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Abstract: Building extraction from LiDAR data has been an active research area, but it is difficult
to discriminate between buildings and vegetation in complex urban scenes. A building extraction
method from LiDAR data based on minimum cut (min-cut) and improved post-processing is proposed.
To discriminate building points on the intersecting roof planes from vegetation, a point feature based
on the variance of normal vectors estimated via low-rank subspace clustering (LRSC) technique is
proposed, and non-ground points are separated into two subsets based on min-cut after filtering.
Then, the results of building extraction are refined via improved post-processing using restricted
region growing and the constraints of height, the maximum intersection angle and consistency.
The maximum intersection angle constraint removes large non-building point clusters with narrow
width, such as greenbelt along streets. Contextual information and consistency constraint are both
used to eliminate inhomogeneity. Experiments of seven datasets, including five datasets provided
by the International Society for Photogrammetry and Remote Sensing (ISPRS), one dataset with
high-density point data and one dataset with dense buildings, verify that most buildings, even with
curved roofs, are successfully extracted by the proposed method, with over 94.1% completeness
and a minimum 89.8% correctness at the per-area level. In addition, the proposed point feature
significantly outperforms the comparison alternative and is less sensitive to feature threshold in
complex scenes. Hence, the extracted building points can be used in various applications.

Keywords: LiDAR; building extraction; normal vector estimation; min-cut; improved post-processing

1. Introduction

Automatic building extraction from remote sensing data is a prerequisite step for the applications
of three-dimensional (3D) building reconstruction, urban planning, disaster assessment, and updating
digital maps and geographic information system (GIS) databases [1–4]. Since the emergence of airborne
Light Detection and Ranging (LiDAR), it provides an alternative way to extract buildings due to its
high-density and high-accuracy point data.

In the field of LiDAR, building extraction is to separate building points from other points,
which can also be termed as building detection [1,5]. Due to the complexity of building structures and
urban scenes, it remains a challenge to extract buildings from LiDAR data. Many studies have been
conducted in the past two decades regarding building extraction. Some methods combine other data
sources, such as optical images with spectral and texture information, intensity data, waveform data
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and GIS data [6–9]. Among these data, the image data is the most commonly used due to its high spatial
resolution, color and texture information [6,10]. By combining two-dimensional (2D) information from
images and 3D information from LiDAR data, complementary information can be exploited to extract
and reconstruct buildings automatically [1,10]. However, these methods using images unavoidably
involve some problems. First, LiDAR data and images need to be registered before fusion, which poses
a challenge due to their different characteristics [10,11]. Second, the spatial resolution of images and
LiDAR data are different, which may decrease accuracy after fusing them [10–12]. Moreover, in some
regions, image and LiDAR data are not always both available to data-end users due to various reasons,
which limits the practicality of these methods.

Building extraction methods based solely on point cloud are the mainstream focus [12–16].
Such methods can be broadly categorized into two classes: supervised and unsupervised
methods [12,13]. Based on the basic processing units, supervised methods can be categorized
into three groups: point-based, segment-based and multiple-entity-based classification methods [13,14].
Point-based classification methods are the most commonly used and are generally composed of three
steps: sample points training, point features extraction, and classification. Segment-based methods
generally consist of four steps: segmentation of raw points, sample segments training, segments features
extraction, and classification [13]. Multiple-entity-based classification is considered as a combination
of the segment-based and point-based classifications [14]. Satisfying results can be obtained from
supervised approaches by using accurate features and proper training samples, but some defects
cannot be ignored [15–27]. First, constant scale parameters of neighborhoods used for calculating
point features fail to accurately describe local structure [21,23]. Second, most classifiers, such as
JointBoost [15], support vector machine [16], random forest [17], expectation maximization [18],
XGBoost [19], adaptive boosting [20], etc., classify each point independently without considering
the labels of its neighborhoods, leading to inhomogeneous results in complex scenes [22,24]. Third,
supervised methods involve many point features, but more features do not necessarily guarantee higher
classification accuracy [27]. On the contrary, too many features may introduce redundant information
and increase computation cost [25,26]. In addition, segment-based and multiple-entity-based classified
methods mainly rely on the segment strategies and they are hierarchical procedures, which involve
many steps [28–30].

Deep learning has been introduced in the field of point cloud in recent years, such as object
recognition, classification, and segmentation [31–33]. However, the number of samples used for
training models is far more than the aforementioned classifiers. Moreover, many deep learning
algorithms developed for images cannot be employed for point cloud without modification due to its
irregularity and discreteness [31,32].

Due to the above-mentioned reasons, many researchers study the unsupervised methods.
These methods mainly include fitting methods [34–36], region growing methods [28,30],
clustering methods [37,38], morphological-based methods [39,40], and energy minimization [12,15].
In the fitting methods, random sample consensus (RANSAC) [34] and 3D Hough transformation [36]
methods are widely used to extract buildings. However, RANSAC approach often extracts pseudo
planes in vegetation areas due to random sampling, and its efficiency significantly decreases with
an increasing amount of point cloud data. 3D Hough transformation is time-consuming and sensitive
to fitting parameters [36]. Region growing algorithm is also widely used due to its simple and easy
operations. Generally, it only works well when the initial ideal building seeds are correctly selected
and the constraints used in algorithms are reasonable. It is easy to overgrow due to unreasonable
constraints and inaccurate features, especially in the transition region between different objects [28,30].
Clustering methods are statistical techniques that cluster points based on some local surface properties
or other features [37,38]. In [37], building seeds were detected through semi-suppressed fuzzy C-means,
then a restricted region growing algorithm was applied to search more building points based on
building seeds. Morphological-based methods firstly perform rasterization on the point cloud, and then
non-building pixels are removed under the constraints of size, shape, height, and building element
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structure. However, the size of the pixels and the geometrical properties greatly influence the final
results [39]. The energy minimization approach, such as graph cuts algorithm, is a global solution that
formulates the building extraction as an optimization problem [12,15]. In [12], a graph was constructed
using pixels of a generated Digital Surface Model (DSM) image, and features of points and grids were
both used to construct energy function. Finally, pixels were labelled by minimizing the energy function.
In [41], the graph was constructed using voxels after voxelization on point cloud. Although satisfying
results can be obtained from [12,41], data structure is changed and results may exhibit decreased
accuracy in the process of rasterization or voxelization due to the fact that not all points within the same
pixel or voxel belong to a building, and post-processing steps are needed to solve the problem of
building boundary zigzags [12]. In [15], graph cuts algorithm was used to optimize classification
results of JointBoost classifier due to the fact that contextual information between points was not
considered in the classifier. However, results of JointBoost classifier were used as initial foreground
and background seed points to define energy function. This is impractical for automatic building
extraction due to the fact that no building seeds are available before building extraction.

Based on the above statements, the current studies on building extraction still face two
problems [24,27]: (1) Large numbers of point features are used to extract buildings in most existing
algorithms [13,24,37]. Too many features increase computation cost of calculating point features and
reduce algorithmic efficiency. Moreover, not all features are suitable for building extraction and may
decrease accuracy [27]. (2) Due to various roof types and complex scenes, the contextual information is
useful for classification [12,24]. However, contextual information is always ignored for most methods,
leading to inhomogeneous results and increased post-processing workload.

