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Abstract: Terrestrial laser scanning (TLS) has been adopted as a feasible technique to digitize trees and
forest stands, providing accurate information on tree and forest structural attributes. However, there is
limited understanding on how a variety of forest structural changes can be quantified using
TLS in boreal forest conditions. In this study, we assessed the accuracy and feasibility of TLS in
quantifying changes in the structure of boreal forests. We collected TLS data and field reference from
37 sample plots in 2014 (T1) and 2019 (T2). Tree stems typically have planar, vertical, and cylindrical
characteristics in a point cloud, and thus we applied surface normal filtering, point cloud clustering,
and RANSAC-cylinder filtering to identify these geometries and to characterize trees and forest
stands at both time points. The results strengthened the existing knowledge that TLS has the capacity
to characterize trees and forest stands in space and showed that TLS could characterize structural
changes in time in boreal forest conditions. Root-mean-square-errors (RMSEs) in the estimates for
changes in the tree attributes were 0.99–1.22 cm for diameter at breast height (∆dbh), 44.14–55.49 cm2

for basal area (∆g), and 1.91–4.85 m for tree height (∆h). In general, tree attributes were estimated
more accurately for Scots pine trees, followed by Norway spruce and broadleaved trees. At the
forest stand level, an RMSE of 0.60–1.13 cm was recorded for changes in basal area-weighted mean
diameter (∆Dg), 0.81–2.26 m for changes in basal area-weighted mean height (∆Hg), 1.40–2.34 m2/ha
for changes in mean basal area (∆G), and 74–193 n/ha for changes in the number of trees per hectare
(∆TPH). The plot-level accuracy was higher in Scots pine-dominated sample plots than in Norway
spruce-dominated and mixed-species sample plots. TLS-derived tree and forest structural attributes
at time points T1 and T2 differed significantly from each other (p < 0.05). If there was an increase
or decrease in dbh, g, h, height of the crown base, crown ratio, Dg, Hg, or G recorded in the field,
a similar outcome was achieved by using TLS. Our results provided new information on the feasibility
of TLS for the purposes of forest ecosystem growth monitoring.

Keywords: spatiotemporal; time series; bi-temporal; ground-based LiDAR; tree growth

1. Introduction

Forests change over time and across space due to natural phenomena and anthropogenic processes.
Biotic changes, such as forest growth and damage, affect forest structure and tree stems and branches
grow annually in width and height. Conifer trees are typically evergreen but leaves of deciduous
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trees emerge in the spring and fall in the autumn. Forest growth process is also linked to the
decomposition process which affects the amount of dead wood [1]. Insect damage, the spread of
pathogens, wind damage, and forest fires shape forests at different spatial and temporal scales.
Insect damage, that is often combined with the spread of pathogenic fungi, causes defoliation and
changes in the bark whereas winds fall trees or cut tree parts [2] and fire burns low vegetation,
needle mass, and possibly also reshapes the structure of trees [3,4]. There are also abiotic changes
that affect the forest structure. These include land-use changes as well as silvicultural and harvesting
operations. In managed forests, trees are often planted, seedlings are tended, and several thinning
operations are carried out during the rotation period [5]. Silvicultural practices vary a great deal, but in
general, a proportion of trees is typically removed in silvicultural and harvesting operations [5,6].
Spatiotemporal information is needed to improve the understanding of, or quantify, the consequences
of these natural phenomena, processes, and human activities with varying temporal and spatial
patterns and dimensions.

Close-range sensing technologies, such as terrestrial laser scanning (TLS) provide state-of-the-art
tools in characterizing forests. TLS is a powerful close-range sensing method for characterizing forests
in three dimensions (3D) [1,7–10]. Individual trees can be detected from a TLS point cloud by detecting
circular shapes (e.g., [11,12]) or clusters of points (e.g., [13,14]), these two representing the most common
tree detection methods implemented in forest applications [8]. Then, depending on the algorithm used
and the purpose of the processing, architectural structure of a stem [15,16] or a whole tree [17,18]
can be reconstructed by using a series of geometrical primitives, preferably circular cylinders [19].
Tree reconstruction requires that points representing a tree are classified based on their origin, in other
words, from stem, branches, and foliage. Point cloud classification algorithms are most often based on
an assumption that stem points have more planar, vertical, and cylindrical characteristics than points
originating from branches and foliage [10,15,17,20]. With careful TLS data collection and pre-processing,
a single point in TLS data can reach a millimeter-level accuracy within the data set [21,22] meaning that
the reconstructed tree models are geometrically highly accurate [18]. So far, there is a limited number of
approaches for classifying points originating from foliage based on geometric features [23–26]. Use of
radiometric features based on laser return intensity have been seen as beneficial in separating foliage
and woody material [27–29]. After tree architecture is reconstructed for every tree in an area of interest,
theoretically all external tree dimensions can be derived from geometrically accurate 3D models for all
trees and used further in deriving attributes of interest.

