGLS) at the

https://land.copernicus.eu/
website

https://www.mrlc.gov/data
https://land.copernicus.eu/
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Table 3. Spectral and spatial characteristics of Landsat 8 bands.

Band Numbers Band Names Sensor
Effective

Wavelength
(Micrometer)

Spatial Resolution
(Meter)

B1 Coastal aerosol

OLI

0.443

30

B2 Blue 0.4826
B3 Green 0.5613
B4 Red 0.6546
B5 Near Infrared (NIR) 0.8646
B6 SWIR 1 1.609
B7 SWIR 2 2.201
B8 Panchromatic 0.5917 15
B9 Cirrus 1.373 30

B10 Thermal Infrared 1
TIRS

10.9 100 (resampled to 30)
B11 Thermal Infrared 2 12.0

The Landsat Provisional Surface Temperature product with 30 m spatial resolution was used
for USA cities. This product is generated from the Landsat Collection 1 Level-1 thermal infrared
bands, Top of Atmosphere (TOA) Reflectance, Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global Emissivity Database (GED) data, ASTER Normalized Difference Vegetation
Index (NDVI) data, and atmospheric profiles of geopotential height, specific humidity, and air
temperature were extracted from reanalysis data (https://www.usgs.gov/land-resources/nli/landsat/
landsat-surface-temperature).

MOD11A1 and MOD07 products were also used to calculate and evaluate LST based on Landsat
8 images for European cities. The HRLI and NCLD datasets were used as the AISC for European and
American cities, respectively.

3.2. Methods

In this study, a conceptual model with four main sections was designed (Figure 2). First, the Landsat
8 images were preprocessed. Second, the spectral index-based ISC (SIISC) and LST were modelled
based on different built-up indices (as described in Section 3.2.2), tasseled cap transformation (TCT),
the biophysical composition index (BCI), and a Single-channel algorithm, from the Landsat 8 images.
Additionally, a linear least squares model (LLSM) was obtained from the LST-AISC feature space
was applied to quantify the actual DSAHII of the selected cities. In the third step, the DSAHII of
selected cities was modelled based on the LST-SIISC feature space-derived LLSM. Finally, the value of
the coefficient of determination (R2) and the root mean square error (RMSE) between the actual and
modelled DSAHII were calculated to evaluate and compare the performance of the different spectral
indices in DSAHII quantification.

3.2.1. Preprocessing

To model surface characteristics using Landsat imagery, the digital numbers of the reflective and
thermal bands must be converted to top-of-atmosphere radiance and top-of-atmosphere brightness
temperature (BT) based on the calibration data provided via metadata [63,64]. Then, the Fast Line-
of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model was applied to perform
atmospheric correction on the Landsat reflective bands [65].

https://www.usgs.gov/land-resources/nli/landsat/landsat-surface-temperature
https://www.usgs.gov/land-resources/nli/landsat/landsat-surface-temperature
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3.2.2. Modelling LST and SIISC

Single-channel algorithm, TCT, BCI, and built-up indices were used to model LST and SIISC.
The single-channel algorithm method presented by [66] was used to calculate LST. The Landsat 8
band 11 has a bias that causes an error in calculating LST [67,68]. Hence, in this method, the top-
of-atmosphere BTs obtained from band 10 of Landsat 8 were used to LST calculation based on
single-channel algorithm. This algorithm can be presented as:

LST = γ

( 1
LSE

(ψ1Lsen +ψ2) +ψ3

)
+ δ (1)

where Lsen is the quantity of recorded spectral radiance in the sensor for the thermal band, LSE is
the amount of land surface emissivity coefficient related to the wavelength of the thermal band used,
γ and δ are parameters related to the Planck function and ψ1, ψ1, and ψ2 are atmospheric functions.

MOD07 was used to calculate the amount of water vapor in the atmosphere. The NDVI threshold
method was also used to calculate the pixel-scale LSE.

MOD11A1 was used to evaluate the accuracy of the LST obtained from the Landsat 8 images.
First, the spatial resolution of the Landsat 8 image-derived LST was up-sampled to 1000 m. Then,
the R2 and RMSE were calculated between the up-sampled LST values of the Landsat 8 images and the
LST values obtained from the MOD11A1 product for each city. Additionally, the Landsat Provisional
Surface Temperature product with 30 m spatial resolution was used for USA cities.