Therefore, it is of great importance to continue building extraction research using airborne LiDAR
data. The main objectives of the study are (1) to design effective point feature to discriminate building
points on the intersecting roof planes from vegetation, and evaluate its performance with the existing
point feature in different scenes and parameter setting; (2) to use few point features to realize building
extraction, avoiding spending too much time on point features calculation; (3) to introduce contextual
information in the algorithm to reduce inhomogeneity and improve accuracy of extraction results.

The main contributions of this work can be summarized as follows: (1) A point feature based
on the variance of accurate normal vectors estimated via low-rank subspace clustering (LRSC)
technique is proposed to discriminate building points on the intersecting roof planes from vegetation.
The proposed feature significantly outperforms the comparison alternative and is less sensitive
to feature threshold in complex scenes. (2) The proposed maximum intersection angle constraint
effectively removes large non-building point clusters with narrow width, such as greenbelt points
along streets, overcoming the defects of area-based methods in setting area threshold. (3) Contextual
information and consistency constraint are both used to eliminate inhomogeneity in the proposed
method, which benefits building extraction. (4) Unlike most previous building extraction methods,
only two point features are used in the proposed method, which beneficially decreases the computation
cost of calculating point features and improves algorithmic efficiency.

2. Methodology

The proposed method includes three main steps: outliers removal and filtering; point features
calculation, graph construction and cut; and improved post-processing. The algorithm workflow is
shown in Figure 1.
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Figure 1. Algorithm flowchart.

2.1. Outliers Removal and Filtering

The original point cloud data provided by airborne LiDAR system contains some outliers obtained
during data collection due to various reasons, such as multipath effect. It is necessary to remove outliers
to alleviate their effects on LiDAR data processing. The “StatisticalOutlierRemoval” tool implemented
in point cloud library (PCL) is applied to the original point cloud [42]. In the algorithm, the mean
distance from each point to its all neighborhoods is calculated, and points whose mean distance are
outside a defined range calculated by the global distance mean and standard deviation are removed [43].
After that, denoising points are classified into ground and non-ground points subsets by progressive
TIN densification (PTD) [44]. PTD has been widely used in the field of academic community and in
engineering applications due to its accuracy and efficiency, and it has been embedded in commercial
software, such as TerraSolid and LiDAR_Suite [44,45].

2.2. Point Features Calculation and Normalization

After filtering, points can be classified as ground and non-ground points. Non-ground points
are generated from laser echoes from buildings, vegetation and other man-made or natural ground
objects (e.g., vehicles, wires, etc.) [15,37,40], which are the input for further building extraction
process. In general, buildings are considered to be composed of planar patches, while vegetation are
non-planar, meaning building points have flat characteristics and vegetation points are rough in local
area. Therefore, two features based on the above characteristics are used in the proposed method.
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2.2.1. Curvature Feature ( fc)

Let NP =
{
q0, q1, . . . , qn

}
denote non-ground points, and Np =

{
p j|p j ∈ NP, p j ∈ k_nearest_qi

}
represent the point set of k-neighborhoods of qi. The covariance matrix M is constructed using qi and
its neighborhoods Np, defined as follows:

M =
1
k

∑
p∈Np

(p− p)(p− p)T (1)

where p = 1
k
∑

p∈Np p is the centroid of all points in Np, and k is the number of Np. After that,
three eigenvalues λ1,λ2,λ3 (λ1 ≤ λ2 ≤ λ3) of M are calculated via eigen decomposition. The curvature
feature fc is calculated based on three eigenvalues as follows [27]:

fc =
λ1

λ1 + λ2 + λ3
(2)

The curvature feature can describe the flatness of surface, and is widely used for planes
extraction [27,37,46]. Although the number of neighborhoods influences fc, the influence is minimal [47].
Empirically k is set to 15 to calculate fc by referring to [12].

2.2.2. Variance of LRSC-Based Normal Vector Feature ( fv)

Curvature of points on intersecting building roof planes is much larger than those of flat roofs,
indicating these building points are likely to belong to vegetation [12,37]. To discriminate buildings from
vegetation, feature based on the variance of normal vectors calculated via principle component analysis
(PCA) is proposed in [12]. However, the estimated normal vectors via PCA without modification are
inaccurate for points on intersecting building roof planes due to the fact that neighborhoods come
from different planes [48]. Figure 2a,b illustrate PCA-based normal vectors of a synthetic cube and
building roofs [49], and it can be seen that normal vectors of points on intersecting planes are inaccurate.
As a result, features based on these normal vectors, such as variance of normal vector direction [12],
and normal vector angle distribution histogram [50], are inaccurate.
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Figure 2. Normal vector. (a) PCA-based normal vector of a cube; (b) PCA-based normal vector
of a building roof; (c) LRSC -based normal vector of a cube; (d) LRSC -based normal vector of
a building roof.

Considering the above problem, an accurate normal vector estimation method via low-rank
subspace clustering (LRSC) [48] is introduced. The normal vector estimation technique has already
been used for automatic building roof segmentation from LiDAR data, and experimental results are
satisfying [51]. The algorithm is composed of three main steps: First, points around sharp and smooth
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regions are identified by covariance analysis of their neighborhoods, and their initial normal vectors are
estimated via PCA. Second, normal vectors of points’ neighborhoods are used as prior knowledge to
construct a guiding matrix. Third, neighborhoods are segmented into several isotropic neighborhoods
by low-rank subspace clustering (LRSC) with the guiding matrix. Then a consistent sub-neighborhood
is used to estimate points’ final normal vectors. Figure 2c,d illustrate the LRSC-based normal vectors of
a cube and building roof. Compared with the PCA-based normal vectors, LRSC-based normal vectors
of points in sharp regions are more accurate and reasonable.

Therefore, feature fv, based on variance of LRSC-based normal vector, is proposed to discriminate
buildings from vegetation, and its calculation includes following sub-steps:

Step 1: Normal vectors of all points are calculated via low-rank subspace clustering (LRSC)
technique, and calculate the angle α between the normal vector and vertical direction (

→
v = (0, 0, 1) in

3D space). It should be noted that the normal vector of points may have opposite direction. Therefore,
when α is larger than π/2, the corresponding angle α is set as π− α.

Step 2: For point P and angles αP = {α1,α2, . . . ,αm} of its neighborhoods NP =
{
q1, q2, . . . , qm

}
,

divide the range [0,π/2] into equal Dn bins to construct a Dn dimensional histogram. Then, the number
of angles falling within each bin is taken as the value of the bin in the histogram.

