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Abstract: Land Surface Temperature (LST) is a substantial element indicating the relationship
between the atmosphere and the land. This study aims to examine the efficiency of different
LST algorithms, namely, Single Channel Algorithm (SCA), Mono Window Algorithm (MWA),
and Radiative Transfer Equation (RTE), using both daytime and nighttime Landsat 8 data and in-situ
measurements. Although many researchers conducted validation studies of daytime LST retrieved
from Landsat 8 data, none of them considered nighttime LST retrieval and validation because of
the lack of Land Surface Emissivity (LSE) data in the nighttime. Thus, in this paper, we propose
using a daytime LSE image, whose acquisition is close to nighttime Thermal Infrared (TIR) data
(the difference ranges from one day to four days), as an input in the algorithm for the nighttime
LST retrieval. In addition to evaluating the three LST methods, we also investigated the effect of
six Normalized Difference Vegetation Index (NDVI)-based LSE models in this study. Furthermore,
sensitivity analyses were carried out for both in-situ measurements and LST methods for satellite
data. Simultaneous ground-based LST measurements were collected from Atmospheric Radiation
Measurement (ARM) and Surface Radiation Budget Network (SURFRAD) stations, located at different
rural environments of the United States. Concerning the in-situ sensitivity results, the effect on LST
of the uncertainty of the downwelling and upwelling radiance was almost identical in daytime and
nighttime. Instead, the uncertainty effect of the broadband emissivity in the nighttime was half of the
daytime. Concerning the satellite observations, the sensitivity of the LST methods to LSE proved that
the variation of the LST error was smaller than daytime. The accuracy of the LST retrieval methods
for daytime Landsat 8 data varied between 2.17 K Root Mean Square Error (RMSE) and 5.47 K RMSE
considering all LST methods and LSE models. MWA with two different LSE models presented the
best results for the daytime. Concerning the nighttime accuracy of the LST retrieval, the RMSE value
ranged from 0.94 K to 3.34 K. SCA showed the best results, but MWA and RTE also provided very high
accuracy. Compared to daytime, all LST retrieval methods applied to nighttime data provided highly
accurate results with the different LSE models and a lower bias with respect to in-situ measurements.
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1. Introduction

Land Surface Temperature (LST), also named skin temperature, refers to the surface temperature
of the Earth. The International Geosphere and Biosphere Program (IGBP) [1] accepted the LST as one
of the high-priority parameters, and the Global Climate Observing System (GCOS) [2] identified it as
an Essential Climate Variable (ECV). Considering space-borne, airborne, and ground-based remote
sensors, LST represents the accumulative radiometric surface temperature of all materials of the surface
cover covering the sensor’s field of view in the observation direction [3]. Thus, LST estimation from
Thermal Infrared (TIR) images is a complicated procedure since the Earth’s surface is composed of
dissimilar materials of varying geometry [4–6]. For example, the LST pixel of a densely vegetated area
represents the surface temperature of vegetation; however, for a sparsely vegetated area, the surface
temperature of vegetation and soil together comprises the LST of the area [5].

LST is a crucial parameter for many fields of interest such as surface energy and water balance,
ecology, agriculture, environment, climatology, meteorology, and hydrology [7–9]. Thus, it provides an
improved understanding of a wide range of applications involving drought monitoring [10–12], Surface
Heat Island (SHI) and urban climate studies [13–17], surface soil moisture and evapotranspiration
estimation [18,19], numerical weather prediction and data assimilation [20,21], surface turbulent flux
estimation [22], monitoring of heat waves [23], earthquake prediction [24,25], forest fire monitoring [26],
and monitoring of geothermal activities [27,28].

The history of satellite-derived LST goes back to TIROS-II satellite, which was launched at the
beginning of the 1960s [29,30]. Through meteorological stations, surface temperature estimation from
radiance measurements is a classical point-based technique; nevertheless, this technique does not stand
for the LST on a large scale. To overcome this drawback, spaceborne TIR remote sensing has been
extensively examined for LST retrieval, and regional and global scale monitoring is the main advantage
of this technology. However, surface parameters (emissivity and geometry), sensor parameters
(spectral range and viewing angle), and atmospheric effects are the major factors that influence the
accuracy of the LST retrieval from TIR data of satellites [5,29,31–33]. Thus, accurate estimation of Land
Surface Emissivity (LSE) and atmospheric parameters is a crucial procedure to obtain LST from TIR
data [34]. Concerning these parameters, various TIR-based multi-channel and single-channel LST
retrieval methods have been proposed by the researchers for different sensor types. Namely, these are
Temperature-Independent Spectral Indices (TISI) method [35], Split Window Algorithm (SWA) [36–38],
Mono Window Algorithm (MWA) [39], Single Channel Algorithm (SCA) [40,41], Radiative Transfer
Equation (RTE) [42,43], and Temperature and Emissivity Separation (TES) method [44]. Among the
LST retrieval methods above, only SWAs do not need atmospheric parameters such as water vapor
profile and/or temperature. The LSE and LST errors arising from the other algorithms largely rely on
the input atmospheric profile’s uncertainties [45].

There are numerous Earth observation sensors, namely, Geostationary Operational Environmental
Satellite (GOES), Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Along-Track
Scanning Radiometer (AATSR), The Spinning Enhanced Visible and Infrared Imager (SEVIRI),
The Advanced Very High Resolution Radiometer (AVHRR), The Visible Infrared Imaging Radiometer
Suite (VIIRS), and Sentinel-3, providing operational daytime and nighttime LST products with low
spatial resolution (from 750 m to 4 km). However, TIR data of Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) and Landsat satellite series have higher spatial resolution but
lower temporal resolution than the sensors reported above. Regarding these limitations, LST retrieval
having both high temporal and spatial resolution is a challenge for thermal remote sensing studies.
However, LST images obtained from Landsat and ASTER TIR data are unique sources to investigate the
thermal environment of cities and their surroundings due to the higher spatial resolution in TIR bands.
Moreover, Landsat-derived LST is one of the most commonly preferred data for various applications
stated above.

The demand for satellite-based LST products has been increasing rapidly. Thus, the quality of the
LST data used in the studies should be examined by a validation procedure for accurate and reliable
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analyses. Validation provides information about the quantitative uncertainty, enabling the proper use
and application of the product. Thus, any algorithm or product would not be broadly welcomed without
performing thorough calibration and validation [46]. Overall, cross-validation, the Temperature-based
method (T-based) and the Radiance-based method (R-based) are three main techniques considered to
evaluate space-based LST [31,34]. Many researchers have considered one or two of these methods for
satellite-based LST validation derived from Landsat missions [34,47–55], Sentinel-3A [56], GOES [57],
SEVIRI [58,59], MODIS [60–62], AATSR [58,62,63], VIIRS [64], ASTER [65,66] and AVHRR [38]. In this
work, we utilized the T-based technique for LST validation, and further details about this method are
presented in the Methodology Section.

