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Abstract: At present, small dim moving target detection in hyperspectral imagery sequences
is mainly based on anomaly detection (AD). However, most conventional detection algorithms
only utilize the spatial spectral information and rarely employ the temporal spectral information.
Besides, multiple targets in complex motion situations, such as multiple targets at different velocities
and dense targets on the same trajectory, are still challenges for moving target detection. To address
these problems, we propose a novel constrained sparse representation-based spatio-temporal anomaly
detection algorithm that extends AD from the spatial domain to the spatio-temporal domain.
Our algorithm includes a spatial detector and a temporal detector, which play different roles in
moving target detection. The former can suppress moving background regions, and the latter
can suppress non-homogeneous background and stationary objects. Two temporal background
purification procedures maintain the effectiveness of the temporal detector for multiple targets in
complex motion situations. Moreover, the smoothing and fusion of the spatial and temporal detection
maps can adequately suppress background clutter and false alarms on the maps. Experiments
conducted on a real dataset and a synthetic dataset show that the proposed algorithm can accurately
detect multiple targets with different velocities and dense targets with the same trajectory and
outperforms other state-of-the-art algorithms in high-noise scenarios.

Keywords: anomaly detection; constrained sparse representation; hyperspectral imagery; moving
target detection; spatio-temporal processing

1. Introduction

With the development of optical sensor technology, hyperspectral imagery (HSI) has been
dramatically improved in recent years, and HSI sequences are more available in the real world.
Because of adequate spectral information with dozens or hundreds of spectrum bands, the HSI
detection technique can find and distinguish dim targets, which are unobservable in the visible or
infrared images, and has promising prospects in military, security, satellite surveillance, disaster
monitoring, and other applications [1]. According to whether prior target spectral information is
utilized, the HSI detection technique can be mainly divided into target detection [2–4] and anomaly
detection. Due to factors such as camera angle, illumination, atmosphere, and sensor spatial resolution,
it is common in HSI that the same object has different spectra. Besides, no prior target spectrum is
available for most of the moving target detection scenes. Therefore, current hyperspectral moving
target detection technologies [5–12] are mainly based on anomaly detection.
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Traditional single-frame anomaly detection is usually accomplished by detecting irregular
deviations between the test pixel and background pixels in a hyperspectral image. Designed to detect
the presence of a dim target in a multi-band image, the Reed–Xiaoli (RX) algorithm [13] assumes that
the global background spectra obey a multivariate Gaussian distribution and applies the Mahalanobis
distance to identify anomaly spectra. To solve the problem that the Gaussian distribution is not
applicable to the non-stationary global background, the local version of RX [14] divides the local
neighborhood of the test pixel into potential regions and background regions by dual-windows and
replaces global statistics with local statistics. The Quasi-local-RX (QLRX) algorithm [15] improves
point-target detection by utilizing local and global statistics simultaneously. The kernel RX (KRX)
algorithm [16], a nonlinear version of RX, maps spectra into a more high-dimensional characteristic
space through a kernel function and outperforms the original RX detector in military target and mine
detection. The cluster KRX (CKRX) algorithm [17] improves the performance of KRX by replacing
background pixels with cluster centers. Support vector data description (SVDD) algorithms [18,19]
also determine anomalies in a high-dimensional characteristic space by building a minimal enclosing
hypersphere around local background pixels. Sparse representation (SR)-based algorithms [20–27]
have made significant progress in anomaly detection in recent years. These algorithms usually assume
that background pixels can be presented as linear combinations of the surrounding background,
and anomaly pixels cannot. The collaborative representation (CR)-based algorithm [22] adopts
l2-norm minimization to reinforce the collaboration of background representation and is superior
to RX and its improved algorithms. To realize the detection of dense small targets, the constrained
sparse representation (CSR)-based algorithm [23] imposes two constraints on abundance vectors and
can remove anomalous atoms from the local background dictionary. Because background pixels
and target pixels are considered low rank and sparse, respectively, low-rank and sparse matrix
decomposition-based algorithms [28–30] have also received widespread attention in anomaly detection.

When a hyperspectral staring camera is continuously imaging at short intervals, anomaly detectors
can output detection maps in succession. Usually, anomaly detection maps of a hyperspectral
imagery sequence can be regarded as an infrared image sequence. Therefore, multi-frame infrared
detection or tracking algorithms can be used to detect or track dim moving targets on these maps.
Rotman et al. combined hyperspectral target detection and infrared target tracking for the first
time [5–7]. They transformed each HSI into a two-dimensional anomaly detection map and then
utilized a variance filter (VF) [31] to detect targets moving at subpixel velocity. Besides, Duran et al.
focused on tracking small dense objects, such as pedestrians or vehicles, from airborne platforms [8–10].
They adopted endmember techniques to detect subpixel targets and estimated the motion parameters
of targets under the framework of the Bayesian filter. Wang et al. proposed a novel temporal anomaly
detector in dim moving target detection, which extracts the local spatial background in the previous
frame to mine the singularity of the test pixel [11]. Combining the traditional single-frame detection
with their proposed temporal detection can effectively reduce temporal noise clutter. Then, Wang et al.
introduced a simplified VF to calculate a trajectory history map in the literature [12]. The fusion of the
spatial detection map, the temporal detection map, and the trajectory history map (STH) is superior to
previous moving target detection algorithms in hyperspectral imagery sequences.

In summary, current anomaly detection algorithms for moving targets still only utilize the spatial
neighborhood background of the current frame or the previous frame. However, static or non-moving
objects for which the spectra are different from neighborhoods can be regarded as anomaly targets by
these detection algorithms. Temporal profile filtering algorithms can detect moving targets, but ask for
prior information about speed. Besides, detecting targets in complex motion, such as multiple targets
at different velocities and dense targets on the same trajectory, is still a challenge for temporal profile
filtering-based algorithms [5–7,11]. To solve these problems, we propose a CSR-based spatio-temporal
anomaly detector (CSR-ST), sufficiently employing temporal spectral information in HSI sequences.
Unlike hyperspectral change detection (CD) [32,33], which detects anomaly regions under diurnal and
seasonal changes, moving target detection asks for a very short interval between frames. This means
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that camera angle, illumination, weather, and other imaging conditions are almost unchanged in
adjacent frames. After frame registration, the spectrum of the same pixel can be regarded as a mixture
of spectra in a small local region, only affected by the temporal clutter in different frames. Based on this
assumption, we propose a novel temporal anomaly detection framework that calculates the anomaly
score of the test pixel employing its former spectra. In our previous work [23], the CSR detector was
based on the assumption that a background pixel can be linearly represented by the endmembers
present in its spatial neighborhood while an anomaly pixel cannot. Compared to background spectra
in the spatial neighborhood, the former spectra of the test pixel in previous frames can provide more
pure background endmembers to represent the current spectrum. Therefore, the CSR-based temporal
detector has a better ability to recover the test background pixel than the CSR-based spatial detector.
Besides, the temporal detector has two insurances to construct a pure temporal background dictionary
for the test pixel. The first insurance is to remove potential target spectra from the candidate set
of the temporal background dictionary based on spatial detection results. The other insurance is
to automatically remove anomaly atoms from the background dictionary when the corresponding
abundances are higher than a given upper bound and then solve the model with the new background
dictionary. Non-homogeneous background pixels or stationary objects can turn into false alarms in the
single-frame detection, while the temporal detector is mainly sensitive to moving targets. However,
when some background regions move in the imaging scene, the temporal detector can regard them as
targets and be inferior to the spatial detector. The fusion of the spatial detection map and the temporal
detection map combines the advantages of the two detectors and can suppress the background and
stationary objects. The main contributions of this article are summarized as follows.

