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Abstract: The Global Navigation Satellite System (GNSS) has become a valuable resource as a remote
sensing technique. In the past decade, the use of reflected GNSS signals for sensing the Earth,
also known as GNSS reflectometry (GNSS-R), has grown rapidly. On the other hand, with the
continuous development of GNSS, multi-frequency multi-modulation signals have been used to
enhance not only positioning performance, but also remote sensing applications. It is known that
for some constellations, navigation satellites broadcast signals employing BPSK (binary phase-shift
keying) modulation and BOC (binary offset carrier) modulation at the same frequency band. This paper
proposes a new GNSS-R measurement, called a composite delay-Doppler map (cDDM), by utilizing
the received reflected GNSS signals with different modulation techniques for the purpose of retrieving
wind speed. The GNSS-R receiver can receive BPSK and BOC signals simultaneously at the same
frequency band (e.g., GPS III L1 C/A and L1C or QZSS L1 C/A and L1C) and process the signals to
generate GNSS-R measurements. Exploration of the observable features extracted from the composite
DDM and the wind speed retrieval algorithm are also provided. The simulation verifies the proposed
method under a configuration that is specified for the orbital and instrument specification of the
upcoming TRITON mission.
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1. Introduction

It has been shown the Global Navigation Satellite System reflectometry (GNSS-R) can be used to
observe numerous geophysical parameters above the Earth’s surface, including, but not limited to,
soil moisture [1–3] and sea ice [4–6]. The capability of GNSS-R for deriving ocean surface wind speed
has also been validated in many studies [7–9]. Among all these applications, inversion of sea wind
is the most popular subject in GNSS-R and is also crucial to weather forecasting. The algorithms for
retrieving wind speed have been developing for about 30 years since 1990. During the initial period,
scientists were merely observing variations by processing reflected GPS signals under different sea states.
After Zavorotny and Voronovich first proposed the GNSS-R theory in 2000 [10], researchers began
to match measured 1-D delay waveforms (DW) or 2-D delay-Doppler maps (DDM) with their
local simulated counterparts to estimate ocean wind speed. However, this matching method
is time-consuming and requires prior information (i.e., rough wind speed and wind direction).
Subsequently, many studies have proposed to extract observables from the DW or DDM and correlate
these observables to nearly coincident measurements using other wind sensors, such as buoys. To date,
retrieval of wind speed with an empirical model by relating the observables with the collocated wind
speed is the most common practice. A summary of the GNSS-R principles and other applications can
be found in [11].
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The Cyclone GNSS (CYGNSS) mission is a space-based GNSS-R mission, which comprises eight
micro-satellites to provide measurements of the sea surface wind field with good spatial and temporal
resolution. The evolution of the CYGNSS wind speed retrieval algorithm is briefly reviewed in the
following. In 2014, Clarizia et al. [12] developed a preliminary approach to retrieve wind speed using the
data recorded by the precursor mission (United Kingdom-Disaster Monitoring Constellation, UK-DMC).
They presented a minimum variance estimator to composite five wind speeds estimated from five
different observables derived from a small data set of GNSS-R DDMs. Subsequently, Clarizia et al. [13]
presented the baseline CYGNSS L2 wind speed retrieval algorithm, with specific characteristics of
CYGNSS in-orbit measurements. Instead of using five observables as in the previous study, they used
two observations (i.e., DDMA and LES) to develop a weighted wind speed estimator. After CYGNSS
was launched on December 15, 2016, Ruf and Balasubramaniam [14] developed a wind speed algorithm
using a tremendous amount of on-board measurements, along with two different ocean surface wind
speed reference sources. This time, they built independent wind-GMF by considering two different sea
states, a fully developed sea (FDS) version and a young sea/limited fetch (YSLF) version. The YSLF
GMF is designated for measuring high wind speeds, especially those of tropical cyclones. The overall
wind speed retrieval performance of the CYGNSS mission was reported in [15]. Afterward, Park and
colleagues, affiliated with National Oceanic and Atmospheric Administration (NOAA), also proposed
an improved wind retrieval method in 2019 [16].