In this study, Landsat 8 data, both daytime and nighttime, were considered for LST retrieval from
RTE, SCA, and MWA methods. In the study, SWA was not examined since the USGS do not recommend
using Band 11 of Landsat 8 for LST retrieval due to the large calibration uncertainty. Furthermore,
we already obtained better results with MWA than with the SWA developed by Mao et al. [36] with
coefficients by Yu et al. [51] in our previous research [34]. Considering the literature, in general,
researchers have used daytime Landsat data to retrieve LST due to the lack of LSE images in the night.
To the best of our knowledge, there is no study published so far that considered nighttime TIR data
of Landsat 8 for both retrieval and validation of nighttime LST. Even though the availability of the
nighttime Landsat TIR data is limited in time and many researchers are not even aware that Landsat
missions acquire nighttime TIR data, it is probable that future Landsat missions may provide much
more nighttime TIR data for the sustainability and strength of the scientific studies. As discussed in the
previous paper of the authors [34], Normalized Difference Vegetation Index (NDVI)-based LSE retrieval
methods are operative and easy to apply for the Landsat data. In this paper, we propose using daytime
NDVI-based LSE, whose acquisition is close to nighttime data (the difference ranges from 1 day to
4 days), as an input in the corresponding methods for the nighttime LST retrieval. Besides, the effect of
six different NDVI-based LSE models on LST retrieval methods was evaluated for both daytime and
nighttime LST analyses. As stated in the day–night algorithm [67], the LSE does not vary dramatically
in several days if snow and/or rain does not exist during a short period. Thus, we assumed that the
daytime LSE will not change in the night for a few days considering the weather condition of the
corresponding time interval. The objectives of this study are to (1) evaluate the efficiency of RTE, MWA,
and SCA methods for both daytime and nighttime Landsat 8 data and in-situ measurements, (2) reveal
the impact of NDVI-based LSE models on LST retrieval methods for both daytime and nighttime data,
(3) encourage the researchers by showing the convenience of the proposed nighttime LST retrieval from
Landsat 8 data for the common usage, and (4) provide sensitivity analyses of in-situ measurements
and LST retrieval methods for both daytime and nighttime data. Concerning the ground-based LST
measurements, upwelling and downwelling thermal radiation measurements were obtained from
Atmospheric Radiation Measurement (ARM) and Surface Radiation Budget Network (SURFRAD)
stations, established over rural areas, simultaneously with TIR data acquisitions. To carry out the
image-processing tasks, we used an automated LST retrieval toolbox, which was provided by the
authors for the use of researchers in the previous study [34].

2. Datasets

2.1. In-Situ LST Measurements and Validation Sites

Surface longwave radiation measurements are important sources for the estimation of in-situ LST
and emissivity [65,68]. There are some programs, namely, SURFRAD [69], FLUXNET [70], ARM [71],
and Baseline Surface Radiation Network (BSRN) [72] that provide long-term and high-quality surface
longwave radiation measurements open to the public. In this study, four stations from SURFRAD and
five stations from ARM, nine stations in total (Figure 1) over rural areas, were utilized to calculate
daytime and nighttime in-situ LST simultaneous with TIR data acquisitions.
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Figure 1. Illustration of the locations and surface covers of the Surface Radiation Budget Network 
(SURFRAD) and Atmospheric Radiation Measurement (ARM) stations used in this study. 
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(NOAA) in 1993 to support climate-related research over the United States (US) by providing long-
term, continuous, and accurate in-situ surface radiation budget [69]. In 1995, the system started 
operating with four stations, and now, seven SURFRAD stations have been serving in different 
climatological regions of the US. The SURFRAD data have been utilized in different studies involving 
assessment of satellite-based retrievals of surface radiation parameters, climate models, hydrology, 
and validation of radiation transfer codes and surface physics packages of weather [69]. To calculate 
in-situ LST, quality-controlled measurements of broadband hemispherical upwelling and 
downwelling longwave radiation are provided by the SURFRAD stations every 3 min (before 2009) 
or every minute (after 2009). Many studies have been carried out using SURFRAD measurements to 
validate LST retrievals from satellites [34,47,54,73–75]. 

The ARM Program was initially founded in 1989 by the US Department of Energy to examine 
cloud formation processes. Then, the ARM Climate Research Facility was established in 2003, and 
this program added further sites and instruments to the available ones as a scientific user facility. All 
data, providing long-term continuous atmospheric measurements, have been freely available since 
2003 (https://www.arm.gov/) [76]. Eastern North Atlantic (ENA), North Slope of Alaska (NSA), and 
Southern Great Plains (SGP) are three basic ARM sites. In this study, five SGP sites were used for in-
situ LST retrieval. As in SURFRAD stations, ARM SGP stations provide quality-controlled 
measurements of upwelling and downwelling longwave radiation for in-situ LST calculation, and 
many types of research were carried out using these stations [61,77–79]. Table 1 presents detailed 
information about both ARM SGP sites and SURFRAD sites considered in this study. 

Figure 1. Illustration of the locations and surface covers of the Surface Radiation Budget Network
(SURFRAD) and Atmospheric Radiation Measurement (ARM) stations used in this study.

The SURFRAD network was established by National Oceanic and Atmospheric Administration
(NOAA) in 1993 to support climate-related research over the United States (US) by providing long-term,
continuous, and accurate in-situ surface radiation budget [69]. In 1995, the system started operating
with four stations, and now, seven SURFRAD stations have been serving in different climatological
regions of the US. The SURFRAD data have been utilized in different studies involving assessment of
satellite-based retrievals of surface radiation parameters, climate models, hydrology, and validation
of radiation transfer codes and surface physics packages of weather [69]. To calculate in-situ LST,
quality-controlled measurements of broadband hemispherical upwelling and downwelling longwave
radiation are provided by the SURFRAD stations every 3 min (before 2009) or every minute (after 2009).
Many studies have been carried out using SURFRAD measurements to validate LST retrievals from
satellites [34,47,54,73–75].

The ARM Program was initially founded in 1989 by the US Department of Energy to examine
cloud formation processes. Then, the ARM Climate Research Facility was established in 2003, and this
program added further sites and instruments to the available ones as a scientific user facility. All data,
providing long-term continuous atmospheric measurements, have been freely available since 2003
(https://www.arm.gov/) [76]. Eastern North Atlantic (ENA), North Slope of Alaska (NSA), and Southern
Great Plains (SGP) are three basic ARM sites. In this study, five SGP sites were used for in-situ LST
retrieval. As in SURFRAD stations, ARM SGP stations provide quality-controlled measurements
of upwelling and downwelling longwave radiation for in-situ LST calculation, and many types of

https://www.arm.gov/
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research were carried out using these stations [61,77–79]. Table 1 presents detailed information about
both ARM SGP sites and SURFRAD sites considered in this study.

Table 1. Characteristics of the SURFRAD and ARM Southern Great Plains (SGP) validation sites used
in the study.