Although it has been demonstrated that TLS technology can be used for detecting structural
changes in single trees as well as changes in the canopy structure [30–35], there is still a limited
understanding on how different kinds of forest structural changes can be quantified using TLS in
boreal forest conditions. Srinivasan et al. [30] used TLS data from two time points (2009 and 2012) for
modeling tree biomass changes in East Texas. They reported that canopy volume and height change
metrics provided the best results for modeling the change in the above-ground biomass (AGB) of
29 loblolly pines (Pinus taeda L.). Kaasalainen et al. [31] collected a time-series of TLS data from one
Norway maple (Acer platanoides L.) growing in a city with five observation points during a 4-year time
period. They modeled the tree with Quantitative Structure Modelling (QSM, [17,31]) to detect changes
in tree branch volume and branch length, caused by growth and mortality. QSMs were used in [32]
to investigate annual growth of 21 wild cherry (Prunus avium L.) trees in terms of diameter at breast
height (dbh) and height, stem, and branch volume, as well as the fraction of merchantable timber.
Sheppard et al. [32] collected TLS data over a 3-year time period so that three QSMs per tree were
constructed. Similar to the study by Kaasalainen et al. [31] earlier, the growth of individual branches
was detected and quantified as well as volume reductions due to pruning, which was identified in [32].
For the forest change analyses, it is not necessary to reconstruct the whole tree structure. For example,
bi-temporal TLS data were used in [33] to develop a voxel-based method for analyzing changes in
canopy occupancy through time. The approach can be used at the local neighborhood level for revealing
the extent of canopy space-filling, identifying interactions between trees, and analyzing complementary
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space use. Kunz et al. [34] used TLS data to capture the three-dimensional structure of trees and
investigate their temporal dynamics. Bi-temporal TLS data was collected between 2012 and 2016 and
QSMs were then used to reconstruct tree stems and branches followed by the generation of 2D and 3D
alpha-shapes for deriving additional crown shape and size parameters. With a TLS-based method,
they were able to investigate crown complementarity, crown plasticity, and wood volume allocation.
Respectively, bi-temporal TLS data (2008 and 2017) was used in [35] to investigate changes in stem
forms. Of the 35 investigated trees, which were mainly conifers, changes in stem taper, cylindrical form
factor, form quotient, and stem slenderness were analyzed. The changes in the stem taper varied from
−34% to 9%, the cylindrical form factor from 1% to 18%, the form quotient from 4% to 35%, and the
stem slenderness from −2% to 6%.

The objective of this study was to strengthen the understanding of how TLS can be used to capture
boreal forest structure in space and time. Concentrating on the change of only a few attributes with
a relatively low number of samples has been the common denominator for all the previous studies
related to the use of TLS in quantifying changes in tree attributes. A more comprehensive investigation
on the performance of capturing changes in tree and forest structural attributes with a large number of
trees and sample plots is needed to assess the feasibility of TLS in monitoring forest structural changes.
To fill in the knowledge gap, we used bi-temporal TLS data and field inventory data to cover changes in
the structure of 1280 trees and 37 sample plots from varying boreal forest conditions. We hypothesized
that TLS has the capacity to accurately estimate tree and forest structural attributes at single time
points, and the estimated attributes at the beginning of a monitoring period significantly differ from
the respective attributes at the end of the monitoring period. We assessed the performance of change
quantification by using the most common tree and forest structural attributes. At tree level, we analyzed
changes in dbh (∆dbh), basal area (∆g), tree height (∆h), diameter-height ratio (∆d-h-ratio), height of
the crown base (∆hc), and crown ratio (∆cr). At stand (sample plot) level, we analyzed changes in
basal area-weighted mean diameter (∆Dg) and -height (i.e., Lorey’s height, ∆Hg), mean basal area
(∆G), and number of trees per hectare (∆TPH). Thus, we used a range of attributes describing changes
in horizontal and vertical forest structure.