1. A novel hyperspectral spatio-temporal anomaly detection algorithm is proposed. Compared to
traditional anomaly detection algorithms, the proposed algorithm utilizes the temporal spectral
information and extends the CSR algorithm from the spatial domain to the spatio-temporal
domain. The spatial detector and the temporal detector play different roles in moving target
detection. The former can suppress moving background regions, and the latter can suppress
non-homogeneous background and stationary objects. To the best of our knowledge, no literature
has introduced the historical spectra of the test pixel to construct the temporal background set in
anomaly detection yet.

2. In the CSR-based temporal detection, there are two procedures to purify the background
dictionary. The purification procedures can improve the ability of the temporal detector to
detect multiple targets in complex motion situations, such as multiple targets with different
velocities and dense targets with the same trajectory.

3. An iterative smoothing filter is executed on both spatial and temporal detection maps to suppress
the background clutter. Furthermore, the filter can strengthen the detection performance for
slow-moving area targets.

The rest of this article is organized as follows. The CSR detector and its kernel version are
introduced in Section 2. The proposed CSR-ST algorithm is described in Section 3. The experiments
conducted on a real dataset and a synthetic dataset are presented in Section 4, followed by the
conclusions in Section 5.

2. Related Work

SR-based anomaly detection algorithms usually assume that a background pixel can exist in a
low-dimensional subspace spanned by surrounding background pixels. Meanwhile, anomaly pixels
cannot be represented as a sparse linear mixture of background spectra. Suppose y is the test pixel,
which has N spectral bands, and A is the background dictionary, which has M atoms; the competing
hypotheses for the SR-based algorithms are:

H0 : y = Aα + n, background pixel

H1 : y 6= Aα + n, anomaly pixel
(1)
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where A ∈ RN×M, α is defined as a sparse vector for which each item is the abundance of the correlated
atom in A and n is defined as a random noise item.

Usually, the sparse vector α has a sparsity constraint ‖α‖0 ≤ K imposed in SR-based detection,
where K is a sparsity parameter. However, if there is no constraint on each abundance item in α,
anomaly pixels can also be linear mixtures of the background dictionary on account of abundance
items less than zero. The linear spectral mixture model (LMM) [34] supposes that the abundance vector
α of a mixed pixel should satisfy a sum-to-one constraint:

M

∑
l=1

αl = 1 (2)

and a non-negativity constraint:

αl ≥ 0, l = 1, · · · , M. (3)

The CSR algorithm introduces Equations (2) and (3) into the SR model, and the minimizing
problem of CSR can be expressed as:

min
α
‖y− Aα‖2 s.t. ‖α‖0 ≤ K

eT α = 1

αl ≥ 0, l = 1, · · · , M

(4)

where e represents an M × 1 vector for which each item is one. The objective function can be
converted to:

‖y− Aα‖2 =
√

αT AT Aα− 2yT Aα + yT y (5)

Note that yT y is a constant and can be removed. If the test pixel is anomalous and the background
dictionary contains a few anomaly pixels, the corresponding entries of α can be enormous, resulting in
a small reconstitution residual. To avoid missing alarms, an adequately tiny constant C is introduced
as an upper limit of α, and Equation (4) can be transformed as:

min
α

αT AT Aα− 2yT Aα s.t. eT α = 1

0 ≤ αl ≤ C, l = 1, · · · , M
(6)

where C ∈ [1/M, 1]. According to the Karush–Kuhn–Tucker conditions [35], the constraint ‖α‖0 ≤ K
in Equation (4) can be removed in Equation (6).

When abnormal pixels are tested, the abundances correlated with similar anomalous atoms
can reach the maximum. Accordingly, the atoms for which the abundances are C have a significant
possibility of being anomalies and should be eliminated from the background dictionary. A pure
dictionary Ã can be built by the remaining atom. With the constraint 0 ≤ α̃i ≤ 1 and Ã, reconstruction
residuals of anomalous test pixels will be significantly higher than those in the first reconstruction and
can be regraded as anomaly scores.

r =
√

α̃∗T ÃT Ãα̃
∗ − 2yT Ãα̃

∗
+ yTy (7)

where α̃∗ is the approximately calculated sparse vector without anomalous atoms in the background
dictionary Ã.

Given secondary or multiple scattering in the atmosphere, spectrum mixing usually is a nonlinear
process [36]. The kernel methods map the original data into a more high-dimensional characteristic
space via nonlinear functions and then achieve linear partition of the linearly inseparable data [37].
Skillfully, the inner product in the characteristic space can be replaced by:
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〈
φ (xi) , φ

(
xj
)〉

= k
(

xi, xj
)

(8)

where φ is a nonlinear function, xi and xj are the original data, and k is the kernel function.
The kernel CSR (KCSR) algorithm introduces the kernel method and adopts the Gaussian radial
basis function kernel:

k
(
xi, xj

)
= e−γ‖xi−xj‖2

2 . (9)

The optimal problem is replaced by:

min
α

αT Kα− 2Kyα s.t. eT α = 1

0 ≤ αl ≤ C, l = 1, · · · , M
(10)

where K is an M × M Gram matrix for which the i-th row and j-th column item Ki,j = k
(
ai, aj

)
.

Ky = φ (y)T φ (A) and can also be replaced by:

Ky = k (A, y)

=
[
k (a1, y) k (a2, y) · · · k (aM, y)

]
.

(11)

Likewise, the atoms for which abundances are C are removed, and then, a pure background
dictionary Ã is used to solve Equation (10). Therefore, the anomaly score can be replaced by:

r =
√

α̃∗TK̃α̃
∗ − 2K̃T

y α̃∗ + k (y, y) (12)

where r is the approximate error and K̃ and K̃y are both solved by Ã.

3. Spatio-Temporal Anomaly Detection for Moving Targets

In this section, a novel CSR-based spatio-temporal anomaly algorithm is proposed to detect dim
moving targets accurately in HSI sequences. Our algorithm is divided into four steps, namely spatial
anomaly detection, iterative smoothing filter, temporal anomaly detection, and spatial-temporal fusion.
The spatial anomaly detection finds abnormal targets by utilizing the spectral information of the
current frame. An iterative smoothing filter can reduce noise and false alarms in the time and space
domains. Different from AD, CD, and the temporal detection [12] using the information between two
adjacent frames, our proposed temporal anomaly detection constructs background dictionaries with
the historical spectral curves of the test pixels. The proposed temporal anomaly detection explores
anomaly characteristics in the time dimension and provides anomaly information different from that
in the spatial detection. The fusion of spatial and temporal anomaly detection can explore the target
information more comprehensively. The framework of the proposed CSR-ST algorithm is displayed in
Figure 1.
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Figure 1. The framework of the proposed CSR-ST algorithm. (a) The schematic diagram of the
CSR-based spatial and temporal detectors. (b) The program flowchart of the smoothing filter and
fusion on the spatial and temporal detection maps.