Site Location Site ID Latitude Longitude Elevation Land Cover Type

Fort Peck, Montana FPK 48.308◦N 105.102◦W 634 m Grassland

Table Mountain, Boulder,
Colorado TBL 40.125◦N 105.237◦W 1689 m Sparse Grassland

Sioux Falls, South Dakota SXF 43.734◦N 96.623◦W 473 m Grassland

Goodwin Creek, Mississippi GWN 34.255◦N 89.873◦W 98 m Cropland/Natural
Vegetation Mosaic

Omega, Oklahoma SGP E38 35.880◦N 98.173◦W 371 m Pasture

Waukomis, Oklahoma SGP E37 36.311◦N 97.928◦W 379 m Grassland

Medford, Oklahoma SGP E32 36.819◦N 97.820◦W 328 m Pasture

Ringwood, Oklahoma SGP E15 36.431◦N 98.284◦W 418 m Pasture

Byron, Oklahoma SGP E11 36.881◦N 98.285◦W 360 m Pasture

In the validation sites, two pyrgeometers (Eppley Precision Infrared Radiometer) mounted at 10-m
height measure the downwelling and upwelling longwave radiation in the spectral range from 4.0 to
50.0 µm. The instruments are exchanged annually with newly calibrated instruments at each station [69]
and world-recognized organizations perform these calibrations [65]. The Eppley pyrgeometer has
about 4.2 W·m−2 measurement accuracy, and the instrument’s precision is around 2 W·m−2 for
daytime measurements and less than 1 W·m−2 for nighttime measurements [80]. Furthermore,
Guillevic et al. [75] reported that considering the instrumental error, less than 1 K uncertainty is observed
from the retrieved LST. In this study, we also conducted sensitivity/uncertainty analyses for both daytime
and nighttime in-situ measurements in Section 4.1. The spatial representativeness of the pyrgeometer
is about 70 m × 70 m at the surface [34,65], which is appropriate for the Landsat TIR pixel size (100 m
native resampled at 30 m by the US Geological Survey) over homogeneous surfaces. Thus, we selected
the validation sites whose footprint on Landsat 8 TIR pixel has homogeneous surface cover. On the
other hand, many studies have already considered these ARM SGP and SURFRAD stations to validate
low-resolution LST products of MODIS, SEVIRI, GOES, VIIRS, and AATSR [46,58,65,81,82]. Therefore,
the use of these stations in the validation of Landsat-derived LST products is highly acceptable.

2.2. Satellite Data

The Landsat mission has been providing moderate-resolution earth observation data from space
regularly for almost 50 years. Landsat 8 was launched on 11 February 2013, and it is the recent
operational satellite of the Landsat series. Landsat 4 was the first mission providing one thermal band,
and the first TIR data of Landsat 4 dates back to 1982, which makes it possible to study long-term LST
variations together with all Landsat missions both at a regional and local scale. The Landsat 8 satellite
carries two sensors, namely, the Operational Land Imager (OLI) and the TIR sensor (TIRS). The TIRS
sensor has two thermal bands (Band 10 and Band 11), while the OLI sensor has nine reflective bands
with 30-m spatial resolution. The native spatial resolution of TIR bands is 100-m; however, USGS
publishes them at 30-m by resampling.

In this study, 21 pairs of nighttime and daytime Landsat-8 data (Collection 1) from 2013 to 2019
were utilized for the retrieval of daytime and nighttime LST images. Landsat 8 data were freely
obtained through the website of the USGS (https://earthexplorer.usgs.gov/). Band 10 of the TIRS
sensor, and Band 4 (Red (R)) and Band 5 (Near Infrared (NIR)) of the OLI sensor, for the estimation of

https://earthexplorer.usgs.gov/
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NDVI-based LSE, were used in LST retrieval methods. The quality of the used data was checked by
the Pixel Quality Assessment (QA) band that provides information for the exclusion of observations
affected by sensor factors, clouds, and cloud shadow [83]. The list of the daytime and nighttime
Landsat 8 images with corresponding validation site names are reported in Appendix A.

3. Methodologies

3.1. Satellite LST Retrieval Methods

In this study, the following three commonly used methods for LST retrieval are examined:
Radiative Transfer Equation (RTE) method, Single Channel Algorithm (SCA) [40], and Mono Window
Algorithm (MWA) [39]. The input atmospheric parameters in the methods, such as downwelling
radiance (L↓

λ
), upwelling radiance (L↑

λ
), and atmospheric transmittance (τ) were calculated using the

Atmospheric Correction Parameter Calculator (ACPC) developed by National Aeronautics and Space
Administration (NASA) of the US. ACPC uses the atmospheric profiles analyzed by the National
Centers for Environmental Prediction (NCEP) as inputs to the radiative transfer codes for a given site
and date to calculate the aforementioned atmospheric parameters [84,85].

3.1.1. Brightness Temperature (Tb) Calculation

The brightness temperature of a target refers to the temperature of a blackbody emitting a similar
quantity of radiation at a specific wavelength [86], and inverse solution of the Planck function is the
way of calculating it. To obtain the brightness temperature image from TIR data, the first step is
converting the Digital Number (DN) values to spectral radiance. This radiance conversion for Landsat
8 TIRs can be applied using Equation (1) [87]:

Lsen
λ = ML·QCAL+AL (1)

where Lsen
λ refers to the TOA spectral radiance in Watts/(m2

·srad·µm), QCAL is the calibrated and
quantized standard product pixel values (DNs), AL is the additive rescaling factor of the corresponding
band, and ML is the multiplicative rescaling factor of the corresponding band. A metadata file of
the relevant Landsat 8 data contains the values of these parameters. The brightness temperature for
Landsat 8 data can be calculated after radiance conversion using Equation (2):

Tb =
K2

ln
(

K1
Lsen
λ

+1
) (2)

where Tb is the effective at-satellite brightness temperature in Kelvin, K1 in Watts/(m2
·srad·µm) and

K2 in Kelvin refer to the calibration constants. K1 and K2 values for the Landsat 8 Band 10 are
774.89 (Watts/(m2

·srad·µm)) and 1321.08 K, respectively.

3.1.2. Radiative Transfer Equation Method

The inverse solution of the radiative transfer equation (RTE) is a direct method for LST retrieval
using a single TIR band. This inverse solution can be given by the following expressions:

Lsen
λ = [εBλ(Ts) + (1− ε)L↓

λ
]τ+ L↑

λ
(3)

where Lsen
λ (W·m−2

·sr−1
·µm−1) represents the at-sensor spectral radiance of the corresponding TIR band,

ε refers to the LSE, Bλ in W·m−2
·sr−1
·µm−1 is the blackbody radiance, Ts is the LST, L↓

λ
and L↑

λ
represent
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the downwelling and upwelling radiance, respectively, and τ is the atmospheric transmittance. Bλ at a
temperature of Ts is calculated by the inversion of the Equation (3):

Bλ(Ts) =
Lsen
λ −L↑

λ
−τ(1− ε)L↓

λ

τε
(4)

and, eventually, Ts (LST) can be obtained from the inversion of Planck’s law as in Equation (5):

Ts =
K2

ln

 K1

Lsen
λ
−L↑
λ
−τ(1−ε)L↓

λ
τε

+1


(5)

where K1 and K2 refer to the calibration constants described in the previous section.