Recently, a few studies have been conducted to define new observables for wind speed retrieval.
In [17], Gao et al. described the normalized delay waveform (NDW) width as a new observable,
along with elevation angle and flight height, to retrieve wind speed. Their wind speed retrieval
model has two versions: one is a multiple regression model, and the other is a neural network
model. However, both models can only provide the same performance level as the matching method
(i.e., comparing the measured delay waveform with a simulated delay waveform). In a study by
Wang and co-workers [18], two new observables were proposed based on the variations in the DW
distribution. They built a ground-based GNSS-R system to retrieve wind speeds under a gentle wind
scenario and a typhoon scenario using the proposed observables by receiving and processing Beidou
Geostationary Earth Orbit (GEO) satellite signals. The results demonstrated that optimal wind speed
retrieval performance can be obtained by fine-tuning the threshold and coherent time before calculating
the proposed observables. On the other hand, Juang et al. proposed a model-based approach that
the relationship between the reflected delay waveform and direct delay waveform can be identified
as a channel response function [19]. The authors claimed that the proposed method is insensitive to
the variation of the transmitter power, and the remote sensing parameters (e.g., ocean wind speed)
can be retrieved from the coefficients in the channel model. In addition, the channel response that
is established from binary phase-shift keying (BPSK)-modulated signals can be directly applied to
binary offset carrier (BOC)-modulated signals. The flight test in their study showed that the proposed
method is feasible and potential. However, data retrieval performance of the proposed method has not
been verified.

The first GPS III satellite was successfully launched on 23 December 2018 and went into service
on 13 January 2020, after a series of rigorous on-orbit operational tests. The remaining nine satellites
(IIIA block series) continue to be deployed. It is expected that the last satellite will be launched in
the second quarter of 2023. GPS III is constructed to be fully backward compatible with existing
GPS systems but with new capabilities related to both military and civilian use, including longer SV
lifer, improved accuracy, and improved availability. The GPS III SV will transmit L1 C/A, L1 P(Y),
L2 P(Y), the modernized L1M, L2C, and L2M, and new L1C and L5 signals. Among all these signals,
the L1C signal, which makes GPS III interoperable with other satellite navigation systems, is a
new additional civilian signal. It is believed that the benefits of L1C (including improved accuracy,
additional navigation messages, and advanced anti-jamming capability) can provide civilian users
with better PVT services throughout the globe. In this regard, it is of interest whether the new L1C
signal of the GPS III can be used to enhance GNSS-R performance. In this paper, we proposed a
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potential solution, described in Section 2, to incorporate this signal in the processing of wind speed
retrieval. For a detailed description of the GPS III, including performance requirements, signal and
system design, and arrangement of the program, readers are referred to [20].

Thanks to the contribution of TechDemoSat-1 (TDS-1) and CYGNSS, many advances have
been made in the GNSS-R. The available data from these missions not only verify the feasibility
of GNSS-R but also promote many potential applications in remote sensing. The TRITON satellite,
conducted by Taiwan’s National Space Organization, will draw on the experience of those missions to
carry on a space-based GNSS-R mission to gather ocean surface roughness and wind speed for the
purpose of weather research and forecasting. The purpose of this paper is to propose a new GNSS-R
measurement by using the signals transmitted under different modulations (i.e., BPSK and BOC)
at the same frequency band and source for retrieving ocean wind speeds. The proposed method is
based on the difference caused by the reflected signal under different modulations. A benefit of the
proposed method is that it may ignore the instrument calibration, which is a crucial pre-processing of
scientific data generation, but a challenging procedure during on-board processing. The corresponding
wind GMF that is using the derived observable was also developed in this paper. In this paper,
the simulation parameters for generating and validating the proposed method are specified under
TRITON specifications, including orbital measurement geometry, the nadir antenna gain pattern, and
receiver hardware characteristics.

2. Materials and Methods

In this study, a new GNSS-R measurement for wind speed retrieval is proposed that utilizes the
signal characteristics of next-generation GNSS under TRITON configurations. This section describes the
data simulation under TRITON specifications, including the satellite tracks and reflection tracks. The real
weather analysis data, which was used as the ground truth data, is also discussed. An explanation of
the software used to simulate GNSS-R measurement is included. The proposed GNSS-R measurement,
extracted observables, as well as the wind speed retrieval algorithm, are also described in detail in
this section.

2.1. Orbital and Instrumental Specifications of TRITON Mission

The TRITON (initially called FORMOSAT-7 Reflectometry, FS-7R) satellite is a part of the
FORMOSAT 7 program developed for a technology demonstration mission by the Taiwanese space
agency, National Space Organization (NSPO) and scheduled to be launched in late 2021. Unlike other
satellites, which were developed for the purpose of conducting the GNSS radio occultation (GNSS-RO)
mission, the TRITON is designed to carry on the GNSS-R experiment. The mission objective of
the TRITON is to measure the roughness and wind speed over the ocean surface based on the
domestically-developed GNSS-R payload. In this subsection, we introduce the TRITON satellite
trajectory and its corresponding reflection events. For more details about the TRITON mission,
including the payload design and preliminary test, the reader can refer to [19,21,22].