Step 3: Calculate variance of histogram as fv for P with the following formulas:

fv =
σ2

µ2 (3)

σ2 =

∑Dn
i=1(ni − µ)

2

Dn
(4)

µ =
m
Dn

(5)

where m is the number of neighborhoods, ni is the number of angles falling within the i− th bin.
Step 4: Repeat Step 2 and 3 until all points’ fv are calculated.
According to [12], the parameter m is empirically set to 60 for each point. Dn has little impact in

the range of 5 to 10, and is set to 6 in the proposed method.
Figure 3a,b illustrate the feature fv of [12] and ours respectively in Area 1 of Vaihingen [49], and

points are rendered by the value of normalized fv. Compared with [12], the proposed fv of points
on intersecting building roof planes with large slopes are almost consistent with the ones on smooth
roof planes (green rectangles in Figure 3c), and difference of the proposed fv between buildings and
vegetation are more obvious (yellow rectangles in Figure 3c). In addition, it is a challenging task to
discriminate some small complex buildings composed of multiple small planar patches from vegetation
for fv of [12] (blue rectangles in Figure 3c).

Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 27 

 

based normal vectors of a cube and building roof. Compared with the PCA-based normal vectors, 
LRSC-based normal vectors of points in sharp regions are more accurate and reasonable. 

Therefore, feature 𝑓 , based on variance of LRSC-based normal vector, is proposed to 
discriminate buildings from vegetation, and its calculation includes following sub-steps: 

Step 1: Normal vectors of all points are calculated via low-rank subspace clustering (LRSC) 
technique, and calculate the angle 𝛼 between the normal vector and vertical direction (𝒗 = (0,0,1) 
in 3D space). It should be noted that the normal vector of points may have opposite direction. 
Therefore, when 𝛼 is larger than 𝜋/2, the corresponding angle 𝛼 is set as 𝜋 − 𝛼. 

Step 2: For point P and angles 𝛼 = 𝛼 , 𝛼 , … , 𝛼  of its neighborhoods 𝑁 = 𝑞 , 𝑞 , … , 𝑞 , 
divide the range [0, 𝜋/2] into equal 𝐷  bins to construct a 𝐷  dimensional histogram. Then, the 
number of angles falling within each bin is taken as the value of the bin in the histogram. 

Step 3: Calculate variance of histogram as 𝑓  for P with the following formulas: 𝑓 = 𝜎𝜇  (3)

𝜎 = ∑ (𝑛 − 𝜇)𝐷  (4)

𝜇 = 𝑚𝐷  (5)

where 𝑚 is the number of neighborhoods, 𝑛  is the number of angles falling within the 𝑖 − 𝑡ℎ bin. 
Step 4: Repeat Step 2 and 3 until all points’ 𝑓  are calculated. 
According to [12], the parameter 𝑚 is empirically set to 60 for each point. 𝐷  has little impact 

in the range of 5 to 10, and is set to 6 in the proposed method. 
Figure 3a,b illustrate the feature 𝑓  of [12] and ours respectively in Area 1 of Vaihingen [49], and 

points are rendered by the value of normalized 𝑓 . Compared with [12], the proposed 𝑓  of points on 
intersecting building roof planes with large slopes are almost consistent with the ones on smooth roof 
planes (green rectangles in Figure 3c), and difference of the proposed 𝑓  between buildings and 
vegetation are more obvious (yellow rectangles in Figure 3c). In addition, it is a challenging task to 
discriminate some small complex buildings composed of multiple small planar patches from 
vegetation for 𝑓  of [12] (blue rectangles in Figure 3c). 

 
(a) 

 
(b) 

 
(c) 

0.1 0.4 0.7 1.0  

 

Figure 3. Visualization of  𝑓  (rendered by the value of normalized  𝑓 ). (a) 𝑓  of [12]; (b) the 
proposed 𝑓 ; (c) Orthophoto. 

  

Figure 3. Visualization of fv (rendered by the value of normalized fv). (a) fv of [12]; (b) the proposed fv;
(c) Orthophoto.



Remote Sens. 2020, 12, 2849 7 of 25

2.2.3. Feature Normalization

Considering that the range of values of the two features are significantly different, a normalization
step is needed. A logistic function is employed to normalize these two features, and the logistic
function is defined below:

f (x) =
1

1 + e−k(x−x0)
(6)

where x0 is the feature threshold and k controls the steepness of the logistic function curve. In practice,
building extraction results are significantly influenced by x0, and minimally influenced by k [12].
Therefore, k is set to −35, 2.0 for fc and fv respectively according to [12]. Whereas, the specific values of
x0 for fc and fv will be analyzed and discussed in later sections.

2.2.4. Graph Construction and Cut

Point segmentation can be viewed as a labeling problem, which is to assign a label from a set of
labels to each point by minimizing an objective function [52,53]. For building extraction, the label
problem is to assign a building or non-building label to each non-ground point. Generally, a typical
representation of the objective function is an energy function with two terms: data term and smooth
term. Among a series of optimization methods to minimize energy function, graph cuts approach [54]
based on minimum cut (min-cut) shows good performance since it merges, and is commonly used
in many applications, such as image segmentation [55–57] and point cloud segmentation [12,15,41].
Thus, graph cuts algorithm is adopted to minimize energy function.

In [54], the graph is composed of sets of nodes and edges. It should be noted that there are two
special terminal nodes, called source and sink, which represent the “foreground” and “background”
labels. In the proposed method, each non-ground point denotes a node. The energy function E(l) is
defined as follows:

E(l) =
∑
p∈P

Dp
(
lp
)
+

∑
p,q∈N

Vpq
(
lp, lq

)
(7)

where the first term
∑

p∈P Dp
(
lp
)

is a data term and Dp
(
lp
)

is the penalty to assign label lp to node p.

Value of Dp
(
lp
)

measures how well the label fits node p. The second term
∑

p,q∈N Vpq
(
lp, lq

)
is the smooth

term and Vpq(lp,lq) is interpreted as a penalty for discontinuity between nodes p and q. Generally, if p
and q are similar, Vpq(lp,lq) is large, which means p and q more likely belong to the same object. Data

penalty Dp
(
lp
)

is calculated as follows:

Dp
(
lp = building

)
= λ1 fc + λ2 fv (8)

Dp
(
lp = non− building

)
= 1− (λ1 fc + λ2 fv) (9)

where λ1 and λ2 are the weights of fc and fv respectively, and they satisfy λ1 + λ2 = 1.
Smooth penalty Vpq(lp,lq) is calculated as follows:

Vpq
(
lp, lq

)
= e−(λ1 | fpc− fqc |+λ2 | fpv− fqv |)·

1

d(p, q)2 d(p, q) < ds (10)

Vpq
(
lp, lq

)
= e−(λ1 | fpc− fqc |+λ2 | fpv− fqv |)·

1

ds
2 d(p, q) ≥ ds (11)

where fpc and fqc are fc of p and q, fpv and fqv are fv of p and q. d(p, q) is the Euclidean distance between
point p and q. |·| is any norm distance metric and L1 norm is adopted, ds is the distance threshold
between points and is set as twice the average point space. When the graph is constructed, it is cut
based on min-cut and each node will be given a label. Thus, building points are extracted according to
the given labels.
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2.3. Improved Post-Processing

Although most building points are successfully extracted from the non-ground points, some
non-building points are wrongly classified as buildings (e.g., vehicles with smooth surfaces and
flat overpasses) and some building points are omitted. To solve these aforementioned problems,
an improved post-processing is adopted to refine results of building extraction.