2. Materials and Methods

2.1. Study Materials

The study materials consisted of a multi-scan TLS data and a field inventory data acquired in
2014 (T1) and 2019 (T2) covering 1280 trees in 37 sample plots. The study site is located in Evo,
southern Finland (61◦19.6′ N 25◦10.8′ E) where 91 sample plots (32 m × 32 m) were initially established
in 2014 to cover the structural variation of forests (see e.g., [36]). A TLS data-acquisition campaign was
carried out in spring 2014 using a Leica HDS6100 (Leica Geosystems, St. Gallen, Switzerland) and a
Faro Focus 3D X330 (Faro Technologies Inc., Lake Mary, FL, USA) phase shift scanners, both operating at
1550 nm wavelength and measuring 508,000 points per second, delivering a hemispherical (310◦ vertical
× 360◦ horizontal) point cloud with an angular resolution of 0.018◦ in both vertical and horizontal
direction. A multi-scan approach was used to obtain a comprehensive point cloud for each sample plot
by merging point clouds from five separate scanning locations. The scan setup consisted of one center
scan located at the plot center and four auxiliary scans at quadrant directions (i.e., northeast, southeast,
southwest, and northwest) about 11 m away from the plot center. Artificial reference targets were used
to register the point clouds together. Trees from each sample plot were located by manually detecting
stem-cross sections from horizontal TLS point cloud slices to construct a tree map. The tree maps
were verified in the field and completed with the locations of small undergrowth trees that were not
visible in the point cloud. A tree-wise field inventory was carried out in the summer of 2014 to acquire
reference measurements of the tree attributes for T1. Tree species, dbh, h, and health status (alive/dead)
were recorded for all the trees with dbh exceeding 5 cm while hc was measured for Scots pine trees
only. Tree species and health status were obtained using visual interpretation. Dbh was measured as
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a mean of two diameter measurements perpendicular to each other at the height of 1.3 m above the
ground using steel calipers. An electronic clinometer was used to measure h and hc. Based on our
evaluations, the precision in dbh and tree height measurements in the given forest conditions was
approximately 0.3 cm and 0.5 m, respectively [37]. Tree attributes were then aggregated at the plot level
to obtain forest structural attributes: Dg (cm) and Hg (m), G (m2/ha), and TPH (n/ha). More detailed
description on the TLS data acquisition and field inventory for T1 can be found in [22].

Field inventory and TLS data-acquisition campaigns were repeated for 37 sample plots in autumn
2019 to capture a five-year growth period in between the measurements. The stem maps were updated
in the field with missing trees (i.e., trees fallen or harvested during the time period) and in growth of
trees (i.e., trees with dbh exceeding the 5 cm threshold during the time period) while dbh and tree
height were re-measured for all trees, and height of the crown base for Scots pine trees (Pinus sylvestris
L.). TLS data at T2 was collected using a Leica RTC360 3D (Leica Geosystems, St. Gallen, Switzerland)
time-of-flight scanner that operates at 1550 nm wavelength and measures 2,000,000 points per second,
delivering a hemispherical (300◦ vertical × 360◦ horizontal) point cloud with an angular resolution
of 0.009◦ in both vertical and horizontal direction. Similar to T1 TLS data acquisition, a multi-scan
approach (i.e., one center scan with four auxiliary scans) was used in the T2 TLS campaign to ensure
consistent point cloud quality. The scan setup for T2 was slightly modified from the one used in the T1
campaign based on experience gained in [10] that suggests placing the auxiliary scans approximately
at the plot borders to improve point cloud completeness (see Figure 1). Artificial reference targets and
a Leica Cyclone 3D Point Cloud Processing Software were used to register the separate point clouds
together for each sample plot. Topography was removed from the point clouds by applying a point
cloud normalization workflow presented by Ritter et al. [38]Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 20 

 

 
Figure 1. Outline of the terrestrial laser scanning (TLS) data processing workflow. (a) One center scan 
and four auxiliary scans were used to acquire a multi-scan TLS point cloud data in 2014 and 2019. (b) 
TLS-based canopy height model (CHM) and a Marker-Controlled Watershed Segmentation 
procedure was applied to normalized TLS point clouds to detect individual trees. Surface normal 
filtering, point cloud clustering, and Random Sample Consensus (RANSAC)-based cylinder filtering 
were applied to identify vertical, cylindrical, and planar surfaces to classify TLS point cloud into stem 
and non-stem points (for more details, see [39]). (c) Then, the classified point cloud was used to extract 
tree attributes, namely diameter-at-breast-height (dbh) and tree height (h) for all the trees, and height 
of the crown base (hc) and crown ratio (cr) for Scots pine (Pinus sylvestris L.) trees. 