The TRITON satellite has a sun-synchronous mission orbit at an altitude of 550–650 km.
The on-board payload of the TRITON satellite is a GNSS-R receiver tailored for receiving and
processing reflected GNSS signals, including GPS, QZSS, and Galileo. The TRITON satellite is equipped
with one zenith antenna and one nadir antenna. The zenith antenna is a high gain dual-frequency
(L1 + L2) antenna, which is used to receive line-of-sight GNSS signals for GNSS receiver to provide
position, velocity, and timing information. The nadir antenna is a left-handed circularly polarized
(LHCP) antenna with a gain value of 14.5 dBi at the L1 frequency and 12.7 dBi at the L2 frequency.
It should be noted that the RF front-end behind the nadir antenna will sample the incoming signal at
16.368 × 106 samples per second. All these parameters are essential for the following simulations and
are summarized in Table 1.
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Table 1. Orbital and payload specifications of the TRITON satellite

Parameter Value

Orbit Sun-synchronous
Altitude 550–650 km
Period 96 min

Nadir antenna gain 14.5 dBi
Sampling rate 16.368 MHz

Frequency 1575.42 MHz

As mentioned, the TRITON is orbiting the Earth at an inclination angle greater than 24 degrees,
and is capable of measuring four simultaneous reflections on the Earth’s surface every second. In the
following, four GPS satellites with the highest elevation angle are selected to calculate the specular
reflection position. Figure 1a shows the 24-h TRITON spatial coverage of ground tracks and the
corresponding reflection points. Figure 1b also shows the spatial coverage of reflection points over the
ocean only.
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Figure 1. (a) Simulated TRITON ground tracks and reflection event coverage concerning GPS satellites
for a 24-h period. (b) Shown is the reflection point over the ocean only. The broken yellow line indicates
the ground tracks of the TRITON satellite, and the broken orange line indicates the reflection points
from four GPS satellites with the highest elevation angle.

2.2. The Ground Truth Data: European Centre for Medium-Range Weather Forecasts Product

In the previous section, we simulated the trajectory of the TRITON satellite and its reflection
tracks according to given parameters. However, it is also necessary to specify wind speed to generate
the GNSS-R measurements, such as the delay-Doppler map (DDM) or the delay-waveform (DW).
Therefore, we plan to employ the European Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis product to generate the ground truth wind speed for the purpose of simulating the DDM
and DW. To evaluate the retrieval performance of the wind speed of the proposed method, we used
the ECMWF reanalysis product as 10-m-referenced ocean surface wind speeds. The reason to use real
data, rather than a randomly generated wind speed value, is that the limit and distribution of wind
speed values accord with the actual situation, which makes the simulation more realistic. ECMWF is a
self-governing organization, and its core mission is to provide weather forecasts services and climate
reanalysis products. The climate reanalysis product used here contains the wind speed information at
the height of 10 m above the surface of the Earth with a spatial resolution of 0.25◦ × 0.25◦, and temporal
resolution of 1 h. Consequently, we used bicubic interpolation to estimate the reference wind speed
at the locations and time according to the simulated reflection point of the TRITON satellite. In the
following, we used the ECMWF data between 10 February 2020, and 16 February 2020, to produce
interpolated 10-m-height ocean surface wind speeds as reference matchups. Figure 2 shows the
observed wind speed distribution, which is obtained from the real ECMWF data by interpolation,
according to given reflection tracks.
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Figure 2. The TRITON reflection observation coverage, respectively, for (a) 24 h and (b) 7 days
represented by wind speed. The color indicates the coincident wind speed obtained by interpolating
the European Centre for Medium-Range Weather Forecasts (ECMWF) data.