3.1. Spatial Anomaly Detection

Let X i =
{

x1
i , x2

i , · · · , xd1×d2
i

}
∈ RN denote a hyperspectral cube collected in the current frame,

where i is the current sequence number, d1 and d2 are defined as the space sizes of the cube, and N is
the quantity of spectral bands. Dual concentric windows [38] are used to extract a spatial background
dictionary for each pixel xj

i . The dual-windows are centered at each test pixel and divide the
neighborhood into a potential target region and a background region. Pixels in the background
region are selected as atoms to form a background dictionary Aj

i . Then, the spatial anomaly score sj
i

of the test pixel xj
i is solved by the CSR detector with the corresponding background dictionary Aj

i .
After all pixels on X i are detected in sequence, a two-dimensional spatial detection map Si is obtained:

Si =


s1

i · · · sd2
i

...
. . .

...

sd1×(d2−1)+1
i · · · sd1×d2

i

 . (13)
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3.2. Iterative Smoothing Filter

The spectra change with time due to the measurement noise, resulting in temporal fluctuation of
anomaly scores. Meanwhile, spatial background clutter is also generated in the detection maps due to
the fluctuation. The literature [17] has used a simple smoothing filter as a post-processing procedure
to decrease false alarms and noise in detection maps. Inspired by [17], an iterative smoothing filter is
adopted to reduce noise both in the spatial and temporal domains simultaneously.

To avoid the overall drift of anomaly scores on the spatial detection map Si caused by sudden
changes in imaging conditions, Z-score normalization should be first performed:

S̄i =
Si − µ

σ
. (14)

In typical image preprocessing, µ and σ are the mean value and standard deviation of pixels
in the whole image, respectively. However, because anomaly scores of anomalous pixels are much
higher than those of background pixels on Si, it is more accurate to describe the distribution of sj

i by
a truncated normal distribution or a half-normal distribution [39] rather than a normal distribution.
Therefore, it is more reasonable to set µ and σ to the mean value and standard deviation of the collection
of Si and its symmetric set about zero.

Then, an iterative smoothing operation is performed on S̄i to reduce spatial and temporal clutter:

s̃j
i = (1− ρ) s̃j

i−1 + ρ ∑
l∈L(j)

ε l s̄l
i (15)

where s̄l
i is the normalized spatial anomaly scores of xl

i , s̃j
i and s̃j

i−1 are the smoothed spatial anomaly

scores of xj
i and xj

i−1, respectively, L denotes the spatial neighborhood used for smoothing, and ρ and
ε l denote filter weights. When the first spatial detection map is smoothed, let ρ = 1. The latter part
of Equation (15) is actually a spatial smoothing filter such as the mean filter or the Gaussian filter.
Furthermore, one-dimensional denoising algorithms can also replace the temporal iterative smoothing
part of Equation (15) to reduce temporal clutter. Compared to the original spatial detection map Si,
background clutter and noise on S̃i are suppressed, and detection performance can be improved.

3.3. Temporal Anomaly Detection

Note that, using the dual-window strategy to select a background dictionary has several
disadvantages. Firstly, the selection of an inappropriate dual-window size can cause the local
background to be contaminated by target pixels in spatial anomaly detection. If the inner window
of dual-windows is too small, the chosen local background of the test target pixel can contain
some target pixels. Moreover, the contamination problem can also occur when multiple targets
are densely distributed. Secondly, the spatial distributions of moving targets are usually unknown
and change in the real world. Therefore, it is difficult to determine the optimal dual-window size
to detect moving targets in advance. Thirdly, the performance of these algorithms still varies with
the dual-window size, and the best performance of the dual-window-based AD algorithms is a local
optimum. For instance, detection results can be further improved after combining with a weight matrix
obtained by segmentation or clustering in the literature [40,41], where background pixels are assigned
lower weight values. An interesting phenomenon is that the best local background of some detection
algorithms for subpixel targets are eight neighborhoods [42], and large dual-windows are harmful
to these algorithms. Fourthly, the dual-window-based spatial detection cannot eliminate motionless
objects, the spectra of which are also different from the background spectra.

To accurately detect moving targets in HSI sequences, we propose a new approach for constructing
background dictionaries of test pixels. Compared to hyperspectral CD, the interval between
two contiguous frames in moving target detection is short; thus, the camera angle, illumination,
weather, and other imaging conditions are almost unchanged. In this case, the spectrum of the same
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object in short HSI sequences can only be affected by the measured noise. Moreover, due to camera
shake and the error of frame registration, the imaging space corresponding to the same pixel in the
HSI moves back and forth in a local background region. Therefore, it can be assumed that the spectra
of the same pixel in adjacent frames, xj

i , xj
i−1, xj

i−2, ..., xj
i−P, are a linear combination of the same set of

endmembers. According to the LMM, the current pixel xj
i can be expressed as a linear combination of

its former spectra xj
i−1, xj

i−2, ..., xj
i−P:

xj
i =

P

∑
l=1

xj
i−l βl + n = Bj

i β + n s.t.
P

∑
l=1

βl = 1

βl ≥ 0, l = 1, · · · , P

(16)

where Bj
i is defined as the former spectra matrix, β is defined as the abundance vector, P is defined as

the number of former spectra, and n is defined as the noise item.
Equation (16) means that the test pixel xj

i and its former spectra xj
i−1, xj

i−2, ..., xj
i−P can be also

applied to the CSR detector. Bj
i and xj

i can be considered to consist of the same set of background

endmembers. In the spatial anomaly detection, the background dictionary Aj
i constructed by the

dual-window strategy contains some endmembers independent of xj
i . Compared to Aj

i , Bj
i is more

suitable as a background dictionary for the CSR and KCSR detectors. In this subsection, temporal
anomaly detection is defined as a method to calculate the anomaly scores of the test pixel xj

i in the

current frame by using its former spectra Bj
i . Because the positions of non-homogeneous background

pixels or motionless objects are almost unchanged in the HSI after inter-frame registration, the temporal
anomaly detection can avoid false alarms caused by these pixels.