TCT is a method based on the linear combination of different spectral bands to extract information
about the main surface characteristics. Equations (2)–(4) were, respectively, used to extract surface
brightness, greenness, and wetness information based on Landsat 8 image bands [69].

Brightness = 0.3029B2 + 0.2786B3 + 0.4733B4 + 0.5599B5 + 0.508B6 + 0.1872B7 (2)

Greenness = −0.2941B2− 0.243B3− 0.5424B4 + 0.7276B5 + 0.0713B6− 0.1608B7 (3)

Wetness = 0.1511B2 + 0.1973B3 + 0.3283B4 + 0.3407B5− 0.7117B6− 0.4559B7 (4)

where Bi indicates the surface reflectance in the i band of the Operational Land Imager (OLI) sensor.
Deng and Wu [70] showed that the combination of brightness, greenness, and wetness information

obtained from the TCT method based on BCI indicates the ISC. For this purpose, in the first step,
the standardized brightness, greenness, and wetness maps were calculated using Equations (5)–(7).
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SBrightness =
Brightness− Brightnessmin

Brightnessmax − Brightnessmin
(5)

SGreenness =
Greenness−Greennessmin

Greennessmax −Greennessmin
(6)

SWetness =
Wetness−Wetnessmin

Wetnessmax −Wetnessmin
(7)

The subscripts “max” and “min” represent the highest and lowest values of each of the brightness,
greenness, and wetness maps, respectively. In the second step, the BCI was calculated based on
Equation (8).

BCI =
(SBrightness+SWetness)

2 − SGreenness
(SBrightness+SWetness)

2 + SGreenness
(8)

In previous studies, various spectral indices have been developed for the extraction of built-up
lands. A number of these indices were used in this study (Table 4). Information from two or more
spectral bands and different spectral indices was combined to calculate these indices.

Table 4. Spectral indices used in this study.

Spectral Index Equation

NDBI B6−B5
B6+B5

BI (B6+B4)−(B5+B2)
(B6+B4)+(B5+B2)

UI B7−B5
B7+B5

IBI
((

2B6
B6+B5

)
−

(
B5

B5+B4

)
+
(

B3
B3+B6

))
/
((

2B6
B6+B5

)
+
(

B5
B5+B4

)
−

(
B3

B3+B6

))
BU NDBI−NDVI

BAEM NDBI−NDVI−MNDWI
Albedo 0.2266B1+ 0.2320B2− 0.2138B3− 0.1803B4+ 0.1103B5− 0.0278B6+ 0.0099B7
ABEI 0.312B1 + 0.513B2− 0.086B3− 0.441B4 + 0.052B5− 0.198B6 + 0.278B7

SI (B6 + B4) − (B5 + B2)/(B6 + B4) + (B5 + B2)
NBBSI (SI+IBI)

2

Equations (9) and (10) were used to calculate the normalized difference vegetation index (NDVI)
and the modified normalized difference water index (MNDWI).

NDVI =
B5− B4
B5 + B4

(9)

MNDWI =
B6− B5
B6 + B5

(10)

In this study, the mean and standard deviation (SD) values for the surface characteristics obtained
from the different spectral indices were calculated for the different cities and compared with each other.

3.2.3. Quantifying DSAHII

Human activities such as the conversion of natural surfaces to urban surfaces are the most
important factor affecting the change in SAHI. The conversion of natural surfaces into impervious
urban lands increases the value of LST. ISC datasets such as HRLI and NLCD can be used to represent
urban lands and human settlement regions [71,72]. In this study, HRLI and NLCD datasets were
used to build the LST-AISC feature space (Figure 3). The fitted linear regression function slope, i.e.,
the increment of LST versus AISC, was used to quantify the DSAHII. The value of the slope indicates
how much the LST value increases with increasing AISC. A higher slope value indicates a higher value
of DSAHII. The process for DSAHII quantification is composed of the following four steps: (a) rescale
the AISC values to between 0 and 1; (b) classify pixels based on the standardized AISC values per 100
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classes with a class length of 0.01; (c) calculate the mean values of LST and rescale the AISC in each
group of pixels to reduce the uncertainty caused by the heterogeneity of urban surfaces in modelling;
(d) adapt an LLSM between the mean values of the LST and the rescaled AISC, in which the slope
value of the fitted function indicates the value of the DSAHII. Additionally, the R2 value indicates the
accuracy of the LLSM in DSAHII modelling.
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Figure 3. Conceptual diagram of modelling the daytime surface anthropogenic heat island intensity
(DSAHII) based on the land surface temperature (LST)-actual impervious surface cover (AISC) feature
space. The LSTu is the urban LST, representing the LST in the urban area where the rescaled AISC is 1
(AISC is 100%), and LSTr is the rural LST, representing the LST in the rural area where the rescaled
AISC is 0 (AISC is 0%).