2.3. The Proposed GNSS-R Measurement: Composite Delay-Doppler Maps

In the GNSS-R, one of the essential products is the delay-Doppler map (DDM). Usually, the DDM
will be made in different sizes according to mission designs, such as 20× 128 (Doppler bins × delay bins)
for CYGNSS or 64 × 128 (Doppler bins × delay bins) for TRITON. In addition, the DDM resolution may
also be different. In this paper, it is assumed that a GNSS-R receiver is capable of generating two types
of DDMs. One is the DDM generated by processing the reflected L1 C/A signals (BPSK-DDM), and the
other is the DDM generated by processing received reflected L1C signals (BOC-DDM). Under these
conditions, the proposed GNSS-R measurement can be produced as derived below. As just mentioned,
regardless of which size/resolution is specified, any number of pixel values in a DDM can be related to
the input signal power as follows [23]:

CM = G
(
Pa + Pr + PM

s

)
(1)

where C represents the DDM values per delay-Doppler bin produced from the GNSS-R receiver in the
unit of “counts”; G is the total system gain; Pa is the thermal noise power generated at the antenna, Pr

is the thermal noise power generated by the GNSS-R receiver, and PM
s is the received power of the

scattered signal, with respect to L1 C/A (M = BPSK) or L1C (M = BOC). CYGNSS puts a great deal of
effort into removing the effects of system gain and noise components from Equation (1), to retain a
clear receiver scatter signal component via the black body calibration algorithm [24,25]. In this paper,
we propose a new GNSS-R measurement utilizing the signal characteristics of L1 C/A and L1C without
using any calibration methods. It is believed that both the BPSK-DDM and BOC-DDM are suffering
from the same noise floor, because the received signals all go through the same instrument path.
The DDM noise floor can be obtained by taking the average of a certain specific signal-free area in the
DDM and can be expressed as:

CN = G(Pa + Pr) (2)

By removing Equation (2) from Equation (1), we obtain:

C
M

= GPM
g (3)

Finally, by taking the decibel computation and subtracting BOC-term from BPSK-term, we obtain

∆CdB = 10 · log10

(
PBPSK

s

)
− 10 · log10

(
PBOC

s

)
(4)

To implement the proposed method, we divided the procedure into three parts: (1) produce
BPSK-DDM and BOC-DDM for each channel; (2) calculate the noise floor and eliminate it from the
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DDM (the noise floor is calculated independently for each channel), and (3) apply the above equations
to make the composite delay-Doppler map (cDDM). Figure 3 also shows the processing steps to
generate the proposed GNSS measurement. An open-source GNSS-R simulator, WavPy, is used to
simulate the proposed DDM measurement [26]. It should be noted that the WavPy currently employs
the classic Z-V model [10] to implement the simulation.
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To analyze the relationship between the cDDM and the wind speed, we conducted a simple
scenario with the parameters provided in Table 2. Figure 4 shows the simulated BPSK-DDM, BOC-DDM,
and their corresponding CDDMs under different wind speeds and incidence angles. Then, we set a
constant incidence angle of 30◦, and simulate DW under different wind speeds, as shown in Figure 5b.
In Figure 5a, we display an example of BPSK-DW and BOC-DW.

It is known that the autocorrelation function of the L1C spreading code has two side lobes,
since the L1C spreading code employs the BOC modulation technique. The signal properties are
changed due to the noise, fading, and distortion after reflection or scattering. This effect can lead to an
extended trailing edge on the BPSK signal and asymmetrical side lobes on the BOC signal, as shown
in Figure 5a. In Figure 5b, it can be seen that the area of the waveform around the peak varies with
wind speed.

To further analyze the effectiveness of the cDDM in wind speed inversion, we simulate a large
amount of data under various conditions, including different wind speeds and receiving geometry,
based on realistic parameters. As mentioned in the preceding section, it is assumed that we collected the
data generated from TRITON from 10 February 2020, to 16 February 2020. Therefore, a large set of cDDM
is simulated according to real configurations, including antenna gain, incidence angle, and sampling
rate. The actual ECMWF data during the selected period is used to generate the collocated reference
wind speed. Additionally, we also apply some quality control to discard poor-quality simulated
cDDM before further processing and analysis. First, measurements with receiving gains of less than
0 dB are excluded. Second, the BPSK-DDM and BOC-DDM, in which peak positions are too far
from the theoretical center point, are excluded. Finally, the BPSK-DDM and BOC-DDM, in which the
signal-to-noise ratio is less than 3 dB, are excluded. The remaining data set still counts up to 1,300,000
data pairs retained for analysis. We further split the data set into two independent sets: a randomly
selected training set, which accounts for 80% of samples, and a remaining test set.

Table 2. Simulation parameters as a preliminary scenario.