However, Bj
i is not a pure background dictionary sometimes. When the target is moving slowly,

it takes more than one frame to pass through a pixel. In this case, if xj
i is a target pixel, it is possible

that its former spectra are also target spectra. Besides, if the trajectories of moving targets intersect,
the former spectra of pixels at the intersection can also be contaminated by targets. Therefore, we
delete the abnormal atoms in Bj

i based on the spatial anomaly detection results. ND and NC are defined
as the number of atoms in the background dictionary and its candidate set, respectively. Specifically,
for the test pixel xj

i in the current frame, smoothed spatial anomaly scores s̃j
i−1, s̃j

i−2, ..., s̃j
i−NC

of its

former spectra are sorted at first. In order from smallest to largest, the sort result is s̃j
m1 , s̃j

m2 , ..., s̃j
mNC

,
where the subscripts m1, m2, ..., mNC are the sequence numbers. The smaller the spatial anomaly score
is, the higher the probability that the corresponding former spectrum belongs to the background.
Therefore, ND former spectra xj

m1 , xj
m2 , ..., xj

mND
are selected to construct a pure background dictionary

B̄j
i for the test pixel xj

i . Then, the minimizing problem in the CSR algorithm can be transformed as:

min
α

αT B̄j
i
T

B̄j
iα− 2xj

i
T

Aα s.t. eTα = 1

0 ≤ αl ≤ C, l = 1, · · · , ND

(17)

where C ∈ [1/ND, 1]. The background dictionary B̄j
i can be further purified by removing the atoms

with α = C. The temporal anomaly detection result tj
i of xj

i is transformed as:

tj
i =

√
α̃∗T B̃j

i
T

B̃j
i α̃
∗ − 2xj

i
T

B̃j
i α̃
∗ + xj

i
T

xj
i (18)

where α̃∗ is the approximately calculated sparse vector without anomalous atoms in the background
dictionary B̃j

i and tj
i is the l2-norm of the approximate error. Similarly, the KCSR algorithm can

also be applied to the temporal anomaly detection. After all pixels on X i are detected in sequence,
a two-dimensional temporal detection map T i is obtained.
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The lower limit of the constraint parameter C is connected with the number of anomalous atoms
in the background dictionary. To obtain a convenient setting of C in the spatial and temporal anomaly
detection, C can be represented as:

C =
1

νND
(19)

where ν ∈ [1/ND, 1]. If ν < 1/ND and C > 1, then the inequality constraint αl ≤ C is invalid.
To further explore the meaning of ν, two definitions are given as follows:

η1 =
Na

ND
(20)

η2 =
∑Na

l=1 αl
a

ND
(21)

where Na is defined as the number of anomalous atoms and αl
a is defined as the abundance relevant

to the anomaly endmember in the LMM of the l-th anomalous atom. In the hyperspectral AD,
0 ≤ η2 ≤ η1 � 1. We proofed a proposition of the parameter ν in the article [23]:

Proposition 1. To delete all anomalous atoms from the background dictionary, ν must satisfy:

v ≥ max (η1, η2/αa) (22)

where αa is defined as the abundance relevant to the anomaly endmember in the LMM of the test pixel.

The proposition gives an intuitive interpretation of ν. When ν is larger than max (η1, η2/αa),
all anomalous atoms can be deleted. Regardless of spatial detection or temporal detection, αa of the
same test pixel is constant. Therefore, it is practicable to set ν to the same value in both detections. η1

and η2/αa in temporal detection can be set to values smaller than those in spatial detection by reducing
the proportion of anomalous atoms in B̄j

i . One method is to enlarge ND, the size of B̄j
i . Another method

is to decrease Na, the number of anomalous atoms, by enlarging the size of the candidate set Bj
i or

sample the former spectra at intervals before constructing Bj
i . Through the above operations, the lower

limit of ν in temporal detection is less than that in spatial detection. When ν is set to an excessively
large value, numerous background atoms are exorbitantly deleted, resulting in slight degeneration in
the ability of the CSR and KCSR algorithms to represent test background pixels. Therefore, ν should
be a trade-off value between the inadequate deletion of anomalous atoms and unnecessary deletion in
spatial detection. The same ν can cause the excessive deletion of atoms in temporal detection, but a
large ND can avoid this situation.

3.4. Spatio-Temporal Fusion

Compared to the spatial anomaly detection, the temporal anomaly detection can suppress spatially
non-homogeneous background pixels and stationary objects. Furthermore, compared to the temporal
profile filtering algorithms, the proposed temporal anomaly detection can identify moving targets with
different speeds simultaneously and is robust to the situation where multiple targets pass through
the same trajectory one after the other. However, the temporal detection is inferior to the spatial
detection in some situations. If there are some moving background pixels in the scene, such as clouds,
temporal anomaly detection can judge them as targets. Besides, if the frame registration error is too
large, the temporal background dictionary cannot describe the background accurately. To improve the
stability and robustness of the detection algorithm, it is necessary to combine spatial and temporal
detection results.

Before fusion, the filtering operation in Section 3.2 can also be performed on the temporal detection
map T i. First, perform Z-score normalization on T i:
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T̄ i =
T i − µ

σ
. (23)

where µ and σ are set to the mean value and standard deviation of the collection of Si and its symmetric
set about zero. Then, the same iterative smoothing operation as Equation (15) is performed on T̄ i to
reduce temporal clutter:

t̃j
i = (1− ρ) t̃j

i−1 + ρ ∑
l∈L(j)

ε l t̄l
i (24)

where t̄l
i is the normalized temporal anomaly scores of xl

i and t̃j
i and t̃j

i−1 are the temporal spatial

anomaly scores of xj
i and xj

i−1, respectively. The smoothed detection maps can be combined by the
multiplication fusion strategy:

ST i =
S̃i −min

(
S̃i
)

max
(
S̃i
)
−min

(
S̃i
) ◦ T̃ i −min

(
T̃ i
)

max
(
T̃ i
)
−min

(
T̃ i
) (25)

where max
(
S̃i
)

and max
(
T̃ i
)

are the maximum values in S̃i and T̃ i, min
(
S̃i
)

and min
(
T̃ i
)

are the
minimum values in S̃i and T̃ i, the symbol ◦ denotes the Hadamard product, and ST i is the fusion
spatio-temporal detection map. The overall description of the proposed spatio-temporal anomaly
detection is presented in Algorithm 1.

Algorithm 1 CSR-based spatio-temporal anomaly detection for moving targets

Input: Hyperspectral sequences, dual-window size (win, wout), temporal background dictionary size
ND, candidate set size NC, parameter ν, and kernel parameter γ for KCSR.

for each frame X i in the hyperspectral sequences do

1. for each pixel xj
i in X i do

(a) Collect the spatial background dictionary based on the hollow window;

(b) Calculate the spatial anomaly score sj
i by the CSR or KCSR detector;

2. Smooth the spatial detection map Si by Equations (14) and (15);
3. if i > NC then

(a) for each pixel xj
i in X i do

i. According to the sorting of smoothed spatial detection results ŝj
i−1, ŝj

i−2, ..., ŝj
i−NC

,

select ND dictionary atoms from former spectra xj
i−1, xj

i−2, ..., xj
i−NC

to construct the

temporal background dictionary B̄j
i ;

ii. Calculate the temporal anomaly score tj
i by the CSR or KCSR detector;

(b) Smooth the spatial detection map T i by Equations (23) and (24);
(c) Calculate the spatio-temporal fusion map ST i by Equation (25);

end if

Output: Spatio-temporal anomaly detection map ST i when i > NC.