2.3.1. Height Constraint

In general, a building should be high enough. Thus, height threshold Th is set to remove these
low points if their absolute height difference between it and its nearest ground points is less than
Th. Under this constraint, partial or possibly whole points of vehicles with smooth surfaces can be
excluded due to their low height. Th is set according to the average human’s height, such as 1.5 m [23].

2.3.2. Restricted Region Growing

It should be noted that some buildings are located on a slope, and some points satisfy the height
constraint. Figure 4a illustrates a profile of a building located in a slope, and partial points are
classified as non-building points after height constraint. Thus, restricted region growing based on
height constraint is conducted to extract omitted buildings. In the process of restricted region growing,
the non-building points are classified as buildings if the absolute height difference between them and
their nearest building points is less than a predefined threshold T′h. T′h is set to 0.1 m according to [37],
and building extraction results after restricted region growing are shown in Figure 4b. It should be
noted that ground, building and non-building points are rendered by blue, red, and white respectively
in subsequent sections.
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Figure 4. Profile of a building located on a slope. (a) Before restricted region growing; (b) After
restricted region growing.

2.3.3. Maximum Intersection Angle Constraint

After the above-mentioned steps, some non-building points or clusters belonging to vegetation
with flat surface, or vehicles with smooth surface and small size are wrongly classified as buildings.
Area-based strategies are commonly adopted to remove these above non-building points by clustering
based on the assumption that buildings generally occupy a specific area [12,23,27]. Although satisfying
results can be obtained by setting proper area thresholds, they fail to eliminate non-building points in
some scenes. Figure 5 illustrates building extraction results in Area 3 of Vaihingen [49] after the above
steps from LiDAR data with an average point density of 3.2 points/m2. Building points are separated
into two clusters via Euclidean clustering, in which one is located in green and the other in the
yellow rectangle. The number of points of the small cluster in the yellow rectangle is more than 110,
which means the cluster occupies approximate 35 m2. But in practice, the area of many buildings is
less than that and they will be eliminated via area-based methods if the area threshold is set to 35 m2.
To solve this issue, the maximum intersection angle constraint is proposed.
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Figure 5c illustrates the concept of intersection angle, which is composed of the current building
point and its cylindrical neighborhoods searched from non-building and ground points. Due to the fact
that buildings occupy a specific area and the façade of buildings act as barriers to prevent ground
points falling inside the building area, the maximum intersection angle of real building points is larger
than 90◦ at the building corners, and larger than 180◦ away from building corner. While, the maximum
intersection angle of vegetation points or other non-building points is less than 90◦ due to the fact that
it is surrounded by ground and non-building points in all directions within a cylinder (yellow circle in
Figure 5c) [58].

Figure 5d shows the calculation of the maximum intersection angle of a given current building
point O and its cylindrical nearest neighborhoods. The calculation is composed of three main steps:

Step 1: select initial direction
→

ON and calculate rotational angle αi with respect to
→

ON using their
x, y coordinates for each nearest point.

Step 2: sort above angles in ascending order, and intersection angle δ between adjacent rotational
angles is calculated as follows:

δi =

{
αi+1 − αi i = 1, 2, . . . , k− 1

360 + α1 − αk i = k

}
(12)

Step 3: the maximum δ is selected as the maximum intersection angle of point O.
For a current building point O, if its maximum intersection angle is larger than the pre-defined

threshold, then O is classified as a building point. Otherwise, it is a non-building point. If there
are neither non-building points nor ground points falling in the cylinder of O, then it is classified as
buildings directly.

The maximum intersection angle constraint takes into account two threshold parameters: radius of
cylinder to detect neighborhoods from ground and non-building points and angular threshold to
consider the minimum angle defined by the façade alignments at the corners. In the proposed method,
the radius is empirically set to 2.5 m according to [12,37] and the angular threshold was set to 90◦

according to [58].
It should be noted that generally the width of a flat overpass ranges between 2.5 m and 3.5 m [59],

thus flat overpasses can be excluded from the detected building points under the constraint of
the maximum intersection angle using above empirical thresholds.

2.3.4. Consistency Constraint

Although most buildings are extracted after the above three steps, some special building points
are omitted and some non-building points are wrongly classified as buildings. Figure 6a illustrates
a roof terrace with some attachments in Vaihingen [49], such as tables, chairs, and small vegetation on it.
It is obvious that points in this area are rough, while the building surface is flat, as shown in Figure 6c.
As a result, some building points fail to be detected (hereinafter referred to as undetected building
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points). Figure 7 shows two trees with dense leaves and the top of one is flat. Consequently, points falling
in the region are wrongly classified as buildings (hereinafter referred to as false building points).

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 27 

 

falling in the region are wrongly classified as buildings (hereinafter referred to as false building 
points). 

It should be noted that these undetected building points (false building points) are surrounded 
by building points (non-building points). Therefore, consistency constraint is proposed to solve the 
problem. 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 6. Roof terrace. (a) Orthophoto; (b) Point data. Yellow lines are reference vectors provided by 
ISPRS. The approximate location of profile is indicated by the green line; (c) Profile before consistency 
constraint; (d) Profile after consistency constraint. 

 

(a) 

 

(b) 
 

(c) 

 

(d) 

Figure 7. Two trees with dense leaves. (a) Orthophoto; (b) Point data. The approximate location of 
profile is indicated by the green line; (c) Profile before consistency constraint; (d) Profile after 
consistency constraint. 

Considering that the steps of detecting undetected building points and removing false building 
points are similar, we take the elimination of false building points as example to introduce the 
process. It is composed of three main steps: First, the minimal and maximal values of 𝑥  and 𝑦 
coordinates of non-ground points are obtained and denoted by 𝑥 , 𝑥 , 𝑦 , 𝑦 . Then the 
minimum bounding rectangle that covers non-building and ground points is partitioned into 
uniform cells with size 𝑙. Second, for each building point 𝑝(𝑥 , 𝑦 ), row number [(𝑥 − 𝑥 )/𝑙] and 
column number [(𝑦 − 𝑦 )/𝑙]  falling in cell 𝑔  are calculated using its x, y coordinates. Third, 
search cells in a direction and stop if a cell contains points. Figure 8 illustrates search path in four 
directions. Where cell 𝑔 is rendered by red, a yellow arrow with the same direction shows the search 
path in this direction, the last cell in a direction is colored by magenta, other cells are render by green. 
The 𝑙 is set as twice the average point space according to [12,37]. 

Figure 6. Roof terrace. (a) Orthophoto; (b) Point data. Yellow lines are reference vectors provided by
ISPRS. The approximate location of profile is indicated by the green line; (c) Profile before consistency
constraint; (d) Profile after consistency constraint.

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 27 

 

falling in the region are wrongly classified as buildings (hereinafter referred to as false building 
points). 

It should be noted that these undetected building points (false building points) are surrounded 
by building points (non-building points). Therefore, consistency constraint is proposed to solve the 
problem. 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 6. Roof terrace. (a) Orthophoto; (b) Point data. Yellow lines are reference vectors provided by 
ISPRS. The approximate location of profile is indicated by the green line; (c) Profile before consistency 
constraint; (d) Profile after consistency constraint. 