In this study, the DSAHII values of different cities were calculated and compared based on the
LLSM obtained from the LST-AISC feature space.

3.2.4. Evaluating the Efficiency of SIISC for DSAHII Quantification

To evaluate and compare the performance of the SIISC in DSAHII quantification, the SIISC was
used instead of AISC in the conceptual model presented in Figure 3. The SIISC parameters include
UI, BI, BAEM, BU, NBBSI, SI, IBI, albedo, NDBI, brightness, ABEI, and BCI. A DSAHII value was
modelled for each city based on each spectral index. To evaluate the performance of the spectral indices
in DSAHII quantification, the R2 and RMSE between the modelled DSAHII based on SIISC and the
actual DSAHII obtained from the AISC were calculated.

4. Results

4.1. Spatial Distribution of Spectral Index Values

The mean values of R2 and RMSE between the LST values obtained from the Landsat 8 images
and MOD11A1 for the selected cities were obtained to be 0.91 and 1.58 ◦C, respectively. These values
indicate a reasonable accuracy of the Landsat 8-derived LST for these cities [2,73]. The spectral index
values of selected cities were spatially heterogeneous (Figures 4 and 5). The values of built-up land
indices, BCI-derived characteristics, and LST in the central areas of the cities were higher than those in
the suburbs.
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The mean and SD values of the different spectral index values for the selected cities were different
(Table 5). The mean (SD) values of the standardized LST (SLST) for European cities, namely, Budapest,
Bucharest, Ciechanow, Hamburg, Lion, Madrid, Porto, and Rome, were 0.42 (0.10), 0.46 (0.11), 0.36 (0.11),
0.43 (0.08), 0.54 (0.09), 0.61 (0.10), 0.48 (0.17), and 0.45 (0.10), respectively. These values for the American
cities, namely, Dallas, Seattle, Minneapolis, Los Angeles, Chicago, and Phoenix, were 0.50 (0.07),
0.39 (0.13), 0.33 (0.08), 0.42 (0.19), 0.43 (0.08), and 0.81 (0.08), respectively. Among European cities,
the lowest and highest CV for SLST belonged to Madrid (0.16) and Porto (0.35), and among USA cities,
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belonged to Phoenix (0.09) and Los Angeles (0.45). The highest and lowest mean values of standardized
AISC (SAISC) for the selected cities were found in Porto (0.66) and Seattle (0.37), respectively. The CVs
of SAISC were 0.51, 0.45, 0.51, 0.45, 0.37, 0.39, 0.39, and 0.35 for the European cities, respectively,
and 0.68, 0.70, 0.77, 0.50, 0.60, and 0.63 for the American cities, respectively. In general, the spatial
variation of AISC was higher in USA cities than in European cities. Among the various indices,
AISC and ABEI had the highest and lowest CV, respectively.