3.1.3. Mono Window Algorithm

Qin et al. [39] developed the Mono Window Algorithm (MWA) for the Landsat TM data.
Three essential variables, namely, LSE, effective mean atmospheric temperature, and atmospheric
transmittance are required for LST retrieval using the MWA method. MWA-based LST can be retrieved
by Equation (6):

Ts=
{
a · (1−C−D) + [b · (1−C−D)+C + D] · Tb−D · Ta

}
÷C (6)

where Ta is the effective mean atmospheric temperature in Kelvin, a (−67.355351) and b (0.458606)
are constants of the algorithm, C and D are the parameters of the algorithm calculated as C = ε × τ

and D = (1 − τ)[1 + (1 − ε) × τ]. Table 2 provides empirical equations to estimate the Ta through air
temperature (To), since it is an essential parameter of MWA [39]. In this study, Ta values were computed
for the mid-latitude summer region and To was obtained from the corresponding validation site.

Table 2. The linear equations for the calculation of the effective mean atmospheric temperature (Ta)
from the near-surface air temperature (To) [39].

Region Linear Equations

USA 1976 Region Ta = 25.940 + 0.8805 × To

Tropical Region Ta = 17.977 + 0.9172 × To

Mid-latitude Summer Region Ta = 16.011 + 0.9262 × To

Mid-latitude Winter Region Ta = 19.270 + 0.9112 × To

3.1.4. Single-Channel Algorithm

Jiménez-Muñoz et al. [40] proposed a revised version of SCA for LST retrieval using Landsat TIR
data. Concerning the SCA, Ts is obtained from Equation (7):

Ts = γ

[1
ε

(
ψ1Lsen

λ +ψ2

)
+ψ3

]
+δ (7)

where ψ1, ψ2, and ψ3 refer to atmospheric functions defined as:

ψ1 =
1
τ

; ψ2= −L↓
λ
−

L↑
λ

τ
; ψ3= L↓

λ
(8)
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Concerning the SCA method in this study, L↑
λ

, L↓
λ

, and τ obtained from NASA’s ACPC were
used for the computation of the ψ1, ψ2, and ψ3. On the other hand, the two parameters, γ and δ,
are computed by:

γ ≈
Tb2

bγLsen
(9)

δ ≈ Tb−
Tb2

bγ
(10)

where bγ= c2/λi and c2 = 14,387.7 µm·K, and bγ is equal to 1320 K for Landsat 8 Band 10. λi is the ith
band’s effective wavelength given by:

λi =

∫ λ2,i
λ1,i

λfi(λ)dλ∫ λ2,i
λ1,i

fi(λ)dλ
(11)

where fi(λ) is ith band’s spectral response function. λ1,i and λ2,i refer to the lower and upper boundary
of fi(λ), respectively.

3.2. NDVI-Based Land Surface Emissivity (LSE) Models

Emissivity of a surface represents the ability of the surface to transform heat energy, relative
to a black body, into radiant energy [88]. As presented in the above sections, LSE (ε) is a critical
element for accurate TIR-based LST retrieval. Multi-channel Temperature/Emissivity Separation (TES),
Physically Based Methods (PBMs), and Semi-Empirical Methods (SEMs) methods are three main
types of space-based LSE estimation [31]. The NDVI-Based Emissivity Method (NBEM) [89,90] and
Classification Based Emissivity Method (CBEM) [91,92] constitute the SEMs that are convenient for the
Landsat-derived LSE. CBEM is not feasible because of the need of a priori information about the test
site and in-situ emissivity of each class [93]. NDVI-based LSE models are practical and frequently used
methods due to their easy application providing satisfactory results [88,94,95]. Li et al. [31] introduced
a comprehensive research revealing limitations, advantages, and disadvantages of LSE models for
satellite-derived LST. Moreover, Sekertekin and Bonafoni [34] provided an updated state-of-the-art
table from Li et al. [31], presenting the used satellite missions with the corresponding LSE models.
In this study, we examined the influence of six NDVI-based LSE models on the performance of three
LST algorithms for both daytime and nighttime. To calculate NDVI from Landsat 8 data, firstly, DN
values are converted to the TOA reflectance using the Equation (12) [87]. After applying reflectance
(ρλ) conversion to the R and NIR bands, NDVI is obtained from Equation (13). Specifically:

ρλ =
Mp·QCAL+Ap

sin θSE
(12)

where QCAL is the calibrated and quantized standard product pixel values (DNs), Ap is the additive
rescaling factor of the corresponding band, Mp is the multiplicative rescaling factor of the corresponding
band, and θSE represents the local sun elevation angle. The values of these parameters are obtained
from the Metadata file of the relevant Landsat 8 data.

NDVI =
ρNIR − ρR

ρNIR + ρR
(13)

where ρNIR refers to the reflectance image of the NIR band and ρR is the reflectance image of the R band.
In addition to NDVI, the Fractional Vegetation Cover (FVC or Pv), i.e., the proportion of vegetation,
is another important factor for LSE estimation, and it is calculated from Equation (14) [96] as:

Pv=

[
NDVI − NDVImin

NDVImax − NDVImin

]2

(14)
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where NDVImin = 0.2 and NDVImax = 0.5 in a global context [93]. Table 3 presents the expressions
of the six NDVI-based LSE models used in this work (hereafter referred to as LSE1, LSE2, . . . , LSE6).
More details about these models can be found in the previous paper of the authors [34].

Table 3. The expressions of Normalized Difference Vegetation Index (NDVI)-based Land Surface
Emissivity (LSE) models considered in this study.

Sensor LSE Equations Model ID Reference

Landsat 8
(Band 10)

ε = 1.0094 + 0.047 ln(NDVI) LSE1 Van de Griend and Owe [94]

ε = 0.985Pv + 0.960(1− Pv) + 0.06Pv(1− Pv) LSE2 Valor and Caselles [90]

ε =


0.979− 0.035ρR NDVI < 0.2
0.004Pv + 0.986 0.2 ≤ NDVI ≤ 0.5
0.99 NDVI > 0.5

LSE3 Sobrino et al. [95]

ε =


0.979− 0.046ρR NDVI < 0.2
0.987Pv + 0.971(1− Pv) + dε 0.2 ≤ NDVI ≤ 0.5
0.987 + dε NDVI > 0.5

LSE4 Skoković et al. [97]

ε =


0.973− 0.047ρR NDVI < 0.2
0.9863Pv + 0.9668(1− Pv) + dε 0.2 ≤ NDVI ≤ 0.5
0.9863 + dε NDVI > 0.5

LSE5 Yu et al. [51]

ε =


a1i +

7∑
j=2

ajiρj NDVI < 0.2

0.982Pv + 0.971(1− Pv) + dε 0.2 ≤ NDVI ≤ 0.5
0.982 + dε NDVI > 0.5

LSE6 Li and Jiang [98]

dε = (1− εs)εvF(1− Pv): a term taking the cavity effect into account, which is based on the geometry of the surface.
εs, εv and F refer to soil emissivity, vegetation emissivity and geometrical shape factor (0.55), respectively. ρR: the
reflectance image of R band; ρj: the apparent reflectance in the OLI band j; a1i − a7i: the coefficients obtained
from [98].