 

(a) 

 

(b) 
 

(c) 

 

(d) 

Figure 7. Two trees with dense leaves. (a) Orthophoto; (b) Point data. The approximate location of 
profile is indicated by the green line; (c) Profile before consistency constraint; (d) Profile after 
consistency constraint. 

Considering that the steps of detecting undetected building points and removing false building 
points are similar, we take the elimination of false building points as example to introduce the 
process. It is composed of three main steps: First, the minimal and maximal values of 𝑥  and 𝑦 
coordinates of non-ground points are obtained and denoted by 𝑥 , 𝑥 , 𝑦 , 𝑦 . Then the 
minimum bounding rectangle that covers non-building and ground points is partitioned into 
uniform cells with size 𝑙. Second, for each building point 𝑝(𝑥 , 𝑦 ), row number [(𝑥 − 𝑥 )/𝑙] and 
column number [(𝑦 − 𝑦 )/𝑙]  falling in cell 𝑔  are calculated using its x, y coordinates. Third, 
search cells in a direction and stop if a cell contains points. Figure 8 illustrates search path in four 
directions. Where cell 𝑔 is rendered by red, a yellow arrow with the same direction shows the search 
path in this direction, the last cell in a direction is colored by magenta, other cells are render by green. 
The 𝑙 is set as twice the average point space according to [12,37]. 

Figure 7. Two trees with dense leaves. (a) Orthophoto; (b) Point data. The approximate location
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It should be noted that these undetected building points (false building points) are surrounded by
building points (non-building points). Therefore, consistency constraint is proposed to solve the problem.

Considering that the steps of detecting undetected building points and removing false building
points are similar, we take the elimination of false building points as example to introduce the process.
It is composed of three main steps: First, the minimal and maximal values of x and y coordinates of
non-ground points are obtained and denoted by xmax, xmin, ymax, ymin. Then the minimum bounding
rectangle that covers non-building and ground points is partitioned into uniform cells with size l.
Second, for each building point p(xi, yi), row number [(xi − xmin)/l] and column number [(yi − ymin)/l]
falling in cell g are calculated using its x, y coordinates. Third, search cells in a direction and stop if
a cell contains points. Figure 8 illustrates search path in four directions. Where cell g is rendered by
red, a yellow arrow with the same direction shows the search path in this direction, the last cell in
a direction is colored by magenta, other cells are render by green. The l is set as twice the average point
space according to [12,37].Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 27 
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Finally, 4 non-empty cells are obtained. If there are non-building points and no ground points in
these 4 cells, then p(xi, yi) belongs to non-building points. Otherwise, it belongs to buildings. Figure 6d
illustrates the undetected building points are extracted and Figure 7d shows the false building points
are removed, avoiding inhomogeneity in the results of building extraction.

3. Experimental Results and Analysis

To validate the proposed method, datasets provided by the International Society for
Photogrammetry and Remote Sensing (ISPRS) in Vaihingen and Toronto [49], one dataset in New
Zealand [60] and one dataset in the state of Utah [61], were used in the experiments. The results were
displayed in LiDAR_Suite, an airborne LiDAR data processing software developed by the Research
and Development (R&D) group of the authors.

3.1. Experiments on the ISPRS Benchmark Dataset

3.1.1. Data Description

The ISPRS dataset is composed of five reference areas: Area 1 to 3 in Vaihingen and Area 4 to 5
in Toronto. The average point density of Area 1 to 3 is approximately 4–7 points/m2, and it is about
6 points/m2 in Area 4 to 5. It should be noted that three test areas (i.e., Area 1 to 3) are located in residential
regions and other two test areas (i.e., Area 4 to 5) are within commercial zones, as shown in Figure 9a–e.
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Area 1: includes 37 buildings, mainly composed of dense historic buildings having rather complex
shapes along with roads and trees.

Area 2: includes 14 buildings, mainly composed of a few high regular residence buildings with
horizontal roofs.

Area 3: includes 56 buildings, mainly composed of several detached buildings with simple
structured roofs and vegetation along roads.

Area 4: includes 58 buildings, mainly composed of low and high-storey buildings with complex
roof structure and rooftop attachments.

Area 5: includes 38 buildings, including a cluster of high-rise buildings with diverse roof structure,
complex shapes and rooftop attachments.

3.1.2. Results and Analysis

Initial results of building extraction based on graph cuts algorithm and height constraint are shown
in Figure 10. It can be seen that most buildings are successfully extracted in Area 1 to 5 and almost
no inhomogeneity exists for individual buildings in Area 1 to 3 where there are almost no irregular
complex attachments on roofs, due to the fact the proposed method considers spatial neighborhood
information, which helps to exploit contextual information and improve classification accuracy [41,62].
The satisfying initial results benefit post-processing work. However, small clusters or individual points
belonging to vegetation or small objects, still exist, as shown in the green rectangles in Figure 10b,c.
Also, few points inside the buildings fail to be extracted, as shown in green rectangles in Figure 10a.
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For qualitative evaluation, four indicators: completeness CP (%), correctness CR (%), quality Q
(%) and F1-score F1 (%) metrics of the results on per-area and per-object levels are evaluated [37,63–65].
Completeness represents the percentage of correctly detected buildings to total number of reference
buildings. Completeness denotes the percentage of correctly detected buildings to total number of
detected buildings. Quality and F1-score provide a compound performance metric that balances
completeness and correctness. Equations are described as follows:

CP = TP
TP+FN

CR = TP
TP+FP

Q = TP
TP+FN+FP

F1 = 2∗CP∗CR
CP+CR

(13)

where TP is the number of correctly detected buildings, FN is the number of omitted buildings, and FP
is the number of wrongly detected buildings. The quantity evaluation results of Area 1 to 5 are listed
in Table 1. To compare the performances of different methods to extract buildings from Area 1 to 3,
20 methods [12,23,37,49] that solely use LiDAR data are selected and the average results are listed in
Table 2, where the ID “WHU_TQ” refers to the proposed method. For Area 4 to 5, 11 methods [23,49]
are selected and compared with the proposed method, listed in Table 3. Figure 11 demonstrates
the extraction results in the pixel against the reference ground truth data.
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From Tables 1–3, we find that satisfying results on a per-area and per-object level are obtained
by the proposed method. The CP metric at the area level is important because it is directly related to
the post-editing work and subsequent building modeling. At this level, 95.5% and 98.4% of average
CP in Vaihingen and Toronto are obtained respectively, outperforming other comparison methods in
Tables 2 and 3 respectively, which means buildings are more easily recognized by the proposed method.
In addition, differences in Q between these five areas are minimal at the area level, which demonstrates
the stability of the proposed method. Although the average Q metric of Area 1 to 3 on a per-area level is
less than some methods, such as [12,23,37], there were some defects for them. Contextual information
was not considered in [23,37], while existing research works have demonstrated that contextual
information is beneficial to data processing [12,15,24]. As a result, the initial extraction results of [37]
are not as good as ours due to lack of contextual information, which increase post-processing work.
In [23], some inhomogeneity occurred in the process of extracting complex buildings. Moreover,
the number of point features used in the proposed method is less than [12,23,37], which benefits building
extraction by decreasing computation cost of calculating point features and improving algorithmic
efficiency. For Area 4 to 5 datasets, the average Q metrics of the best method slightly outperforms
the proposed method at the area level. This is mainly because there are several non-building objects
with flat surfaces and large size, and they are wrongly classified as buildings. But the CP of the proposed
method is obviously higher than other methods at the per-area level.