Tree attributes, namely dbh, g, h, d-h-ratio, hc, and cr were extracted from the classified point 
cloud (see Figure 1, Table 2). Dbh and h were measured following the procedure originally presented 
in [10]. In other words, h was determined as the vertical distance between the highest and lowest 
points for each tree. Stem taper curve was estimated to determine dbh by measuring diameters 
through circle fitting at 20-cm vertical intervals to the stem points. The outliers in diameter-height-
observations were filtered out by comparing the measured diameters to the mean of three previous 
(or three closest at the bottom of the stem) diameters. Then a cubic spline curve was fitted to the 
diameter-height-observations to level unevenness in diameter measurements and to interpolate the 
missing diameters as suggested in [42]. Dbh was then obtained as the diameter at 1.3 m height from 
the taper curve. Tree-level g was computed from dbh measurements by considering the stem cross 
section as a circle (g = π ∗ dbh2/4) and d-h-ratio was computed as a ratio between dbh and h (d-h-

Figure 1. Outline of the terrestrial laser scanning (TLS) data processing workflow. (a) One center
scan and four auxiliary scans were used to acquire a multi-scan TLS point cloud data in 2014 and
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2019. (b) TLS-based canopy height model (CHM) and a Marker-Controlled Watershed Segmentation
procedure was applied to normalized TLS point clouds to detect individual trees. Surface normal
filtering, point cloud clustering, and Random Sample Consensus (RANSAC)-based cylinder filtering
were applied to identify vertical, cylindrical, and planar surfaces to classify TLS point cloud into stem
and non-stem points (for more details, see [39]). (c) Then, the classified point cloud was used to extract
tree attributes, namely diameter-at-breast-height (dbh) and tree height (h) for all the trees, and height
of the crown base (hc) and crown ratio (cr) for Scots pine (Pinus sylvestris L.) trees.

Later on, we found that, due to the slightly different scan setups used in the TLS-campaigns,
the overall quality of the point clouds was somewhat poorer in T1 because the auxiliary scans in
T1 were located closer to the plot center than in T2 (see Figure 1). Therefore the sample plots were
reduced in size, from the rectangular 32 m × 32 m plots (1024.0 m2) to circular sample plots with
an 11-m radius (380.1 m2), to achieve more comparable point clouds between time points T1 and T2
(i.e., to ensure that most of the trees were scanned from multiple directions). Thus, the total number of
field-measured trees was 1280, of which 270 (21.1%) were Scots pine trees, 649 (50.7%) were Norway
spruces (Picea abies (L.) H. Karst.), and 361 (28.2%) were broadleaved trees, mainly birches (Betula sp.)
and European aspen (Populus tremula L.). The main tree species was defined for the sample plots based
on proportional field-measured G at time point T2 by tree species. A sample plot was classified as a
single species-dominated sample plot if any of the tree species accounted for more than 67% of the total
basal area. Respectively, a sample plot was classified as a mixed-species sample plot if G of two or more
tree species each accounted for more than 30% of the total basal area. This classification resulted in
three groups of sample plots as 9 sample plots were classified as Scots pine-dominated, 13 sample plots
were classified as Norway spruce-dominated, while 15 sample plots were classified as mixed-species
sample plots. The sample plots covered a wide range of forest structural variation (see Table 1).

Table 1. Variation in tree attributes by tree species and forest structural attributes by main tree species
of a sample plot, measured in 2014 (T1) and 2019 (T2). Diameter at breast height (dbh), basal area (g),
tree height (h), diameter-height-ratio (d-h-ratio), height of the crown base (hc), and crown ratio (cr) were
defined at tree level whereas basal area-weighted mean diameter (Dg) and -height (Hg), mean basal
area (G), and number of trees per hectare (TPH) were defined at plot level. Scots pine-dominated plots
= basal area of Scots pine (Pinus sylvestris L.) accounts for more than 67% of the total basal area of a plot.
Norway spruce-dominated plots = basal area of Norway spruce (Picea abies (L.) H. Karst.) trees account
for more than 67% of the total basal area of a plot. Mixed-species plots = basal area of two or more tree
species each account for more than 30% of the total basal area of a plot.