3.3. In-Situ LST Estimation

Station-based (in-situ or ground-based) LST measurements were obtained from four SURFRAD
stations and five ARM SGP stations. As stated in Section 2.1, these stations do not measure LST directly;
the upwelling and downwelling components of longwave radiation are considered for LST calculation
regarding Stefan–Boltzmann law:

LST =

 F↑
λ
− (1− εb)·F

↓

λ

εb·σ


1/4

(15)

where F↓
λ

and F↑
λ

in W/m2 are the downwelling and upwelling thermal infrared irradiances, respectively,
obtained simultaneously with satellite passages. σ is 5.670367 × 10−8 W·m−2

·K−4 that refers to the
Stefan–Boltzmann constant. εb is the broadband longwave surface emissivity that is not measured
by the station instruments, thus [65,68] proposed the computation of the broadband emissivity by
regression from narrowband emissivities of MODIS data, and many studies used these regression
equations for acquiring the εb [52,73,99]. The experimental results in [65,68] revealed that the longwave
broadband emissivity can be used as a fixed value of 0.97, which was also considered in the studies
of [74,100]. In this study, we assumed the broadband emissivity as 0.97, as well. This phenomenon only
affects the accuracy of in-situ LST, not the satellite-based LST accuracy. Heidinger et al. [74] reported
that a 0.01 error in broadband emissivity led to 0.25 K LST error in SURFRAD sites. Furthermore,
Wang and Liang [65] showed that the LST accuracy of SURFRAD sites ranged from 0.1 K to 0.4 K
due to the ±0.01 error in the broadband emissivity. This error is not negligible; however, it is not
an overwhelming uncertainty source compared to the magnitude of the other uncertainties in LST
retrieval [74]. Concerning this study, we also carried out the uncertainty analysis of broadband
longwave surface emissivity and longwave radiation (the downwelling and upwelling components)
on ground-based LST measurements in the next section.
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3.4. Sensitivity Analysis of In-Situ LST Measurements and LST Retrieval Methods

Sensitivity analysis is an application of how the error of a model output (numerical, statistical,
or otherwise) can be divided and allocated to different uncertainty sources in the model inputs [101].
It is difficult to determine the inputs of an algorithm, since these inputs unavoidably have initial errors
affecting the accuracy of the LST retrieval methods [34,49]. To investigate the effect of input parameters’
errors on LST retrievals from both satellites and stations, the following equation is utilized:

δT = Ts(x) − Ts(x + δx) (16)

where δT is the error on the LST; x represents one of the input parameters and δx is the potential
error of this parameter; Ts(x + δx) and Ts(x) refer to the LST calculated for “x + δx” and “x”,
respectively. Some researchers reported the uncertainty of the input parameters on LST retrieval
algorithms [49,102,103]. On the other hand, concerning the sensitivity analysis of in-situ LST
measurements, [65,74] investigated the sensitivity of SURFRAD LST to broadband emissivity. In the
previous paper of the authors [34], we already presented detailed sensitivity analysis for daytime LST
retrieval considering MWA, SCA, and RTE. In this study, we mainly focused on the effect of LSE on
LST retrieval methods for both daytime and nighttime LST retrievals, since we proposed using the
daytime LSE images for nighttime LST retrieval. Furthermore, we also conducted a comprehensive
sensitivity analysis for the in-situ LST measurements that is presented in Section 4.1.

3.5. Temperature-Based (T-Based) Validation Method and Performance Metrics

As stated in the introduction, the Radiance-based method (R-based), Temperature-based method
(T-based), and cross-validation are the main techniques used to evaluate space-based LST [31,34].
The T-based technique, examined in this research, is a direct way of comparing the satellite-derived
LST with in-situ LST simultaneous with satellite pass, and many researchers used this way to validate
satellite-derived LSTs [48,52,62,104,105]. The major benefit of the T-based method is that it makes it
possible to evaluate satellite sensor’s radiometric quality and the efficiency of the LST algorithms based
on emissivity and atmospheric parameters. On the other hand, the capability of the T-based technique
depends mostly on the accuracy of the in-situ LST measurements and how well they represent the LST
at the satellite pixel scale (land cover homogeneity of the study area) [31]. In this study, we considered
both issues as we carried out the sensitivity analysis of the SURFRAD LST measurements and selected
the validation sites whose footprint on Landsat 8 TIR pixel has homogeneous surface cover.

Satellite-derived LST and Station-based LST were analyzed considering the performance metrics
such as Root Mean Square Error (RMSE), Standard Deviation (STD) of Error, and average Bias.
The formulas of these metrics are given by:

RMSE =

√∑
[TL8 − TStation]

2

n
(17)

STD of Error =

√∑[
TError − TError

]2

n
(18)

Bias =

∑
[TStation − TL8]

n
(19)

where TL8 and TStation are the Landsat 8-derived LST and Station-based LST, respectively, and n refers
to the number of data. TError refers to the difference between Landsat 8-derived LST and Station-based
LST, and TError is the mean value of these differences.
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4. Results

To present the results of the LST retrieval methods for daytime and nighttime, 21 pairs of
nighttime and daytime Landsat-8 data were utilized to obtain the daytime and nighttime LST images
(see Appendix A). Specifically, concerning the daytime LST, 21 Landsat-8 images were used. On the
other hand, 21 nighttime images, whose acquisition times are close to daytime data (the difference ranges
from one day to four days), were utilized for the nighttime LST retrieval by using the corresponding
21 daytime reflective data for the NDVI-based LSE computation. We verified that rain and/or snow did
not occur during these 1–4 days of difference. MWA, RTE, and SCA were performed for both daytime
and nighttime LST estimation considering all datasets. The required input atmospheric parameters in
the methods (τ, L↑

λ
, L↓
λ

) were obtained from ACPC that considers the MODTRAN radiative transfer
code, which uses NCEP-based atmospheric profiles as inputs. This section includes two sensitivity
analyses: (i) Sensitivity of in-situ LST measurements and (ii) sensitivity of LST retrieval methods to
LSE. Lastly, the accuracy assessment of the LST retrieval algorithms and LSE models for both daytime
and nighttime at the nine SURFRAD and ARM stations is proposed.

4.1. Sensitivity Results of In-Situ LST Measurements

Concerning the in-situ LST measurements utilized in this work, the average upwelling and
downwelling radiances, respectively, were calculated as 482.18 W/m2 and 331.15 W/m2 for daytime,
and 388.16 W/m2 and 326.68 W/m2 for nighttime. In addition, as stated in the previous section, we used
a fixed broadband emissivity value as 0.97. Thus, these values were considered in the sensitivity
analysis of in-situ LST measurements. To carry out a sensitivity analysis of a method’s output to an
input parameter, the other input parameters are assumed to be fixed. For instance, to manage the
sensitivity analysis of the downwelling radiance in the daytime (Figure 2a), the upwelling radiance and
the broadband emissivity was fixed to 482.18 W/m2 and 0.97, respectively. Then, the sensitivity of the
downwelling radiance to in-situ LST accuracy was revealed by changing the downwelling radiance at
5 W/m2 intervals (Figure 2a). The same procedure was applied to present the sensitivity results of the
other parameters. As reported in Section 2.1, the two pyrgeometers have an accuracy of about 4.2 W/m2

and a precision of around 1–2 W/m2. Considering the daytime sensitivity results, the following results
were obtained: (i) ±5 W/m2 error in downwelling and upwelling radiance led to ±0.024 K and ±0.8 K
error in LST, respectively (Figure 2a,b) and (ii) 0.01 error in the broadband emissivity caused ±0.25 K
error in LST (Figure 2c). On the other hand, nighttime sensitivity results showed that (i) ±5 W/m2

error in downwelling and upwelling radiance led to ±0.029 K and ±0.95 K error in LST, respectively
(Figure 2d,e) and (ii) 0.01 error in the broadband emissivity caused ±0.12 K error in LST. It is evident
from Figure 2 that the uncertainty of the downwelling and upwelling radiance is almost identical in
daytime and nighttime. However, the uncertainty of the broadband emissivity in the nighttime is half
of the daytime.
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Figure 2. Sensitivity results of in-situ Land Surface Temperature (LST) measurements to downwelling
radiance, upwelling radiance, and broadband emissivity, respectively, for both daytime (a–c) and
nighttime (d–f). LST error is computed as in Equation (16).