From Tables 2 and 3, it can be seen that scores of four metrics are different for the same method,
indicating different methods should be chosen merely according to different metrics. In fact, the best
method should be application-oriented. For example, building with floor area larger than 50 m2 are
more important in urban planning and reconstruction [1,5], thus it is reasonable to choose [12] to
extract buildings from Area 1 to 3 datasets. Efficiency of a method needs to be considered in practice
as well.

Table 1. Building extraction results. (The best values per column are shown in the bold font.).

Test Case
Per-Area (%) Per-Object (%) Per-Object > 50 m2 (%)

CP CR Q F1 CP CR Q F1 CP CR Q F1

Area 1 97.1 91.4 88.9 94.2 83.8 96.9 81.6 89.9 100 100 100 100
Area 2 95.4 92.9 88.9 94.1 85.7 100 85.7 92.3 100 100 100 100
Area 3 94.1 90.2 85.4 92.1 83.9 100 83.9 91.2 97.4 100 97.4 98.7

Average 95.5 91.5 87.7 93.5 84.5 99.0 83.7 91.2 99.1 100 99.1 99.5
Area 4 98.2 90.5 89.1 94.2 98.3 85.5 84.6 91.5 100 93.4 93.4 96.6
Area 5 98.6 89.8 88.7 94.0 94.7 72.0 69.2 81.8 97.1 84.6 82.5 90.4

Average 98.4 90.2 88.9 94.1 96.5 78.8 76.7 86.6 98.6 89.0 88.0 93.5

Table 2. Average evaluation results comparison of the building extraction (Area 1 to 3). (The best
values per column are shown in the bold font.).

ID
Per-Area (%) Per-Object (%) Per-Object > 50 m2 (%)

CP CR Q F1 CP CR Q F1 CP CR Q F1

UMTA 92.3 87.5 81.5 89.8 80.0 98.6 79.1 88.3 99.1 100.0 99.1 99.5
UMTP 92.4 86.0 80.3 89.1 80.9 95.8 78.1 87.7 98.8 97.2 96.0 98.0
MON 92.7 88.7 82.8 90.7 82.7 93.1 77.7 87.6 99.1 100.0 99.1 99.5
VSK 85.8 98.4 84.6 91.7 79.7 100.0 79.7 88.7 97.9 100.0 97.9 98.9

WHUY1 87.3 91.6 80.8 89.4 77.6 98.1 76.5 86.7 97.4 97.9 95.4 97.6
WHUY2 89.7 90.9 82.3 90.3 83.0 97.5 81.3 89.7 99.1 98.0 97.2 98.5
HANC1 91.5 92.5 85.2 92.0 81.5 72.7 62.4 76.8 100.0 95.8 95.8 97.9
HANC2 90.2 93.2 84.6 91.7 85.1 69.6 61.9 76.6 100.0 100.0 100.0 100.0
MAR1 87.0 97.1 84.8 91.8 78.2 96.2 75.7 86.3 99.1 100.0 99.1 99.5
MAR2 89.7 95.2 85.8 92.4 80.6 93.7 76.5 86.7 99.1 98.9 98.0 99.0
TON 77.7 97.7 76.3 86.6 67.5 98.9 66.9 80.2 92.7 98.8 91.6 95.7

HANC3 91.3 95.9 87.8 93.5 85.4 82.2 71.7 83.8 100.0 98.9 98.9 99.4
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Table 2. Cont.

ID
Per-Area (%) Per-Object (%) Per-Object > 50 m2 (%)

CP CR Q F1 CP CR Q F1 CP CR Q F1

WHU_QC 85.8 98.7 84.8 91.8 80.9 99.0 80.3 89.0 96.8 100.0 96.8 98.4
MON2 87.6 91 80.6 89.3 86.3 93.9 81.6 89.9 99.1 100.0 99.1 99.5

WHU_YD 89.8 98.6 88.6 94.0 87.8 99.3 87.3 93.2 99.1 100.0 99.1 99.5
MON4 94.3 82.9 79.0 88.2 83.9 93.8 79.3 88.6 99.1 100.0 99.1 99.5
MON5 89.9 90.3 82 90.1 87.2 96.3 84.4 91.5 99.1 100.0 99.1 99.5

[12] 94.0 94.9 89.5 94.4 83.3 100.0 83.3 90.9 100.0 100.0 100.0 100.0
[23] 89.8 98.6 88.6 94.0 87.8 99.3 87.3 93.2 - - - -
[37] 93.4 95.8 89.6 94.6 - - - - - - - -

WHU_TQ 95.5 91.5 87.7 93.5 84.5 99.0 83.7 91.2 99.1 100.0 99.1 99.5

Table 3. Average evaluation results comparison of the building extraction (Area 4 to 5). (The best
values per column are shown in the bold font.).

ID
Per-Area (%) Per-Object (%) Per-Object > 50 m2 (%)

CP CR Q F1 CP CR Q F1 CP CR Q F1

TUM 85.1 80.6 70.6 82.7 83.9 90.3 76.9 87.0 88.2 92.5 82.3 90.3
MAR1 96.1 92.1 88.7 94.0 98.7 86.8 85.8 92.4 98.6 87.6 86.5 92.8

WHUY2 94.3 91.3 86.5 92.7 90.4 95.8 87.0 93.0 94.8 95.8 91.0 95.3
ITCM 76.9 87.5 69.2 81.8 86.5 21.7 20.9 34.6 89.7 70.5 65.2 78.9
ITCR 75.0 94.5 71.9 83.6 79.6 43.5 39.1 56.2 83.8 91.8 77.9 87.6

MAR2 94.0 94.3 88.9 94.1 91.3 91.9 84.5 91.6 95.7 96.8 92.8 96.2
MON2 95.9 92.2 88.7 94.0 93.4 81.1 76.7 86.8 95.7 94.5 90.7 95.1
Z_GIS 91.7 90.3 83.4 91.0 95.7 86.4 83.1 90.8 96.3 87.3 84.4 91.5

WHU_YD 95.8 94.6 90.8 95.2 91.3 95.4 87.4 93.3 95.7 95.4 91.4 95.5
HKP 97.6 92.7 90.6 95.1 93.9 90.4 85.4 92.1 95.7 90.4 86.9 93.0
[23] 95.8 94.7 90.8 95.2 91.3 95.4 87.5 93.3 - - - -