4.2. Quantifying DSAHII

The LST-AISC feature space formed for the different cities is shown in Figure 6. The results
indicated that the mean LST values of suburban areas for the European cities, namely, Budapest,
Bucharest, Ciechanow, Hamburg, Lyon, Madrid, Porto, and Rome, were 27.7, 29.8, 26.6, 24.3, 25.7, 31.2,
28.5, and 31.3 ◦C, respectively, and those for American cities, namely, Dallas, Seattle, Minneapolis,
Los Angeles, Chicago, and Phoenix, were 30.4, 23.1, 27.6, 34.9, 27.2, and 40.8 ◦C, respectively. Rome and
Madrid in Europe and Los Angeles and Phoenix in the USA have warmer and drier climates than the
other cities, so their LSTs were higher than those of other cities. The R2 values between the mean values
of LST and the rescaled AISC for the selected European cities were 0.98, 0.94, 0.93, 0.98, 0.98, 0.97, 0.98,
and 0.96, respectively. For USA cities, these values were 0.97, 0.96, 0.98, 0.96, 0.95, and 0.94, respectively.
These results indicate that the accuracy of the LLSM for DSAHII estimation is reasonably high.
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Table 5. The mean value and SD of the different spectral index values for the selected cities on different dates. SISC: Standardized Impervious Surface Cover; SUI:
Standardized Urban Index; SBI: Standardized Bare Soil Index; SBAEM: Standardized Built-up Area Extraction Method; SBU: Standardized Built-up Index; SBBSI:
Standardized Built-up and Bare Soil Index; SSI: Standardized soil index (SI); SIBI: Standardized Index-based Built-up Index; SAlbedo: Standardized Albedo; SNDBI:
Standardized Normalized Difference Built-up Index; SBrightness: Standardized Brightness; SABEI: Standardized Automated Built-up Extraction Index; SBCI:
Standardized Biophysical Composition Index; SLST: Standardized Land Surface Temperature.

Cities Parameters SISC SUI SBI SBAEM SBU SBBSI SSI SIBI SAlbedo SNDBI SBrightness SABEI SBCI SLST

Budapest
Mean 0.41 0.71 0.34 0.68 0.59 0.62 0.34 0.74 0.14 0.01 0.01 0.32 0.16 0.42

SD 0.21 0.05 0.11 0.05 0.07 0.08 0.11 0.05 0.06 0.01 0.01 0.06 0.07 0.10

Bucharest
Mean 0.51 0.64 0.36 0.63 0.50 0.51 0.36 0.51 0.13 0.01 0.01 0.27 0.17 0.46

SD 0.23 0.02 0.07 0.03 0.03 0.05 0.07 0.03 0.02 0.00 0.00 0.01 0.03 0.11

Ciechanow
Mean 0.39 0.48 0.57 0.56 0.39 0.55 0.57 0.40 0.18 0.48 0.31 0.26 0.13 0.36

SD 0.20 0.16 0.18 0.16 0.15 0.19 0.18 0.14 0.04 0.16 0.06 0.04 0.07 0.11

Hamburg
Mean 0.59 0.56 0.32 0.37 0.24 0.45 0.32 0.46 0.09 0.56 0.09 0.24 0.18 0.43

SD 0.27 0.05 0.07 0.05 0.08 0.09 0.07 0.08 0.02 0.05 0.02 0.01 0.03 0.08

Lyon
Mean 0.65 0.50 0.57 0.57 0.50 0.66 0.57 0.52 0.13 0.50 0.11 0.26 0.20 0.54

SD 0.24 0.08 0.04 0.07 0.09 0.06 0.04 0.06 0.02 0.08 0.02 0.01 0.03 0.09

Madrid
Mean 0.63 0.74 0.04 0.46 0.47 0.85 0.04 0.87 0.13 0.74 0.11 0.27 0.16 0.61

SD 0.24 0.03 0.01 0.04 0.06 0.16 0.81 0.09 0.02 0.03 0.03 0.01 0.03 0.10

Porto
Mean 0.66 0.31 0.85 0.39 0.35 0.08 0.85 0.87 0.18 0.31 0.13 0.28 0.20 0.48

SD 0.26 0.07 0.31 0.09 0.09 0.47 0.31 0.28 0.04 0.07 0.06 0.01 0.06 0.17

Rome
Mean 0.63 0.36 0.36 0.38 0.30 0.57 0.36 0.56 0.13 0.36 0.11 0.27 0.15 0.45

SD 0.23 0.08 0.11 0.09 0.11 0.12 0.11 0.11 0.02 0.08 0.02 0.02 0.04 0.10

Dallas
Mean 0.45 0.35 0.13 0.31 0.20 0.06 0.13 0.19 0.14 0.35 0.13 0.25 0.19 0.50

SD 0.29 0.02 0.01 0.02 0.03 0.01 0.01 0.02 0.03 0.02 0.04 0.02 0.03 0.07

Seattle
Mean 0.37 0.31 0.31 0.37 0.23 0.37 0.31 0.37 0.07 0.31 0.09 0.32 0.18 0.39

SD 0.26 0.11 0.15 0.1 0.12 0.15 0.15 0.19 0.04 0.11 0.05 0.01 0.06 0.13

Minneapolis
Mean 0.36 0.34 0.31 0.45 0.17 0.32 0.31 0.24 0.04 0.34 0.08 0.19 0.22 0.33

SD 0.28 0.07 0.09 0.07 0.08 0.13 0.09 0.13 0.01 0.07 0.02 0.01 0.02 0.08
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Table 5. Cont.