4.2. Sensitivity Results of LST Retrieval Methods to LSE

In this sensitivity analysis, we mainly focused on the effect of LSE on LST retrieval methods for
both daytime and nighttime LST retrievals, since we proposed using the daytime LSE images for
nighttime LST calculation. A detailed uncertainty analysis of all parameters on LST retrieval methods
(RTE, SCA, and MWA) for daytime can be found in the previous paper of the authors [34]. In the
sensitivity analysis of daytime LST images, the following input parameters were utilized based on the
current datasets: Air temperature, upwelling and downwelling radiances, atmospheric transmittance,
and effective mean atmospheric temperature. Minimum, maximum, and mean near-surface air
temperature values from ground stations and simultaneous with the satellite passages were 282.51 K,
302.41 K, and 295.95 K, respectively. Thus, the near-surface air temperature was assumed to be 295.95 K
in the sensitivity analysis and, as a consequence, the effective mean atmospheric temperature was
computed as 290.12 K. The atmospheric transmittance ranged from 0.63 to 0.94 with a mean value of
0.84, which was used in this analysis. Mean downwelling and upwelling radiances were observed
as 2.06 W·m−2

·sr−1
·µm−1 and 1.24 W·m−2

·sr−1
·µm−1, respectively, and these values were utilized in

the sensitivity analyses. The brightness temperature range was assumed between 280 K and 310 K,
because the brightness temperature computed from the daytime Landsat scenes ranged from 282.66 K
to 314.84 K. The LSE value was fixed as 0.97.
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Figure 3 illustrates the sensitivity results of the LST retrieval methods to LSE under a specific
brightness temperature range of daytime. Figure 3a,c,e shows the variations in the error of the LST
under different brightness temperatures for MWA, RTE, and SCA, respectively, when the LSE error
is constant. These figures show that when the LSE error is constant for MWA and SCA, LST error
increases with increasing brightness temperature. Instead, when the LSE error is constant for RTE, the
LST error is stable with increasing brightness temperature. It is important to note that, since the LST
error is computed as in Equation (16), an overestimation (underestimation) of the emissivity produces
a positive (negative) value in the LST error. Figure 3b,d,f represents how LSE error impacts the LST
error for the MWA, RTE, and SCA, respectively, under different brightness temperature conditions.
The findings in these figures support the previous ones (Figure 3a,c,e) by showing that a constant LSE
error produces LST error variations under different brightness temperature conditions for MWA and
SCA, except for RTE. The intercomparison of the results proves that MWA is more sensitive to LSE
error than RTE and SCA under increasing brightness temperatures, while RTE is the least sensitive one.
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Figure 3. Sensitivity results of Mono Window Algorithm (MWA) (a,b), Radiative Transfer Equation
(RTE) (c,d), and Single Channel Algorithm (SCA) (e,f) to LSE for daytime Landsat 8 images. LST error
is computed as in Equation (16).

In the sensitivity analysis of the nighttime LST images, minimum, maximum, and mean
near-surface air temperature values from the ground stations were 271.65 K, 300.75 K, and 291.07 K,
respectively. Considering the mean value (291.07 K), the effective mean atmospheric temperature
was 285.60 K. The atmospheric transmittance varied between 0.51 to 0.96 with a mean value
of 0.83, while mean upwelling and downwelling radiances were 1.37 W·m−2

·sr−1
·µm−1 and

2.20 W·m−2
·sr−1
·µm−1. These mean values were utilized in the sensitivity analyses. A brightness

temperature range from 270 K to 295 K was investigated since the brightness temperature computed from
the nighttime Landsat scenes varied from 267.77 K to 297.22 K. LSE value equal to 0.97 was assumed.
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Figure 4 depicts the sensitivity results of the LST retrieval methods to LSE under a specific
brightness temperature range of nighttime. Figure 4a,c,e demonstrates the variations in the LST error
under different brightness temperatures for MWA, RTE, and SCA, respectively, when the LSE error is
constant. Moreover, Figure 4b,d,f represents how LSE error impacts the LST error for the MWA, RTE,
and SCA, respectively, varying the brightness temperature values. The sensitivity analysis of nighttime
data shows results with a trend similar to the daytime one; however, the variation in the LST error is
smaller than daytime, also considering the lower brightness temperature values in the nighttime.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 25 

 

Figure 4 depicts the sensitivity results of the LST retrieval methods to LSE under a specific 
brightness temperature range of nighttime. Figure 4a,c,e demonstrates the variations in the LST error 
under different brightness temperatures for MWA, RTE, and SCA, respectively, when the LSE error 
is constant. Moreover, Figure 4b,d,f represents how LSE error impacts the LST error for the MWA, 
RTE, and SCA, respectively, varying the brightness temperature values. The sensitivity analysis of 
nighttime data shows results with a trend similar to the daytime one; however, the variation in the 
LST error is smaller than daytime, also considering the lower brightness temperature values in the 
nighttime. 

 
Figure 4. Sensitivity results of MWA (a,b), RTE (c,d), and SCA (e,f) to LSE for nighttime Landsat 8 
images. LST error computed as in Equation (16). 

4.3. Accuracy of LST Retrieval Algorithms and LSE Models for Daytime 

In Figure 5, the accuracy results of the LST retrieval methods for daytime Landsat 8 data are 
illustrated based on the six NDVI-based LSE models of Table 3. In this validation test at the nine 
SURFRAD and ARM stations, the Landsat 8 image pixel covering the pyrgeometers was selected, 
and the estimated LST compared with the corresponding ground LST measurement.  

The accuracy varied between 2.17 K RMSE and 5.47 K RMSE considering all LST methods and 
LSE models. MWA method with LSE4 and LSE6 presented similar and best results for the daytime. 
Using MWA and LSE4, the RMSE, STD of Error, and Bias were 2.17 K, 1.86 K, and −1.13 K, 
respectively. Furthermore, the same statistical metrics, in the same order, were 2.17 K, 1.79 K, and 
−1.24 for MWA with LSE6. In general, the daytime results revealed that for all LSE models, except for 
LSE2, MWA showed slightly better results than RTE, and RTE demonstrated slightly better results 
than SCA. LSE1 and LSE2 did not offer satisfying results with any of the LST retrieval algorithms. 
Apart from that, the other LSE models presented acceptable daytime LST results with MWA, RTE, 
and SCA. The Bias is always negative regardless of the approach, highlighting a general 
overestimation of the Landsat 8 retrieval with respect to the in-situ measurements, especially for 
higher LST values. 