Parameter Value

Incidence angle 10, 20, 30, 40, 50, 60 deg.
Wind speed 3, 5, 10, 15, 20, 30 m/s
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columns are BPSK-DDM, BOC-DDM, and cDDM, respectively. The specified parameters from the top
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Figure 5. (a) Comparison of a BPSK-delay-waveform and a BOC-delay-waveform under a wind speed
of 5 m/s. (b) Comparison of the composite delay waveform for different wind speeds at an incidence
angle of 30◦.

2.4. The Observable and Wind Speed Retrieval Algorithm

In principle, regardless of the type of GNSS-R measurement (i.e., delay-Doppler map or
delay-waveform), one needs to extract useable observables from the GNSS-R measurement and
regress the observable to the collocated wind speeds (or other geophysical parameters). Subsequently,
a wind retrieval algorithm can be obtained by deriving a geophysical model function (GMF) that relates
the observable to the wind speed, based on the regression parameters. In this study, we plan to extract
three observables from the composite delay-Doppler map and deriving their corresponding GMFs.
These observables are delay-Doppler map average, the delay-waveform average, and the delay-Doppler
map peak, respectively. The following discussion provides a description of the observable and the
procedure used to define the wind GMF.

The first observable is the so-called delay-Doppler map average (DDMA), which is a common
observable and has been used in many studies on GNSS-R. The concept of the DDMA is the average
signal power over a specified region of the DDM around the peak value position. The designer
requirement determines the area in which to calculate the DDMA. For example, the Cyclone GNSS
(CYGNSS) mission chooses the range of delay as (−0.25 0.25) chips and the range of Doppler as
(−1000 1000) Hz, which corresponds to 3 × 5 bins of the DDM, to meet the mission requirement [13].
This selection can provide the retrieved wind speed with a spatial resolution of around 25 km × 25 km.
In this paper, we employ the concept of DDMA on the cDDM to produce the composite delay-Doppler
map average (cDDMA), which can be expressed as follows:

cDDMA =
1

MN

M∑
m=1

N∑
n=1

YcDDM(τm, fn) (5)

where YcDDM represents the value of the cDDM obtained from Equation (4); M and N are specified
delay and Doppler range, respectively, and τm and fn are the delay and Doppler at indexes m and n,
respectively. We inherit the configurations from the CYGNSS; that is, a 3 × 5 cDDMA is calculated
from the cDDM and used in the subsequent analysis. The second observable is the composite
delay-waveform average (cDWA), which is the average value around a specified range in zero Doppler
cDDM calculated using the following equation:

cDWA =
1
M

M∑
m=1

YcDDM(τm, fc) (6)
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where fc represents the Doppler index located at the zero Doppler of the cDDM. The last observable is
the cDDM peak (cDP), which is defined as the highest value of the cDDM. It should be noted that all
the above observables are in units of dB.

Before developing the GMF, one of the issues is the need to correct any effects that may affect
the observable. Therefore, we first investigate the relationship between the observable and the
nadir antenna gain at the specular point (Gr). Here, we take the DDMA observation as an example.
Figure 6 shows the relationship between the cDDMA0, derived from the simulated cDDM using real
TRITON settings via WavPy, and the interpolated ECMWF wind speeds. Clearly, the observable has a
dependence on Gr.
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To eliminate the effect of the antenna gain resulting from the observable, we apply the correction
method used in [13]. The dependence of cDDMA on Gr is shown in Figure 7a, where the cDDMA,
corresponding to different values of Gr, takes the average of different wind speed values. Figure 7a
shows a more clear dependence relationship between cDDMA and Gr depicted in Figure 6. It is
also shown that the dependence of the cDDMA on Gr does not vary with wind speed, and we can,
therefore, developed an empirical correction. Their value has normalized the data sets corresponding
to a single wind speed value at Gr = 0 dB, and we find that a sum of sines function, given by
f (x) = a1sin(b1x + c1) + a2sin(b2x + c2), where x = Gr, can fit the normalized cDDMA data points in
that curve. Figure 7b shows the normalized data points and their corresponding best fit polynomial
function. The same procedure is applied to the other two observables, cDWA and cDP, since these two
observables were also found to have a similar dependency relationship with Gr. Note that the above
analyses were all conducted using the training data set. However, we found that the dependence
on antenna gain is not entirely directly proportional. That is, there is a decrease in the observable
decrease with increase in Gr when Gr is greater than a specific value. As a result, we inspected and
observed the dependence of the BPSK-DDM-derived observable and BOC-DDM-derived observable,
respectively, on Gr. The results showed that the dependence of the observables on Gr is entirely directly
proportional, but they differ from each other. Therefore, the composite combination described in the
proceeding section causes the dependence phenomenon shown in Figure 7.
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Figure 7. (a) cDDMA0 versus nadir antenna gain at the specular point. The different colors indicate 
different wind speeds. (b) Normalized cDDMA0 obtained from (a) for all gain values and wind speeds 
versus the nadir antenna gain, represented by the black dots. The blue curve is a fourth-order 
polynomial function that fits the data. 
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Figure 7. (a) cDDMA0 versus nadir antenna gain at the specular point. The different colors indicate
different wind speeds. (b) Normalized cDDMA0 obtained from (a) for all gain values and wind
speeds versus the nadir antenna gain, represented by the black dots. The blue curve is a fourth-order
polynomial function that fits the data.