Cities Parameters SISC SUI SBI SBAEM SBU SBBSI SSI SIBI SAlbedo SNDBI SBrightness SABEI SBCI SLST

Los
Angeles

Mean 0.56 0.54 0.44 0.53 0.56 0.56 0.44 0.56 0.1 0.54 0.1 0.35 0.26 0.42

SD 0.26 0.09 0.13 0.11 0.1 0.09 0.13 0.14 0.06 0.09 0.06 0.04 0.06 0.19

Chicago
Mean 0.43 0.38 0.29 0.46 0.24 0.34 0.29 0.36 0.06 0.38 0.1 0.19 0.14 0.43

SD 0.26 0.06 0.1 0.07 0.13 0.12 0.1 0.19 0.03 0.07 0.06 0.01 0.04 0.08

Phoenix
Mean 0.41 0.5 0.58 0.58 0.38 0.64 0.58 0.47 0.1 0.51 0.15 0.27 0.18 0.81

SD 0.26 0.06 0.08 0.07 0.06 0.09 0.08 0.07 0.03 0.06 0.04 0.01 0.04 0.08
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The mean DSAHII values for selected European cities were 4.5, 6.6, 4.3, 3.5, 3.0, 3.0, 2.3, and 1.9 ◦C,
respectively, and those for USA cities were 3.0, 6.7, 5.6, 4.4, 5.4, and 1.9 ◦C, respectively. The impact
of human activity on LST varied among the selected cities. Among those, Rome and Seattle had the
highest and lowest negative impacts of human activities on LST, respectively. The mean DSAHII
values for the selected cities in Europe and USA were 3.6 and 4.5 ◦C, respectively. Generally, in green
cities (with large fraction of vegetation coverage) including Hamburg, Budapest, Porto, Bucharest,
Minneapolis, Seattle, Chicago, and Dallas due to high surface wetness and vegetation cover, and low
heat and dryness, DSAHII is more intense. While in desert cities including Ciechanow, Madrid, Lyon,
Rome, Los Angeles, and Phoenix, the DSAHII is lower.

4.3. Evaluating the Effectiveness of SIISC for DSAHII Quantification

The performance of the SIISC parameters in DSAHII quantification differed (Figure 7). The obtained
R2 values between the actual and modelled DSAHII based on UI, BI, BAEM, BU, NBBSI, SI, IBI, albedo,
NDBI, brightness, ABEI, and BCI were 0.87, 0.93, 0.88, 0.95, 0.97, 0.94, 0.98, 0.76, 0.87, 0.52, 0.75, and 0.95,
respectively. Additionally, the RMSE values between the actual and modelled DSAHII based on spectral
index indicators were 0.77, 0.56, 0.74, 0.50, 0.36, 0.51, 0.34, 1.32, 0.74, 1.56, 1.58, and 0.83 ◦C, respectively.
The IBI (R2 = 0.98, RMSE = 0.34 ◦C) had the highest performance in DSAHII quantification, but the
performance of albedo (0.76, 1.32 ◦C), ABEI (0.75, 1.58 ◦C), and brightness (0.52, 1.52 ◦C) was poor.
Our results show that the use of spectral indices such as IBI, BU, and NBBSI is quite useful and effective
for DSAHII quantification.
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Figure 7. The obtained R2 and root mean square error (RMSE) values between the actual and modelled
DSAHII based on spectral index-based ISC (SIISC). Solid red line represents the predicted relationship
between actual and modeled DSAHII.

5. Discussion

SAHIs are one of the important negative effects of human activity in the natural environment [37,48].
Increasing human activity increases the percentage of impermeable surfaces and increases the LST of
these areas compared to that in natural areas (Figures 4 and 5).