Remote Sens. 2020, 12, 2783 11 of 26

4. Experimental Results and Discussion

In the beginning of this section, a real HSI sequence dataset and a synthetic dataset are introduced.
Subsequently, the capability of the proposed temporal anomaly detection with different background
dictionary sizes and different spatial detection results is demonstrated in detail. Additionally,
the proposed spatio-temporal anomaly detection is compared to several existing algorithms in the
detection performance.

4.1. Datasets and Evaluation Metrics

The Cloud dataset is an HSI sequence under a complex cloudy background and was collected by
the Interuniversity Microelectronics Centre of Beihang University with the xiSpec snapshot mosaic
hyperspectral cameras [12]. The dataset has a spatial size of 409 × 216 pixels and 25 spectral bands
including the 682–957 nm spectral region. The HSI sequence consists of 500 frames, where an aircraft
(Target A) rises from the bottom of the imagery. Since the distance between the camera and the
aircraft increases with the frames, the size of the aircraft decreases over time, 53 pixels in the 1st frame
and 21 pixels in the 500th frame, resulting in a descending spectral difference from the background.
However, because of the aircraft’s speed on HSIs also decreases, the number of frames that the aircraft
needs to pass through a pixel increases. Three small flying targets (Target B, Target C, and Target D)
with no more than 10 pixels exist in the 250th–393rd, 256th–363rd, and 417th–466th frames, respectively,
and their velocities are all greater than 5 pixels per frame. As shown in Figure 2, there is a noise clutter
in the cloudy background.

(a) (b) (c) (d)

Figure 2. False color local image around targets in the Cloud dataset. (a) Target A in the 50th frame.
(b) Target A in the 500th frame. (c) Target B and Target C. (d) Target D.

The synthetic dataset is based on the Terrain dataset acquired by the Hyperspectral Digital Image
Collection Experiment sensor. The dataset has a spatial size of 180 × 180 pixels and 210 spectral bands
including the 400–2500 nm spectral region, as shown in Figure 3a. The spatial resolution is 1 m, and the
spectral resolution is 10 nm. The water absorption and high noise bands are deleted, and one-hundred
sixty-two spectral bands are usable in the experiments. According to the LMM, synthetic targets can
be added to the Terrain dataset by:

ã = (1− λ) b + λa + n (26)

where a is a pure target spectrum, b is an original background spectrum, ã is a mixed target spectrum,
n is the added zero mean Gaussian noise vector, and λ is the target abundance to be set. Considering
that the radiation response interval of the background varies with bands, Gaussian noise with
different variance is added to each band of a hyperspectral cube. Noise intensity is adjusted by
the signal-to-noise ratio (SNR), expressed in this dataset by:

SNRdB = 10 log10

(
σ2

b,l

σ2
n,l

)
(27)
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where σ2
b,l and σ2

n,l are the variances of the background and noise in the l-th band. Three targets with
a size of 5 × 5 pixels and a speed of 2 pixels per frame are added to the Terrain dataset and move
100 frames. The plane trajectories of targets are the same, and the distance between the two targets is
ten frames. Considering that the boundaries between neighboring objects are often accompanied by
severe spectral mixing in the real data, λ of 16 pixels on the periphery of targets is set to 10%, while
that of 9 pixels in the center of targets is set to 40%. To explore the noise immunity of CSR-ST, the
SNR is set to 20 dB, 10 dB, 5 dB, and 0 dB in turn. Figure 3b–f shows background spectra and mixed
target spectra in different noise environments. With the decrease of SNR, the discriminability between
background and mixed targets also decreases. When the SNR is 0 dB, background spectra and mixed
target spectra are almost indistinguishable.

(a)
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(f)

Figure 3. The synthetic Terrain dataset. (a) Original false color image. (b–f) Spectral curves of
background and target pixels with different noise. The blue curve is a pure target pixel; the four
red curves are background pixels; orange curves are mixed target pixels with a target abundance
of 40%; and green curves are mixed target pixels with a target abundance of 10%. (b) No noise.
(c) SNR = 20 dB. (d) SNR = 10 dB. (e) SNR = 5 dB. (f) SNR = 0 dB.

To evaluate anomaly detection performance, this article adopts the receiver operating
characteristic (ROC) curve and the area under the ROC curve (AUC). The detection probability
(Pd) and false alarm rate (Pf ) are computed on a segmentation map, which is obtained on the detection
map by a given threshold. After the threshold is iterated over, a set of Pd and Pf can be used to plot
the ROC curve. An excellent detector has an upper left ROC curve [43]. However, the ROC curve can
only qualitatively analyze detection performance. AUC [44] can give an intuitive and quantitative
description and is calculated by several trapezoids:

AUC =
1
2

n−1

∑
l=1

(Pl+1
f − Pi

f )(Pl+1
d + Pl

d) (28)

where (Pl
f , Pl

d) is defined as the l-th coordinate point and n is defined as the number of coordinate
points constituting the curve. The closer to 1 AUC values are, the better the detection algorithms are.
For the anomaly detector in an HSI sequence, the mean ROC of all frames can describe the performance.
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Considering that kernel space can represent hyperspectral data better, the proposed
spatio-temporal anomaly detection algorithm is based on the KCSR model in the following experiments.
KCSR-S, KCSR-SF, KCSR-T, and KCSR-ST denote spatial detection, smoothed spatial detection,
temporal detection, and spatio-temporal fusion detection, respectively. All the experiments were
implemented on a machine that was equipped with an Intel Core i9-9980XE CPU and 128-GB RAM,
and the programs were written in Python.

4.2. Temporal Detection Performance under Different Settings of the Temporal Background Dictionary

For the KCSR-based temporal detection, the parameter ν can be set to the same value in spatial
detection, which was analyzed in Section 3.3. Moreover, because of the same background spectra for
the spatial and temporal detection, the kernel space in spatial detection is also suitable for temporal
detection. Therefore, after the parameters of spatial detection are adjusted, the settings to be adjusted
in the temporal detection are ND and NC, denoting the sizes of the temporal background dictionary
and its candidate set, respectively. To further explain ND and NC, we define the number of removed
atoms as:

NR = NC − ND. (29)

The meaning of the candidate set is to prevent the background dictionary from the target
contamination, and NR should ensure than most of the abnormal spectra can be removed from
the candidate set.

4.2.1. Experiments on the Cloud Dataset

Traditional temporal profile filtering algorithms ask for strong prior information about the target
velocity. We count the number of frames that targets take to pass through a single pixel in the Cloud
dataset and draw the histogram. As shown in Figure 4, three-thousand two-hundred forty-one pixels
are passed through by targets in 20 frames, while only 130 pixels are passed through by targets more
than 20 frames. The latter occurs mainly in the latter half of the sequence because the airport is far
away from the camera and becomes slower in the imagery.