Figure 4. Sensitivity results of MWA (a,b), RTE (c,d), and SCA (e,f) to LSE for nighttime Landsat
8 images. LST error computed as in Equation (16).

4.3. Accuracy of LST Retrieval Algorithms and LSE Models for Daytime

In Figure 5, the accuracy results of the LST retrieval methods for daytime Landsat 8 data are
illustrated based on the six NDVI-based LSE models of Table 3. In this validation test at the nine
SURFRAD and ARM stations, the Landsat 8 image pixel covering the pyrgeometers was selected,
and the estimated LST compared with the corresponding ground LST measurement.

The accuracy varied between 2.17 K RMSE and 5.47 K RMSE considering all LST methods and
LSE models. MWA method with LSE4 and LSE6 presented similar and best results for the daytime.
Using MWA and LSE4, the RMSE, STD of Error, and Bias were 2.17 K, 1.86 K, and −1.13 K, respectively.
Furthermore, the same statistical metrics, in the same order, were 2.17 K, 1.79 K, and −1.24 for MWA
with LSE6. In general, the daytime results revealed that for all LSE models, except for LSE2, MWA
showed slightly better results than RTE, and RTE demonstrated slightly better results than SCA. LSE1
and LSE2 did not offer satisfying results with any of the LST retrieval algorithms. Apart from that,
the other LSE models presented acceptable daytime LST results with MWA, RTE, and SCA. The Bias is
always negative regardless of the approach, highlighting a general overestimation of the Landsat 8
retrieval with respect to the in-situ measurements, especially for higher LST values.



Remote Sens. 2020, 12, 2776 15 of 26

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 25 

 
 

Figure 5. Daytime LST from Landsat 8, period 2013–2019 (see Appendix A): Accuracy assessment
of MWA, RTE, and SCA retrieval methods with different LSE models at the nine SURFRAD and
ARM stations.



Remote Sens. 2020, 12, 2776 16 of 26

4.4. Accuracy of LST Retrieval Algorithms and LSE Models for Nighttime

In Figure 6, the accuracy assessment of the LST retrieval methods for nighttime Landsat 8 data
is reported for the six NDVI-based LSE models. Considering all LST methods and LSE models for
the nighttime, the RMSE values ranged from 0.94 K to 3.34 K. In the nighttime LST analysis, the SCA
method with LSE5 presented the best results, with RMSE, STD of Error, and Bias equal to 0.94 K, 0.72 K,
and 0.60 K, respectively. On the other hand, MWA and RTE also provided very high accuracy with the
RMSE equal to 1.01 K and 0.95 K, respectively, when using with LSE5. In general, the nighttime results
revealed that for all LSE models, except for LSE2, all LST retrieval methods provided good accuracies
with the highest RMSE as 1.51 K. As a summary, Table 4 shows the best LST retrieval methods and
LSE models for the proposed daytime and nighttime LST validation test at the nine SURFRAD and
ARM stations.

Table 4. Validation test of Landsat 8 LST retrieval at the nine ground stations: The best LST methods
and LSE models and accuracy results for daytime and nighttime LST.

Data Type LSE ID LST Retrieval
Method RMSE (K) STD Error

(K) Bias (K)

Daytime LST LSE4 MWA 2.17 1.86 −1.13
LSE6 MWA 2.17 1.79 −1.24

Nighttime LST LSE5 SCA 0.94 0.72 0.60

Compared to the daytime, during nighttime all LST retrieval methods provided highly accurate
results with the different LSE models. Moreover, the overestimation of daytime LST retrieval is no
longer evident at night, and the bias is clearly reduced. The proposed test with ground measurements as
reference suggests that the use of daytime NDVI-based LSE, whose acquisition is close to nighttime data
(the difference ranges from one day to four days in this work), is an accurate solution for the nighttime
LST retrieval from thermal band observations. We assumed that the LSE does not significantly change
in a short time period if rain and/or snow does not occur: This weather condition was verified for the
selected images.
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5. Discussion

Numerous factors affect the accuracy of the LST retrieval from satellite TIR data. Atmospheric
profiles, sensor parameters (spectral range and viewing angle), and surface parameters (emissivity
and geometry) are amongst the major factors. On the other hand, development of an LST retrieval
method has its own error sources due to including some parameterization steps for the retrieval of
coefficients and estimation of some initial parameters. Therefore, it is of great importance to conduct
sensitivity/uncertainty analyses for a new method by considering all input parameters. Concerning the
LST validation procedure in space sciences, two main error sources emerge from both ground-based
LST and satellite-based LST. Examining the sensitivity analysis for ground-based LST measurements,
it emerges that the reliability of the upwelling radiance measurements is a key factor for the overall
accuracy of the LST computation. Then, the effect of LSE on satellite-based LST retrieval methods
for both daytime and nighttime were investigated, since we proposed using the daytime LSE images
for nighttime LST retrieval. The results showed that the LST sensitivity to LSE error is typically
dependent on the brightness temperature values suggesting that areas and study periods with lower
Tb could guarantee lower LST errors. Atmospheric parameters needed in the LST retrieval methods
were obtained from the NASA’s ACPC that is based on MODTRAN radiative transfer code. It is
not possible to find in-situ (radiosonde data etc.) atmospheric profiles for any place and any time.
Thus, even though this usage (a simulation of profile information on atmosphere with ACPC) affects
the accuracy of the methods, it is clear from our results and literature that NASA’s ACPC provides
satisfactory and effective simulations.

Comparing the results obtained in this research with the ones of other similar studies would
be helpful for the readers. The daytime LST results of this study were compatible with the results
presented in our previous paper [34]. Yu et al. [51] investigated the daytime LST results from RTE and
SCA methods using Landsat 8 data with LSE5. They determined the RMSE values for RTE and SCA
as 0.9 K and 1.39 K, respectively. However, we obtained 2.71 K RMSE and 2.85 K RMSE for RTE and
SCA, respectively, with the same LSE model. Wang et al. [105] revealed that the generalized SCA and
Practical Single-Channel Algorithm (PSCA) presented 2.24 K and 1.77 K, respectively. We obtained
2.73 K RMSE with the SCA and same LSE model (LSE3). Sekertekin [47] obtained 3.12 K RMSE using
RTE and LSE4, while it was 2.62 K RMSE in this test. Guo et al. [54] used SCA with daytime Landsat
8 data and obtained 2.74 K and 2.47 K RMSE before and after the stray light correction, respectively.
In our study, SCA results ranged from 2.73 K to 2.85 K RMSE under different NDVI threshold-based
LSE models. We also observed negative biases for the selected dataset, whereas Guo et al. [54] did
not observe biases in their case study. These validation studies of Landsat 8-derived LST refer to the
daytime data, and they suggest how the accuracies can differ in similar test sites if the number of
scenes and their acquisition time change.