WHU_TQ 98.4 90.2 88.9 94.1 96.5 78.8 76.7 86.6 98.6 89.0 88.0 93.5
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Figure 11. Visualization of building extraction results at the per-pixel level and error factors. (a) Area 
1; (b) Area 2; (c) Area 3; (d) Area 4; (e) Area 5; (f) Details of A in Area 1; (g) Details of B in Area 1; (h) 
Details of C in Area 1; (i) Details of D in Area 2; (j) Details of E in Area 3; (k) Details of F in Area 4. 
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containing some small attachments (seems to be chairs, bed). As a result, points in these regions are 
rough and it is hard to effectively extracted buildings, which is a common problem for many methods 
[12,23,37]. However, if the attachments locate in large roof terrace, then the roof terrace can be 
extracted under consistency constraint, which is demonstrated in the green rectangle region in Figure 
11g. The phenomenon also occurs in Area 5, shown in green circle in Figure 11e. (2) Occlusion by 
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a result, partially non-occluded buildings are extracted successfully. When a small building is 
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low height. Generally, a building should be high enough for people going in and out. However, in 
Figure 11i, the maximal absolute height difference between building and ground is about 1.0 m, less 
than 1.5 m, and many building points’ height are almost equal to ground. In [12,41], points in Figure 
11i were wrongly classified as ground due to the above reasons. In this case, buildings failed to be 
extracted. Actually, without height constraint, points in this region are extracted in our experiments. 
The phenomenon also occurs in Area 4, shown in green rectangle in Figure 11d. (4) Data missing. 
Possibly due to the building roof material shown in Figure 11j, partial point cloud data of building 
are collected. Thus, partial buildings are extracted by the proposed method. A possible solution to 
solve the problem is to fuse LiDAR data and images. 

Figure 11. Visualization of building extraction results at the per-pixel level and error factors. (a) Area
1; (b) Area 2; (c) Area 3; (d) Area 4; (e) Area 5; (f) Details of A in Area 1; (g) Details of B in Area 1;
(h) Details of C in Area 1; (i) Details of D in Area 2; (j) Details of E in Area 3; (k) Details of F in Area 4.

From Figure 11, most buildings can be correctly extracted by the proposed method. Although some
vegetation with smooth surfaces are wrongly classified as buildings (green rectangle in Figure 10b),
they are eliminated under the consistency constraint. Also, there are lots of long greenbelts vegetation
area with the same height above 1.5 m, and points of these long greenbelts are classified as buildings
due to their flat surfaces (shown in green rectangle in Figure 10c). These are eliminated using the
maximum intersection angle constraint. However, some building attachments are omitted (hereinafter
referred to as false negative errors) and some non-building points are wrongly classified as buildings
(hereinafter referred to as false positive errors).

False negative errors can be explained by four main reasons: (1) Complex structure of buildings.
In Figure 11f, there is a skylight (about 3.0 m ∗ 4.0 m) and a roof terrace (about 2.5 m * 3.0 m)
containing some small attachments (seems to be chairs, bed). As a result, points in these regions
are rough and it is hard to effectively extracted buildings, which is a common problem for many
methods [12,23,37]. However, if the attachments locate in large roof terrace, then the roof terrace can
be extracted under consistency constraint, which is demonstrated in the green rectangle region in
Figure 11g. The phenomenon also occurs in Area 5, shown in green circle in Figure 11e. (2) Occlusion
by vegetation. The blue rectangle in Figure 11g is a building roof, and partial buildings are occluded.
As a result, partially non-occluded buildings are extracted successfully. When a small building is
partially occluded by vegetation, then the whole individual building is omitted. (3) Building with
low height. Generally, a building should be high enough for people going in and out. However,
in Figure 11i, the maximal absolute height difference between building and ground is about 1.0 m,
less than 1.5 m, and many building points’ height are almost equal to ground. In [12,41], points in
Figure 11i were wrongly classified as ground due to the above reasons. In this case, buildings failed to
be extracted. Actually, without height constraint, points in this region are extracted in our experiments.
The phenomenon also occurs in Area 4, shown in green rectangle in Figure 11d. (4) Data missing.
Possibly due to the building roof material shown in Figure 11j, partial point cloud data of building are
collected. Thus, partial buildings are extracted by the proposed method. A possible solution to solve
the problem is to fuse LiDAR data and images.

Conversely, false positive errors occur for two main reasons: (1) Surrounding vegetation with
height similar to building and smooth surface. Due to the fact that graph cuts algorithm considers
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the neighborhood relationship based on feature difference and the features are calculated using
neighborhoods, then building regions are easy to overspread to partial vegetation areas, shown in
Figure 11h. Although the problem can be solved by decreasing smooth term, completeness will
decrease for lack of neighborhood information. (2) Non-building objects similar to buildings. Figure 11k
illustrates a non-building object with flat surfaces and large size, and it is hard to discriminate them from
buildings merely according to commonly used constraints, such as height constraint, area constraint,
and the maximum intersection angle constraint. As a result, it is wrongly classified as building.
This phenomenon also occurs in Area 5 in green rectangle in Figure 11e. A possible solution to this
problem is the fusion of LiDAR data and other data sources.

3.2. Experiments on Other Two LiDAR Datasets

3.2.1. Data Description

Two datasets with different point density are used, one of which is captured in New Zealand [60]
and the other which is captured in state of Utah [61]. The average point density of New Zealand
dataset is about 20 points/m2, while Utah dataset is about 3 points/m2, as shown in Figure 12.
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Figure 12. Test datasets. (a) New Zealand dataset; (b) Utah dataset. Figure 12. Test datasets. (a) New Zealand dataset; (b) Utah dataset.

New Zealand dataset: includes two buildings with curved roofs and several large connected
complex buildings.

Utah dataset: includes dense residential buildings with significantly different sizes, shapes and
structures surrounded by vegetation.

3.2.2. Results and Analysis

New Zealand dataset and Utah dataset have been classified into four classes: ground, vegetation,
building, and others by using LiDAR_Suite and manual post-processing. Therefore, the obtained
buildings are used as truth data in the experiments. Building extraction results at the per-pixel level of
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these two datasets are illustrated in Figure 13, and quantitative evaluation results of building extraction
at the area level are shown in Table 4.
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Figure 13. Building extraction at the per-pixel level. (a) Results of New Zealand dataset; (b) Details in
New Zealand dataset; (c) Results of Utah dataset.

Table 4. Evaluation results of building extraction at the area level.

Data
Precision (Per-Area)

CP (%) CR (%) Q (%) F1

New Zealand dataset
Utah dataset

98.4 94.7 93.2 96.5
95.3 92.3 88.3 93.8

In New Zealand dataset, the large complex connected buildings and the buildings with curved
roofs are successfully extracted, as shown in Figure 13a,b. It should be noted that the Q (%) in New
Zealand dataset is 93.2%, significantly larger than Utah dataset with 88.3%. The reason may include:
(1) New Zealand dataset is high-density point data with 20 points/m2, and more accurate details can
be obtained when point density increases [47], which is beneficial to building extraction; (2) Buildings
are far from vegetation and slightly occluded by vegetation.

In Utah dataset, although the sizes, shapes and structures of buildings are significantly different,
most buildings are successfully extracted by the proposed method. However, three buildings
(green rectangles in Figure 13c) fail to be extracted completely, due to two main possible reasons:
(1) Data missing. Possibly due to the building roof material, partial building points of these three
buildings are collected, as shown in Figure 12b. As a result, points are rough in these local areas
and partial points are classified as buildings and others are not. (2) The maximum intersection angle
constraint. Some non-building and building points mix together after performing graph cuts algorithm
due to missing data, then these building points are eliminated under the maximum intersection angle
constraint due to its calculation theory. Despite the aforementioned problems, buildings with complete
data are extracted successfully, as shown in Figure 13c.