� �� �� �� �� �� �� ��
��
�

���

���

���

���

	
�

��
�

Figure 4. Histogram of the number of frames that targets take to pass through a single pixel in the
Cloud dataset.
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To explore the impact of the temporal background dictionary on the temporal detection
performance, we set NC to 20, 30, 50, 80, and 100, respectively. NR was set to 10, 20, 30, and 40,
respectively. Because the first 100 frames in the Cloud dataset are selected as the temporal background
candidate set, the temporal anomaly detection starts at the 101st frame. The parameters ν, γ and the
dual-window size of KCSR-S are empirically tuned to acquire the best detection capability in the first
frame. The mean AUCs of KCSR-T in the Cloud dataset are shown in Table 1. When NC is set to 20,
the mean AUC of KCSR-T becomes the worst value of 0.970966 in the table. That is because if the
dictionary candidate set size is too small, temporal background dictionaries of some target pixels can
consist mainly of target spectra. When NC is set to 50, 80, and 100, the mean AUCs of KCSR-T when NR
is 20 are better than those when NR is 10. That is because the former can remove more target spectra in
the dictionary candidate set than the latter. When NC is set to 30 and 50, the mean AUCs of KCSR-T
when ND is 10 are worse than those when ND is 20. It is indicated that a small temporal background
dictionary size is not conducive to the representation of spectral features. Moreover, the best mean
AUC in Table 1 is 0.980302 and achieved when NC is 50 and NR is 20.

Table 1. The mean AUC performance achieved by KCSR-T on the Cloud dataset with different settings
of the temporal background dictionary.

NR

NC 20 30 50 80 100

10 0.970966 0.978610 0.980203 0.978596 0.978292

20 − 0.976092 0.980302 0.979089 0.978912

30 − − 0.979407 0.979447 0.979326

40 − − 0.978459 0.979405 0.979726

4.2.2. Experiments on the Synthetic Terrain Dataset

To explore how to set the temporal background dictionary on the synthetic Terrain dataset, we set
NC to 20, 30, 40, and 50 in turn. NR was set to 10, 20, 30, and 40, respectively. The first 50 frames in the
Cloud dataset are selected as the temporal background candidate set, and the KCSR-T is performed on
the last 50 frames. The parameters ν, γ and the dual-window size of KCSR-S are empirically tuned
to acquire the best detection capability in the first frame. As shown in Table 2, when the background
dictionary size ND is fixed to 10, the worst mean AUC is achieved by NR = 20. That is because the
former spectra of target pixels contain at most 8 target spectra, and a small NR is not conducive to
removing them from the background dictionary candidate set. With SNR decreasing, the distinction
between background and target spectra decreases, and the gaps of mean AUCs between NR = 10
and other settings become larger. In addition, the best mean AUCs in the four noise conditions are
achieved by NC = 50 and NR = 20, which are 0.999258, 0.932968, 0.819948, and 0.685078, respectively.
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Table 2. The mean AUC performance achieved by KCSR-T on the synthetic Terrain dataset in four
noise conditions with different settings of the temporal background dictionary. (a) SNR = 20 dB.
(b) SNR = 10 dB. (c) SNR = 5 dB. (d) SNR = 0 dB.

a

NR

NC 20 30 40 50

10 0.997661 0.998487 0.998910 0.999168

20 − 0.998424 0.998939 0.999258

30 − − 0.998367 0.999095

40 − − − 0.998408

b

NR

NC 20 30 40 50

10 0.922512 0.926485 0.929855 0.931893

20 − 0.925626 0.930665 0.932968

30 − − 0.926307 0.930971

40 − − − 0.927911

c

NR

NC 20 30 40 50

10 0.807302 0.810852 0.814612 0.816796

20 − 0.811735 0.817965 0.819948

30 − − 0.814413 0.818968

40 − − − 0.815303

d

NR

NC 20 30 40 50

10 0.670573 0.681748 0.679998 0.682716

20 − 0.678515 0.683091 0.685078

30 − − 0.681748 0.685298

40 − − − 0.684125

4.3. Detection Performance under Different Settings of the Dual-Window

As mentioned in Section 3.3, it is different for moving target detection to set the optimal
dual-window size in advance in the spatial anomaly detection. One important reason for this is
that the sizes of moving targets can change. For the Cloud dataset, as the airplane moves away
from the camera, the aircraft size in the HSI becomes smaller. In Section 4.2.1, the dual-window size
(win, wout) of KCSR-S was set to (29, 31), which is the optimal size in the first frame. However, (29,
31) is too large for the aircraft in the 500th frame, which only has 21 pixels. To explore the impact of
different settings of the dual-window on KCSR-S and KCSR-T, we set the dual-window size to (3, 5),
(9, 11), (13, 15), (19, 21), (23, 25), and (29, 31), respectively. Considering that the iterative smoothing
filter can improve the spatial detection map of KCSR-S, KCSR-T uses the original spatial detection
results instead of smoothed results to select the temporal background dictionary in this subsection.
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As shown in Table 3, the dual-window size has a significant influence on the detection capability
of KCSR-S. The best mean AUC of KCSR-S in the 101st–500th frames is 0.970251, while the worst mean
AUC is 0.961412. However, the mean AUC of KCSR-T is better than that of KCSR-S under different
dual-window sizes and fluctuates in a small range from 0.979962 to 0.980175. To give a more intuitive
representation, we fit the variation curves of AUC with time in the 101st–500th frames by a power
function with the highest power of 15. As shown in Figure 5a, with the change of the aircraft size,
the optimal dual-window size also changes at different times. The optimal size around the 200th frame
is (23, 25) and then becomes (19, 21) in the 300th frame. When it reaches the 200th frame, the 300th
frame, the 450th frame, and the 480th frame, respectively, the optimal size is (23, 25), (19, 21), (13, 15),
and (9, 11), respectively. Although the fitted curve with a dual-window size of (29, 31) performs well
at the beginning of the sequence, the gap between the curve and the best AUC increases over time.
However, the AUC of KCSR-T is almost impervious to the dual-window size of KCSR-S. Compared
to Figure 5a, the curves with different dual-window size in Figure 5b are almost the same. There are
two reasons why KCSR-T is robust to the dual-window size of KCST-S. On the one hand, different
dual-window sizes can result in different anomaly scores of target pixels in the spatial detection, and an
unsuitable size can lead to lower anomaly scores. However, for the same pixel, even though under
unsuitable dual-window sizes, the gap between anomaly scores within and without targets is still
large enough to remove anomalous spectra in the candidate set of the temporal background dictionary.
On the other hand, KCSR-T can also automatically remove anomalous atoms from the background
dictionary during the temporal detection process. In conclusion, the proposed temporal anomaly
detection is remarkably robust to the dual-window size in the spatial detection, and the combination
of the spatial and temporal detection can overcome the disadvantages of the dual-window strategy.
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Figure 5. The fitted variation curves of AUC with time in the 101st–500th frames under different
settings of the dual-window. (a) The curves of KCSR-S. (b) The curves of KCSR-T.

Table 3. The mean AUC performance achieved by KCSR-S and KCSR-T on the Cloud dataset with
different settings of the temporal background dictionary.