Validation studies were not previously published for nighttime LST from Landsat 8. This test
shows that, compared to the daytime, the nighttime accuracy is better, the daytime LST overestimation
is no longer present, and the bias is distinctly reduced. It is an interesting and beneficial result for the
researchers thinking of using the nighttime LST data from Landsat-8. Further studies can be conducted
in different land cover types including also urban areas to confirm the effectiveness of the nighttime
LST results. However, it may be difficult to find reliable ground-based LST measurements for accuracy
assessments in these different areas.

Satellite-based LST retrieval methods are generally developed considering different conditions
and assumptions. Thus, no universal method is yet available to provide accurate LSTs from all satellite
TIR data, and it cannot be said that one method is systematically superior to the others. Concerning
the stationarity of the methods used in this study, since RTE and SCA are obtained by the radiative
transfer equation solution, they are valid for each sensor and atmospheric condition. On the other
hand, the MWA is linked to atmospheric parameters and fixed coefficients regardless of the sensor
type. However, these coefficients could be refined for different sensors (with different bandwidths),
and the results validated.
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6. Conclusions

In this study, three LST retrieval algorithms, namely, RTE, SCA, and MWA, were evaluated
using daytime and nighttime Landsat 8 OLI/TIRS data. To the best of our knowledge, this is the first
study proposing the retrieval and validation of nighttime LST from TIR data of Landsat 8, also with a
performance comparison with respect to daytime LST retrieval. Since LSE is one of the most important
factors affecting the accuracy of LST retrieval methods, the effects of six NDVI-based LSE models on
satellite-based LST accuracy were also investigated.

Concerning nighttime LST retrievals, we proposed the combined use of daytime LSE and nighttime
TIR data when the difference in acquisitions of both datasets are close (a few days) and unchanged
weather condition is observed. Concerning the evaluation of the LST retrieval methods and LSE
models under daytime and nighttime conditions, SURFRAD and ARM SGP sites were used to calculate
in-situ LST simultaneous with TIR data acquisitions.

In addition to the accuracy evaluation of the LST methods, we conducted detailed
sensitivity/uncertainty analyses for in-situ measurements and sensitivity of LST methods on LSE for
both daytime and nighttime. Considering the daytime sensitivity results of in-situ measurements,
we proved that ±5 W/m2 error in downwelling and upwelling radiance led to ±0.024 K and ±0.8 K error
in LST, respectively, and 0.01 error in the broadband emissivity caused ±0.25 K error in LST. On the
other hand, concerning the nighttime sensitivity results of in-situ measurements, we observed ±5 W/m2

error in downwelling and upwelling radiance caused ±0.029 K and ±0.95 K error in LST, respectively,
and 0.01 error in the broadband emissivity provided ±0.12 K error in LST. The sensitivity results of
in-situ LST measurements revealed that the uncertainty of the downwelling and upwelling radiance
was almost identical in daytime and nighttime. Nevertheless, the uncertainty of the broadband
emissivity in the nighttime was half of that in the daytime.

Then, we investigated the sensitivity of the LST methods to LSE for both daytime and nighttime
LST retrievals. The sensitivity results indicated that when the LSE error was constant for MWA and
SCA, the LST error increased with increasing brightness temperature. However, when the LSE error
was constant for RTE, LST error was stable with increasing brightness temperature. On the other hand,
the nighttime sensitivity analysis showed identical trends to daytime ones; however, the variation in
the LST error was smaller than daytime mainly due to the lower brightness temperatures.

The accuracy results of the daytime Landsat 8 data at the nine ground stations showed that the
MWA method with LSE4 and LSE6 presented the best results for the daytime. In general, for all the
LSE models, except for the LSE2, the MWA indicated slightly better results than the RTE, and the
RTE demonstrated slightly better results than the SCA for daytime LST retrievals. Considering the
nighttime, the SCA method with LSE5 presented the best results. However, MWA and RTE provided
very similar results with SCA. Compared to the daytime, all LST retrieval methods provided highly
accurate results with the different LSE models in the nighttime. The systematic overestimation of
daytime LST retrieval is no longer present at night, with an evident reduced bias. The validation test
shows that the use of daytime NDVI-based LSE with reflective data close to nighttime thermal data is
a reliable solution for the nighttime LST retrieval.
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Appendix A

Table A1. The list of the daytime and nighttime Landsat 8 images with corresponding validation
site IDs.

Acquisition Time Scene ID Scene Acquisition Date
and Hour (UTC) Site ID

Daytime

LC80330322013269LGN01 26.09.2013—17:40

TBL

LC80340322015170LGN01 19.06.2015—17:43

LC80340322017239LGN00 27.08.2017—17:44

LC80340322017255LGN00 12.09.2017—17:44

LC80330322017264LGN00 21.09.2017—17:38

LC80340322018258LGN00 15.09.2018—17:44

LC80350262017198LGN00 17.07.2017—17:48

FPK

LC80360262017205LGN00 24.07.2017—17:54

LC80350262017230LGN00 18.08.2017—17:48

LC80350262017246LGN00 03.09.2017—17:48

LC80350262017246LGN00 03.09.2017—17:48

LC80230362019296LGN00 23.10.2019—16:38 GWN

LC80290292019290LGN00 17.10.2019—17:12 SXF

LC80280352017229LGN00 17.08.2017—17:08
SGP E32 Medford

LC80280342019203LGN00 22.07.2019—17:08

LC80280352017229LGN00 17.08.2017—17:08

SGP E11 ByronLC80280342017245LGN00 02.09.2017—17:08

LC80280342019203LGN00 22.07.2019—17:08

LC80280352019027LGN00 27.01.2019—17:08 SGP E37 Waukomis

LC80280352019027LGN00 27.01.2019—17:08 SGP E15 Ringwood

LC80280352019027LGN00 27.01.2019—17:08 SGP E38 Omega

Nighttime

LC81292122013270LGN01 27.09.2013—04:45

TBL

LC81302122015171LGN01 20.06.2015—04:48

LC81302122017240LGN00 28.08.2017—04:49

LC81302122017256LGN00 13.09.2017—04:49

LC81292122017265LGN00 22.09.2017—04:43

LC81302122018259LGN00 16.09.2018—04:49

LC81282182017194LGN00 13.07.2017—04:39

FPK
LC81272182017203LGN00 22.07.2017—04:33

LC81282182017226LGN00 14.08.2017—04:39

LC81282182017242LGN00 30.08.2017—04:39

LC81272182017251LGN00 08.09.2017—04:33

LT81212082019295LGN00 22.10.2019—03:52 GWN

LT81232142019293LGN00 20.10.2019—04:07 SXF

LC81262102017228LGN00 16.08.2017—04:24
SGP E32 Medford

LC81262092019202LGN00 21.07.2019—04:23
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Table A1. Cont.

Acquisition Time Scene ID Scene Acquisition Date
and Hour (UTC) Site ID

LC81262102017228LGN00 16.08.2017—04:24

SGP E11 ByronLC81262102017244LGN00 01.09.2017—04:24

LC81262092019202LGN00 21.07.2019—04:23

LC81262092019026LGN00 26.01.2019—04:23 SGP E37 Waukomis

LC81262092019026LGN00 26.01.2019—04:23 SGP E15 Ringwood

LC81262092019026LGN00 26.01.2019—04:23 SGP E38 Omega
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