We can then obtain the corrected observable with the following expression:

O1 =
O0

f (Gr)
(7)

where O is the observable (i.e., cDDMA, cDWA, or cDP), and f (Gr) is the polynomial fit as stated
above. The cDDMA before and after the Gr correction, represented as scatter density, is shown in
Figure 8. The figure manifestly shows that the dependence on the nadir antenna gain value has been
eliminated, as compared to Figure 6.
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The final observables used to develop the wind geophysical model function (GMF) are the corrected
observables that are obtained from Equation (7). To develop the GMF, we regress the observable against
the ECMWF wind speed. In this section, several commonly used fitting models were used to develop
the GMF, including power model, exponential model, two-term exponential model, and polynomial
model. In addition to the above equations, a dual-form model, which is found to best fit the observed
and wind speed, was proposed for developing the GMF. Table 3 provides the mathematical expression
for the models described above, which were also used for the subsequent processing.
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Table 3. Comparison of fitting models. (In this table, x is the observable, U10 is the ECMWF wind
speed, and the remaining symbols is the dependent parameters for each model).

Model Equation

Power model U10 = a× (x− c)d + b (T 3.1)
Exponential model U10 = b + ae−c(x−d) (T 3.2)
Two-term exponential model U10 = a1eb1x + a2eb2x (T 3.3)
Polynomial model U10 = a3x−3 + a2x−2 + a1x−1 + a0 (T 3.4)

Exp-power model (dual model) U10 =

{
alxbl + cl, x < xth

ahebhx + ch, x ≥ xth
(T 3.5)

Among these five models, the power model, the exponential model, and the two-term exponential
model were performed non-linear least squares to find the fitting coefficient. The usage of these three
models can be found in [9,27,28], respectively. In a study by Christopher and Rajeswari [14], the wind
GMF was developed by dividing the observable into two parts, low wind and high wind, and then
regressed each part with a polynomial form. Instead, we did not divide our data, since the behavior of
the proposed observable is different from their research. We directly use a three-order polynomial form
to regress the observable and the reference wind speed, as expressed in Equation (T 3.4). However,
none of the above models, expressed in (T 3.1)–(T 3.4), can perfectly regress the behavior between the
observable and the wind speed data. Therefore, we proposed a dual model, which can best fit the
relationship between the observable and the wind speed data, to develop the wind GMF, as expressed
in Equation (T 3.5). In the dual model, the data set was divided into two portions. The observable
below a certain threshold (i.e., Oth) is used to determine al, bl, and cl for the power form. The observable
above a certain threshold (i.e., Oth) is used to determine ah, bh, and ch for the exponential form. The Oth
is determined when the least-squares residuals of the two portions are both minimized. Figure 9 shows
the fitting results of using different models for training data. In the figure, the black scatter points
represent the observable versus ECMWF wind speed, and the fitting curves are represented in different
colors for each model. As shown in the figure, the dual model provides the best fit within the whole
wind range, and the fitting curve of the exponential model has an obvious bias in low wind speed.
However, if we try to reduce such a bias in low wind speed for the exponential model, the fitting result
in high wind speed would become worse.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 18 
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To clearly compare the performance of wind retrieval between models, we calculate the mean
errors and root-mean square (RMS) error using wind speed intervals of width ±1 m/s, as shown
in Figure 10. It is shown that the retrieving accuracy and precision between different models are
comparable to each other. However, the performance of the dual model is slightly better than other
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models in low wind speeds, no matter in terms of mean error or RMS error. Thus, in Section 3,
we conducted the performance evaluation using the dual model on different observables.
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2.5. Summary of the Proposed Method