4. Discussion

Point features, parameters x0 of the logistic function to normalize each feature, weight λ1, λ2 of
each feature in the data term and smooth term are important to the final results. Therefore, discussions
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about the proposed feature, above parameters setting and the running time of the proposed method
are conducted in this section.

4.1. Discussion of fv

In the proposed method, point feature fv based on variance of LRSC-based normal vector
(hereinafter referred to as fLRSC), is used to discriminate building points from vegetation. To evaluate
its performance, a comparison between fLRSC and feature fv based on PCA-based normal vector
(hereinafter referred to as fPCA) is conducted using Area 1 to 3 datasets. In the comparison, only fLRSC
or fPCA is used to extract buildings in the proposed method. Quality Q (%) metric on a per-area level is
used to measure the accuracy of building extraction, shown in Figure 14.
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Figure 14. Q (quality) metric on a per-area level of extraction results. (a) Q of Area 1; (b) Q of Area 2;
(c) Q of Area 3; (d) Average Q.

In Figure 14, the accuracy of fPCA significantly changes for different x0 compared with fLRSC in
Area 1 to 3, which indicates fPCA is more sensitive to the feature threshold parameter x0. Moreover,
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Q difference between two features is larger in Area 1 than in Area 2 and 3. This is because Area 1
includes rather complex historic buildings composed of irregular roof planes with different slopes,
while roofs of most buildings in Area 2 are horizontal and structures of buildings in Area 3 are simple
and regular. Moreover, low-rank subspace clustering (LRSC) technique can calculate accurate normal
vectors compared with PCA [48]. It indicates fLRSC perform much better than fPCA to extract buildings
in complex scenes.

4.2. Discussion of Parameters Setting

Parameter x0 of fLRSC is set to 1.0 according to the results in Figure 14. The Q (%) on a per-area
level is used to study the optimal x0 of fc using Area 1 to 3 datasets. Note that only fc is used in the
proposed method, and Q is shown in Figure 15a. It can be seen that Q is more sensitive to x0 in Area 1
than in the other two areas, possibly due to the complex buildings, and Q reaches the maximum when
x0 is set to the proper value for these three areas. According to the average results, when the optimal
x0 of fc is set to 0.06, the highest Q is obtained.
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When analyzing the weight parameters λ1, λ2, one is adjusted from 0 to 1 and the other is
correspondingly set as from 1 to 0. The metric Q on a per-area level is used to study the optimal λ1 and
λ2, and the Q is shown in Figure 15b. The highest average Q is obtained when λ1 = 0.4 and λ2 = 0.6,
and accuracy will be improved by combining two features together.

4.3. Discussion of Running Time

Experiments of ISPRS datasets (i.e., Area 1 to 5) and other two LiDAR datasets (i.e., New Zealand
dataset and Utah dataset) were performed on a laptop computer with 16 GB RAM and an Intel Core
i7-7700HQ @ 2.8 GHz CPU, and a Windows 10 64-bit operating system. The proposed method was
implemented using C++ with the platform of Visual Studio 2013. It should be noted that the total
running time (T) of the proposed method is composed of two parts: time (T1) before post-processing
(i.e., Step 1 and 2) and time (T2) of post-processing (i.e., Step 3), listed in Table 5.

Table 5. Running time (s).

Item
Area ID

Area 1 Area 2 Area 3 Area 4 Area 5 New Zealand Dataset Utah Dataset

T1 14 18 20 357 307 70 127
T2 23 51 61 4831 4642 653 2239
T 37 69 81 5188 4949 723 2366

From Table 5, it can be seen that T1 are significantly less than T2 due to fact that only two
point features need to be calculated, and graph cuts and PTD algorithms are efficient [44,45,54].
Therefore, satisfying initial extraction results can be obtained using less time. Through analysis, step of
the maximum intersection angle constraint occupies the most time in the step of post-processing.
This is because large numbers of neighbors are searched to calculate angles and obtain the maximum
intersection angle to eliminate non-building points of small clusters. Area-based method can be used
to eliminate these non-building points with high efficiency [12], but it is sensitive to area threshold and
fails to eliminate large non-building point clusters with narrow width compared with the maximum
intersection angle constraint. A possible solution to the problem is the combination of area-based
method and the maximum intersection angle constraint. How to combine these two methods and their
potential influence to eliminate non-building points are worth further study. It should be noted that
running time of Area 4 and 5 is far more than Area 1 to 3 due to the fact that number of points in Area
4 and 5 is far more than Area 1 to 3, and scenes in Area 4 to 5 are more complex.

5. Conclusions

Due to the complexity of urban scenes, it is still a challenging task to extract buildings automatically.
In the paper, a building extraction method from airborne LiDAR data based on min-cut and improved
post-processing is proposed. To discriminate building points on the intersecting roof planes from
vegetation, a point feature based on variance of normal vectors via low-rank subspace clustering
(LRSC) is proposed, and non-ground points are separated into two subsets based on min-cut after
filtering. Then, an improved post-processing is adopted to refine building extraction results by
using restricted region growing and the constraints of height, the maximum intersection angle,
and consistency. Omitted points of buildings located in slopes are detected using the restricted region
growing. The proposed maximum intersection angle constraint effectively removes large non-building
point clusters with narrow width, such as greenbelt along street, overcoming the defects of area-based
methods in setting area threshold. Contextual information and consistency constraint are both used to
eliminate inhomogeneity in the process of building extraction. No manual operations are required in
the process except predefining some threshold values. Experiments of seven datasets verify that most
buildings, even with curved roofs, are successfully extracted by the proposed method. In terms of
precision, for Area 1 to 3 in Vaihingen the average Q metrics of the proposed method achieves promising
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results with 87.7%, 83.7%, and 99.1% for the per-area, per-object, per-object >50 m2 levels respectively.
And for Area 4 to 5 in Toronto, the average Q metrics are 88.9% for the per-area level. The Q metric for
the per-area level of the proposed method achieves 93.2% for high-density dataset with average point
density 20 points/m2. Moreover, the proposed point feature outperforms the comparison alternative
and is less sensitive to feature threshold in complex scenes. In addition, only two point features are
used in the proposed method, which beneficially decreases the computation cost of calculating point
features and improving algorithmic efficiency.

However, some defects still exist in the proposed method. It is still a challenge for the proposed
method to successfully extract some buildings attached by complex skylight or roof terrace due to
rough points. A feasible solution is to combine images or intensity data to obtain extra features [6,10],
which deserves further studies. In addition, there are several parameters that are adopted in
the proposed method, which reduces the full automation of building extraction. We will attempt
to construct a self-adaptive building extraction algorithm in the next step. Moreover, there are
other normalization functions available, such as min-max normalization, Z-score normalization,
etc. [66], but only logical function is employed to normalize features. How to introduce other
normalization functions to normalize feature and their potential influence to building extraction are
worth further research.
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