Marando, et al. [74] investigated the effect of green infrastructure elements such as urban and
peri-urban forests, street trees, as well as the effect of vegetation cover and tree diversity in the
reduction of the SUHI effect in Rome, Italy. The results of this study show that the green infrastructure
significantly reduces the SUHI phenomenon in a Mediterranean city. Grigoras, and Urit,escu [75]
conducted an analysis based on multi-time remote sensing data to investigate the impact of land use
change in Bucharest’s SUHI. The results suggest that the increase in built-up lands and the decrease
in vegetation cover due to anthropogenic activities caused an increase in surface temperature and
expansion of the area affected by SUHI. Arnds, et al. [76] analyzed the spatio-temporal variance of the
SUHI of Hamburg. In summary, the SUHI showed a radial gradient in the center, which is mostly
corresponding to the urban densities. Dian, et al. [77] studied the relationship between SUHII and local
climate zones (LCZ) classes for Budapest. The results of this investigation indicate that as the density
of the building decreases, the intensity of SUHI also decreases. The highest SUHII is in the city center
and the lowest intensity of SUHI with negative values can be found in vegetation-covered LCZ classes.

Due to the negative consequences of the SAHI effect on various aspects of human quality of life,
its quantification is of great importance. Firozjaei, Weng, Zhao, Kiavarz, Lu and Alavipanah [48] used
a triple-SEB to model SAHII. The results showed that the triple-SEB could be highly effective for SAHII
modelling. However, triple-SEBs are highly complex and require many calculations. Additionally,
the implementation of this model requires many input datasets, including land cover parameters,
surface digital models, climatic conditions, and so on.



Remote Sens. 2020, 12, 2854 19 of 23

Various studies have shown that ISC information is a good index for the degree of urban-related
human activity in an area [38,41,43,44]. Zhang and Cheng [72] and Li, Zhou, Li, Meng, Wang, Wu and
Sodoudi [71] used the LST-ISC feature space to model SUHII. The most important challenge of
this method is using appropriate ISC information. Existing ISC databases have serious drawbacks,
including spatial and temporal coverage constraints. However, satellite imagery can be used to address
these challenges. In previous studies, various spectral indices and methods have been proposed for
ISC modelling and built-up land extraction [51,53,61].

The results of this study showed that the IBI, BU, and NBBSI indices show good performance in
DSAHII modelling (Figure 7). The TCT-derived brightness did not perform well in DSAHII modelling.
Combining brightness with greenness and wetness information in the BCI increases the accuracy
of DSAHII modelling. Some studies have shown that BCI can be effective in demonstrating spatial
changes in the ISC in urban environments [24,70]. Firozjaei, Sedighi, Kiavarz, Qureshi, Haase and
Alavipanah [61] showed that the ABEI is more effective than other indices for separating built-up lands
from other land covers, especially bare lands. However, in this study, the ABEI accuracy for DSAHII
quantification was lower than that of other indices. Therefore, this study showed that the ABEI is not
suitable for heterogeneous modelling within built-up lands.

In general, SIISC has advantages for quantifying DSAHII, such as concurrency with thermal
data recording, simplicity, low cost, accessibility under different spatial and temporal conditions,
and scalability. The results showed that the use of the LST-SIISC feature space was highly effective
for DSAHII modelling. However, one of the limitations of this method is that it is unable to model
DSAHII changes in different geographical locations within a city. Therefore, to increase the spatial
resolution of the modelled DSAHII, the LST-SIISC feature space must be implemented locally, such as
for different urban regions.

6. Conclusions

SAHI modelling and quantification are very important to the quality of urban life. In this study,
to evaluate and compare spectral indices used for DSAHII modelling, 14 cities in Europe and the
USA with different conditions were selected. The DSAHII was quantified using the LST-AISC feature
space and the LST-SIISC feature space. The results showed that the DSAHII in the selected cities in
Europe and the USA was different. The DSAHII in cities with humid climates was higher than that
in cities with dry climates. The performance of the spectral indices in DSAHII quantification varied.
The results showed that IBI had the best performance for DSAHII quantification. In general, regarding
the advantages of SIISC, it can be useful in identifying and characterizing the effects of human activity
on the urban environment. It is suggested that in future studies, based on the approach presented
in this study, the DSAHII in cities worldwide should be examined multi-temporally. Providing an
appropriate model for future DSAHII prediction is also an important area for future studies.
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