The complete procedure used in this research can be divided into five parts, as shown in Figure 11.
First, we employed the specific orbital parameters of the upcoming TRITON mission to simulate
spacecraft ground tracks. Subsequently, the simulated ground tracks were used to calculate reflection
points with respect to visible GPS satellite positions. Third, the ground truth for the wind speed data
was generated by interpolating realistic ECMWF reanalysis data according to simulated reflection
events. Fourth, the proposed GNSS-R measurements, the composite delay-Doppler maps (cDDMs),
were generated via an open-source GNSS-R simulator, WavPy, using the observable derived from
the previous step. Finally, we developed the independent wind GMF for the different observables.
It should be noted that the purpose of this paper was to propose a new GNSS-R measurement that can
be used to retrieve the ocean surface wind speed. The differences between the estimated wind speed
from different observables and the ground truth wind speed were analyzed to evaluate the feasibility
of the proposed method.
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Figure 11. Overall research flow diagram, including the simulation of the TRITON ground track and
corresponding reflection events, the proposed GNSS-R measurements and the observables, and the
ground truth data generated for the performance evaluation.
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3. Results

In this section, the performance of the retrieved wind speed using three observables from the
proposed GNSS-R measurement is assessed using the test data set and the GMD derived from the dual
model. Figure 12 shows the density scatter plot of the true wind speed and retrieved wind speed from
different observables. As shown in the figure, the difference between the retrieved wind speed from the
three observables is not noticeable. Nonetheless, we could still find that the use of CDP1 caused less
outlier branch behavior than when using CDW1 and CDDMA1, particularly with low to moderate wind
speeds. Table 4 summarizes the overall statistical results, including the bias error, root-mean-square
error, and the correlation coefficient of the retrieved wind speed using three observables. The statistical
analysis indicated that the cDP-derived wind speed yielded the best performance, with an unbiased
error, an RMSE less than 1 m/s, and a correlation coefficient of 0.96. This result is consistent with
the data in Figure 12. However, the difference between wind speeds retrieved from the different
observables is almost ignorable. The retrieved wind speeds all had an unbiased error, an RMSE value
less than 1.1 m/s, and a correlation coefficient of more than 0.96.
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Figure 12. Scatter density plot of true wind speeds versus retrieved wind speed using (a) cDDMA1,
(b) cDWA1, and (c) cDP1, respectively, extracted from the composite delay-Doppler map test data.
The solid black line represents the 1:1 agreement wind speed.

Table 4. Retrieved wind speed performance statistics for the different observables using the test data set.
Bias and root-mean-square error (RMSE) are expressed in m/s. R represents the correlation coefficient
between the ground truth wind speeds and the retrieved wind speeds.

Observable Bias RMSE R

cDDMA −0.0057 1.0294 0.9603
cDWA 0.0002 0.9811 0.9640
cDP 0.0001 0.9657 0.9652

The obvious benefit from using cDP to retrieve wind speed is the higher geometric resolution,
which is valuable when monitoring typhoon information. In this paper, however, we cannot affirm
that using cDP with the proposed GNSS-R measurement is the best choice to retrieve wind speed,
because the simulation is not able to reveal real ocean surface situations. Therefore, it is necessary to
collect real data to test and evaluate the performance using different observables.

Additionally, the retrieval error under different wind speeds for all observables was also analyzed,
as shown in Figure 13. The error plots were calculated using wind speed intervals of width ±1 m/s.
It is clear that retrieving accuracy decreases as wind speed increases when the wind speed is more
than 25 m/s. The figure also shows that the RMSE increases with increases in the wind speed when the
wind speed is more than 15 m/s. Overall, the proposed method can provide unbiased retrieved wind
speed with an RMSE of less than 2 m/s for wind speeds lower than 23 m/s. The reason for the worse
retrieval accuracy and precision at high wind speeds is that the sensitivity of the observables on wind
speed decreases, as shown in Figure 12.
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Figure 14 shows the probability density function (PDF) for the ground truth wind speeds and
retrieved winds using different observables based on the proposed method. Obviously, regardless of
which observables are used, the proposed method produces a PDF coincident with the reference PDF.
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4. Discussion

This research describes a remote sensing method for deriving the ocean wind speed for the
upcoming TRITON mission. On the other hand, as the United States proceeds to deploy GPS III
satellites, the new signals are expected to benefit not only positioning services but also remote sensing
performance. Therefore, we proposed a new GNSS-R measurement, composite delay-Doppler map
(cDDM), by utilizing the properties in the new signals and used the proposed GNSS-R measurement
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to develop a wind speed retrieval algorithm specifically for the TRITON. In addition, we also
compared the performance of wind speed retrieval between different models. The comparison results
indicated that the retrieval difference between different models is less. It could be concluded that
the relationship between the observable and the geophysical parameter dominates the retrieval
performance. Nonetheless, the proposed dual model yields better retrieval accuracy and precision
than other models at low wind speed.