(win, wout) (3, 5) (9, 11) (13, 15) (19, 21) (23, 25) (29, 31)

KCSR-S 0.961412 0.969947 0.970367 0.970251 0.968993 0.964927

KCSR-T 0.980175 0.979962 0.979918 0.980145 0.980115 0.980010

4.4. Comparison to the State-of-the-Art

In the subsection, the KCSR-ST algorithm is contrasted with several single-frame HSI anomaly
detection algorithms, including RX [13], QLRX [15], KSVDD [19], KRX [16], CR [22], KCR [22], and CSR.
Meanwhile, the proposed algorithm is also contrasted with two detection algorithms for moving targets,
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including VF [5] and STH [12]. In fairness, both VF and STH are based on KCSR in the following
experiments, denoted by KCSR-VF and KCSR-STH, respectively. All parameters of these algorithms
are empirically tuned to acquire the best detection capability at the beginning of the sequences.
The dual-window sizes are set to (29, 31) and (9, 15) for the Could and Terrain dataset, respectively.
The NC and ND on the two datasets are set to the optimal values obtained in Section 4.2. The temporal
filter weight ρ is set to 0.5, and the spatial smooth filter adopts a simple 3 × 3 mean smoothing filter.
The AUC performances and detection maps of KCSR-S, KCSR-SF, and KCSR-T are also shown to
explore the role of each step in the proposed KCSR-ST algorithm.

4.4.1. Experiments on the Cloud Dataset

The ROC curves obtained on the Cloud dataset are shown in Figure 6; the AUC values are shown
in Table 4; and the color detection maps are shown in Figure 7. These all illustrate that KCSR-ST is
superior to all single-frame and multiple-frame anomaly detection algorithms.

Table 4. The mean AUC performance obtained on the Cloud dataset.

RX QLRX KRX KSVDD CR KCR CSR KCSR-S KCSR-VF KCSR-STH KCSR-SF KCSR-T KCSR-ST

0.9371 0.9440 0.9644 0.9617 0.9360 0.9442 0.9620 0.9649 0.9784 0.9892 0.9901 0.9803 0.9976
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Figure 6. ROC curves obtained on the Cloud dataset. (a) Logarithmic abscissa; (b) linear abscissa.

As shown in Table 4, the best AUC value among single-frame anomaly detection algorithms
is 0.9649 and achieved by KCSR. Taking advantage of temporal information, the AUC values of
KCSR-VF, KCSR-STH, and KCSR-T are all higher than single-frame algorithms. The reason for this
phenomenon can be explained in Figure 7. As shown in Figure 7a, obvious vignetting exists at the
edges of false color images. Vignetting is a common phenomenon in photography, but turns edges of
HSIs into heterogeneous background pixels. Therefore, there always exists a relatively large number
of false alarms at the edges of detection maps obtained by single-frame algorithms, which is shown in
Figure 7c–j. Because KCSR-VF and KCSR-T make use of the historical spatial detection results and the
former spectra of test pixels, respectively, the heterogeneous background pixels rarely lead to false
alarms in the corresponding detection maps, which is shown in Figure 7k,n.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 7. Color detection maps obtained in the 400th frame of the Cloud dataset. (a) False color image;
(b) ground-truth map; (c) RX; (d) QLRX; (e) KRX; (f) KSVDD; (g) CR; (h) KCR; (i) CSR; (j) KCSR-S;
(k) KCSR-VF; (l) KCSR-STH; (m) KCSR-SF; (n) KCSR-T; (o) KCSR-ST.

However, the historical trajectory of Target B turns into false alarms in the detection map of
KCSR-VF in the 400th frame. That is because the VF algorithm is mainly designed to detect slow
targets, and the parameter setting of VF depends on the speed of targets. Because velocities of Targets
B, C, and D are all greater than 5 pixels per frame and go through a pixel in a frame, the temporal
variance-calculation window suitable for Target A is too long for them. As long as the temporal
variance-calculation window contains the trajectory of Targets B, C, and D, the detection results can
have high values and become false alarms in the VF detection map. Moreover, KCSR-STH combines
KCSR-VF with other spatial detection maps and is slightly affected by these false alarms, shown
in Figure 7l.

As shown in Figure 7j,m, there is much background clutter on the detection maps of KCSR-S and
KCSR-T. Compared to KCSR-S, the spatial detection map after the iterative smoothing filter, KCSR-SF,
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suppresses the background clutter and enhances the target. However, false alarms resulting from
the heterogeneous background are also enhanced in Figure 7m. KCSR-ST combines the smoothed
spatial detection map (KCSR-SF) with the smoothed temporal detection map, and the heterogeneous
background and the background clutter are entirely suppressed in Figure 7o. As shown in Figure 6a,
the ROC curve of KCSR-ST is on the upper left of those of other algorithms, which indicates that
KCSR-ST is superior to the single-frame and multi-frame anomaly detection algorithms. However,
when Pf is limited to an extremely low value range, the detection performance of KCSR-ST is inferior
to KCSR-T. As shown in Figure 6b, when Pf is 10−5, the Pd of KCSR-T is about 0.75, while that of
KCSR-ST is only about 0.35. Furthermore, when Pf is smaller than 10−5, the ROC curve of KCSR-S
outperforms KCSR-SF. This is because the iterative smoothing filter enhances target pixels and pixels
around targets. Compared to KCSR-S and KCSR-T, KCSR-SF and KCSR-ST blurred the boundary
between target and background in the detection maps. However, the iterative smoothing filter can still
be regarded as a useful strategy. Although reducing Pd when Pf is low, the enhancement improves
the ability to detect slow targets and the robustness to the different moving speeds of the targets.
For most hyperspectral anomaly detection scenarios, the focus is on whether the target exists rather
than the shape of the target. The false alarms that result from the enhancement of pixels around the
target have little influence on the judgment of whether the target exists. Besides, the enhancement
from the iterative smoothing filter can be optimized by adjusting the filter weights or changing the
smoothing strategy.

4.4.2. Experiments on the Terrain Dataset

The ROC curves achieved on the synthetic Terrain dataset under different noise environments
are shown in Figure 8; the color detection maps are shown in Figures 9–11; and the AUC results are
shown in Table 5. Our proposed KCSR-ST algorithm is considerably robust to noise and superior
to all single-frame anomaly detection algorithms. When the SNR is set to 20 dB, 10 dB, 5 dB,
and 0 dB, respectively, the corresponding mean AUC of KCSR-ST is 0.9996, 0.9959, 0.9461, and
0.7516, respectively; whereas, the best mean AUC among single-frame algorithms is 0.8402, 0.7438,
0.7057, and 0.6205, respectively. As shown in Figure 9c–j, Figure 10c–j, and Figure 11c–j, there are a
large number of false alarms on the detection maps of single-frame algorithms because some trees are
sparsely distributed in the scene.

Table 5. The mean AUC performance obtained on the synthetic Terrain dataset.