In addition, the performance evaluation of wind speed retrieval by using different observable
was conducted. The results show that the observables extracted from the cDDM all could provide
unbiased and high precision wind speed estimations. Furthermore, the derivation of the cDDM
suggests that system calibration may be disregarded. This contribution was based on the hypothesis
that different signal components (i.e., L1 C/A and L1C) suffer the same effects from noise and system
gain. The algorithm has been tested with simulated DDMs that represent the expected features of the
TRITON in-orbit measurements. However, many effects cannot be verified through simulations, such as
ocean surface conditions around a tropical cyclone. It should be noted that the allocated transmission
power for L1 C/A and L1C may vary among different GPS satellite vehicles. Future studies should
account for the effect of L1 C/A to L1C transmission power differences between different navigation
satellites when implementing the proposed method.

Compared with previous studies, as described in Section 1, this research is aimed at investigating
the potential benefit of new generation GNSS signal characteristics for GNSS-R remote sensing. A new
GNSS-R measurement, composite DDM, is proposed by processing and integrating BPSK-modulated
signal and BOC-modulated signal. Through the derivation and simulation analysis, it seems that the
proposed method is insensitive to the variation of the transmitter power and antenna gain, the factors
which are of great concern in most of the conventional methods. The present study also compared the
retrieval performance by using different fitting functions to develop GMF. In comparison, most of the
previous work only develop their GMF using a specific fitting function. The reason may be limited by
the relationship between the derived observable based on the conventional GNSS-R measurement
and the remote sensing parameter. In this regard, only a slight difference is shown by modeling the
relationship between observables that are extracted from the cDDM and wind speed using different
fitting functions.

5. Conclusions

In this study, we propose and evaluate the effectiveness of a new GNSS-R measurement,
the composite delay-Doppler map (cDDM), from the perspective of retrieving sea wind speed,
by utilizing the signal characteristics of the next-generation GPS through a simulation. The ground
track for the upcoming TRITON satellite, which is designed to perform GNSS-R mission, is simulated.
The ECMWF data are used to provide the ground truth 10-m reference wind speed so that the DDMs
including the proposed cDDMs which are regarded as the main observables in a GNSS-R mission
can be generated. The cDDM is a combination of the DDM from BPSK signals and the DDM from
BOC-modulated signals. As modern GNSS satellites broadcast navigation signals under these two
modulations, the cDDM can be constructed. The paper emphasizes on the benefits of using cDDM for
data retrieval. To this end, it is shown that the cDDM based method is less sensitive to the variations
of the transmitted power and antenna gain. Three observations, namely, cDDMA, cDWA, and cDP,
are extracted from the cDDM and associated with wind speed through a dual-model geophysical
model function (GMF). The statistical analysis shows that the retrieved wind speed using cDP exhibits
the best performance in comparison with cDDMA and cDWA. The paper provides a new and potential
GNSS-R observable and processing approach on GNSS-R remote sensing. In the future, the cDDM
based retrieval methods will be further investigated and its applications to TRITON will be studied.
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Abbreviations

The following abbreviations are used in this manuscript:

BOC Binary Offset Carrier
BPSK Binary Phase Shift Keying
cDDM Composite Delay Doppler Map
cDDMA Composite Delay Doppler Map Average
cDWA Composite Delay Waveform Average
cDP Composite Delay Doppler Map Peak
CYGNSS Cyclone Global Navigation Satellite System
DDM Delay Doppler Map
DDMA Delay Doppler Map Average
DW Delay Waveform
ECMWF European Centre for Medium-Range Weather Forecasts
FDS Fully Developed Sea
GMF Geophysical Model Function
GNSS Global Navigation Satellite System
GPS Global Positioning System
LES Leading Edge Slope
LHCP Left Hand Circular Polarized
NDW Normalized Delay Waveform
NOAA National Oceanic and Atmospheric Administration
NSPO National Space Organization
PVT Position, Velocity, Time
QZSS Quasi-Zenith Satellite System
RO Radio Occultation
TDS TechDemoSate
U10 Ocean Surface Wind Speed reference to a 10 m Height
YSLF Young Sea/Limited Fetch
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