SNR RX QLRX KRX KSVDD CR KCR CSR KCSR-S KCSR-VF KCSR-STH KCSR-SF KCSR-T KCSR-ST

20 0.7696 0.8400 0.6407 0.6166 0.8199 0.8371 0.7889 0.8402 0.8829 0.8852 0.9228 0.9993 0.9996

10 0.7047 0.6778 0.6204 0.6128 0.7323 0.7438 0.6970 0.7325 0.7664 0.7769 0.8888 0.9330 0.9959

5 0.6465 0.6383 0.5881 0.6051 0.6905 0.7057 0.6591 0.6858 0.7136 0.7265 0.8162 0.8199 0.9461

0 0.5155 0.6219 0.4960 0.5705 0.6007 0.6205 0.5769 0.5943 0.5671 0.6005 0.6390 0.6851 0.7516
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Figure 8. ROC curves obtained on the synthetic Terrain dataset. (a,b) adopt logarithmic abscissas
and (c,d) adopt linear abscissas. (a) SNR = 20 dB; (b) SNR = 10 dB; (c) SNR = 5 dB; (d) SNR = 0 dB.

Although KCSR-VF and KCSR-STH are also superior to single-frame algorithms, their detection
performance is far inferior to that of KCSR-ST on the Terrain dataset. As shown in Figure 9k,
the trajectory of targets results in false alarms on the detection map of KCSR-VF. That is because
the targets share the same trajectory, and the baseline background of VF cannot be estimated accurately.
KCSR-STH combines KCSR-VF, KCSR-S, and its temporal detection and suppresses the background
and false alarms. However, because the temporal detection of STH extracts the background dictionary
of the test pixel in the forward frame by the same dual-window as KCSR-S, the false alarms resulting
from sparse trees are still on the temporal detection map of KCSR-STH and then appear in the final
fusion map, i.e., Figure 9l.
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As shown in Figure 9k, when the SNR is 20 dB, KCSR-T has an excellent ability to detect moving
targets. Although the mean AUC of KCSR-T is slightly lower than KCSR-ST, the ROC performance of
KCSR-T outperforms KCSR-ST when Pf is smaller than 10−3. As shown in Figure 8a, when Pf is 10−5,
the Pd of KCSR-T is about 0.98, while the Pds of all the other algorithm are higher than 0.25. When the
SNR is 10 dB, the mean AUC of KCSR-T is much lower that of KCSR-ST, and the ROC performance of
KCSR-T is also inferior to that of KCSR-ST. That is because the target abundances of target peripheral
pixels are lower, and then, these pixels cannot be detected by KCSR-T, which is shown in Figure 10n.
Employing the iterative smoothing filter, KCSR-ST enhances the anomaly scores of pixels around
targets and then performs prominently under the ROC and AUC evaluation metrics. When SNR comes
to 5 dB, there is much noise clutter on the detection map of KCSR-T, i.e., Figure 11n, and the mean
AUC of KCSR-T descends to 0.8199. As shown in Figure 8c, the ROC curves of single-frame algorithms
are close to the diagonal, which means that the detection abilities of single-frame algorithms of moving
targets are incredibly inferior. KCSR-ST can effectively suppress the noise clutter and false alarms on
the detection map, which is shown in Figure 11n, and its ROC performances are much better than the
other curves in Figure 8c. Even though the SNR descends to 0 dB, KCSR-ST still can detect targets.
As shown in Figure 8d, the ROC curves of other algorithms are around the diagonal, while the Pd of
KCSR-ST can reach 0.6 when the Pf is 0.1.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 9. Color detection maps obtained in the 60th frame of the synthetic Terrain dataset when
SNR = 20 dB. (a) False color image; (b) ground-truth map; (c) RX; (d) QLRX; (e) KRX; (f) KSVDD; (g) CR;
(h) KCR; (i) CSR; (j) KCSR-S; (k) KCSR-VF; (l) KCSR-STH; (m) KCSR-SF; (n) KCSR-T; (o) KCSR-ST.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 10. Color detection maps obtained in the 70th frame of the synthetic Terrain dataset when
SNR = 10 dB. (a) False color image; (b) ground-truth map; (c) RX; (d) QLRX; (e) KRX; (f) KSVDD;
(g) CR; (h) KCR; (i) CSR; (j) KCSR-S; (k) KCSR-VF; (l) KCSR-STH; (m) KCSR-SF; (n) KCSR-T;
(o) KCSR-ST.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 11. Color detection maps obtained in the 80th frame of the synthetic Terrain dataset when
SNR = 5 dB. (a) False color image; (b) ground-truth map; (c) RX; (d) QLRX; (e) KRX; (f) KSVDD; (g) CR;
(h) KCR; (i) CSR; (j) KCSR-S; (k) KCSR-VF; (l) KCSR-STH; (m) KCSR-SF; (n) KCSR-T; (o) KCSR-ST.

5. Conclusions

In the traditional single-frame anomaly detection, false alarms on stationary targets and
non-homogeneous backgrounds are unavoidable. Besides, detecting targets in complex motion is
still a challenge for multi-frame algorithms. In this article, a constrained sparse representation- based
spatio-temporal AD algorithm is proposed to identify small and dim moving targets in hyperspectral
sequences and overcomes the aforementioned drawbacks. Our algorithm includes a spatial detector
and a temporal detector. The former can suppress moving background regions, and the latter can
suppress non-homogeneous background and stationary objects. Moreover, two temporal background
purification procedures ensure the effectiveness of the temporal detector for targets in complex motion.
Experiments accomplished on the Cloud dataset and the synthetic Terrain dataset indicate that our
algorithm is superior to other classic detection algorithms. Even though the noise clutter is extreme,
our algorithm can also suppress the clutter and effectively detect small and dim moving targets.

Our algorithm provides a novel spatio-temporal anomaly detection framework for hyperspectral
remote sensing. In addition, adaptive anomaly elimination in the temporal background is a good
idea for detecting targets in complex motion. However, the proposed algorithm needs accurate frame
registration and has enormous demand for data storage equipment. Besides, the iterative smoothing
filter can effectively suppress background clutter, but blurs the boundary between the target and
the background. In future work, we will focus on reducing the algorithm’s need for inter-frame
matching and data storage and improve the iterative smoothing filter by introducing edge-preserving
filters. Furthermore, the proposed algorithm can be combined with target tracking, state estimation,
and trajectory prediction and then provide motion information about targets.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Anomaly detection
CD Change detection
HSI Hyperspectral imagery
RX Reed–Xiaoli algorithm
KRX Kernel version of RX
QLRX Quasi-local-RX
SVDD Support vector data description
KSVDD Kernel version of SVDD
SR Sparse representation
CR Collaborative representation
KCR Kernel version of CR
CSR Constrained sparse representation
KCSR Kernel version of KCR
SMO sequential minimal optimization
VF Variance filter
KCSR-VF VF based on KCSR
STH Fusion of the spatial detection map, temporal detection map, and trajectory history map
KCSR-STH STH based on KCSR
CSR-ST CSR-based spatio-temporal anomaly detector
KCSR-ST Kernel version of KCSR-ST
KCSR-S Spatial detection of CSR-ST
KCSR-SF Smoothed spatial detection of KCSR-ST
KCSR-T Temporal detection of KCSR-ST
ROC Receiver operating characteristic
SNR Signal to noise ratio
AUC Area under the ROC curve
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