Tree/Forest
Structural Attribute Tree Species Minimum

(T1/T2)
Mean

(T1/T2)
Maximum

(T1/T2)
Standard Deviation

(T1/T2)

Tr
ee

A
tt

ri
bu

te
s

dbh (cm)

All trees 5.0/5.1 16.9/17.9 59.9/64.0 10.2/10.5
Scots pine 5.2/5.1 20.3/21.3 59.7/60.1 10.3/10.6

Norway spruce 5.0/5.1 16.9/18.0 57.9/61.7 11.0/11.2
Broadleaved 5.1/5.1 14.9/15.7 59.9/64.0 8.1/8.7

g (cm2)

All trees 20.0/20.0 308.0/339.9 2818.0/3217.0 399.1/425.0
Scots pine 21.2/20.8 407.7/445.5 2799.2/2836.9 468.2/487.1

Norway spruce 20.0/20.4 318.4/351.7 2633.0/2989.9 416.6/439.0
Broadleaved 20.0/20.0 225.7/251.8 2818.0/3217.0 291.4/331.7

h (m)

All trees 2.2/1.9 16.3/17.4 36.6/38.4 7.3/7.5
Scots pine 5.0/5.0 17.8/19.2 34.5/37.2 5.5/5.8

Norway spruce 2.2/3.5 15.2/16.4 36.6/38.4 8.4/8.5
Broadleaved 2.2/1.9 17.0/17.7 32.5/35.8 6.0/6.6

d-h-ratio

All trees 0.42/0.41 1.03/1.02 4.70/5.00 0.31/0.33
Scots pine 0.57/0.53 1.10/1.08 2.24/2.45 0.29/0.29

Norway spruce 0.73/0.65 1.09/1.08 2.86/2.15 0.21/0.19
Broadleaved 0.42/0.41 0.88/0.91 4.70/5.00 0.38/0.47

hc (m) Scots pine 4.2/6.3 12.2/13.9 23.1/24.6 3.4/3.4
cr Scots pine 0.22/0.19 0.40/0.37 0.69/0.59 0.09/0.08
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Table 1. Cont.

Tree/Forest
Structural Attribute Tree Species Minimum

(T1/T2)
Mean

(T1/T2)
Maximum

(T1/T2)
Standard Deviation

(T1/T2)

Fo
re

st
St

ru
ct

ur
al

A
tt

ri
bu

te
s

Dg (cm)

All plots 13.0/14.3 27.5/28.8 42.8/44.0 9.3/9.3
Scots pine-dominated 14.2/15.1 21.7/22.9 30.6/31.7 4.5/4.5

Norway spruce-dominated 19.7/21.2 34.8/36.1 42.8/44.0 6.9/6.9
Mixed-species 13.0/14.3 24.8/26.2 42.8/43.2 9.7/9.7

Hg (m)

All plots 12.4/13.7 22.3/23.6 31.6/32.4 4.9/4.9
Scots pine-dominated 12.4/13.7 18.4 /20.0 23.1/25.3 3.2/3.4

Norway spruce-dominated 18.4/20.3 26.9/28.2 31.6/32.4 3.6/3.7
Mixed-species 15.9/17.3 20.8/21.9 27.3/27.8 3.6/3.5

All plots 15.3/17.2 31.6/34.5 51.5/56.8 10.5/11.0
G (m2/ha) Scots pine-dominated 15.3/17.2 22.6/25.5 31.1/34.4 5.9/6.8

Norway spruce-dominated 21.3/23.7 37.6/39.9 51.0/53.8 8.7/8.9
Mixed-species 16.2/17.5 32.4/35.9 51.5/56.8 10.6/11.7

TPH (n/ha)

All plots 368/368 1059/1045 3341/3236 706/711
Scots pine-dominated 368/368 963/997 1894/2105 495/553

Norway spruce-dominated 395/368 635/605 1289/1289 289/301
Mixed-species 526/552 1522/1488 3341/3236 847/835

2.2. Deriving Tree and Forest Structural Attributes from TLS Point Clouds

A point cloud processing method presented in [39] was used in this study to measure tree attributes
and to estimate forest structural attributes from the multi-scan TLS point clouds for each sample
plot and both T1 and T2 (see Figure 1). First, a raster-based canopy segmentation was carried out to
partition the normalized point clouds into smaller units using a canopy height model (CHM) at a 20 cm
resolution. Variable Window Filter approach [40] was used to identify the local maxima in the CHM, and
Marker-Controlled Watershed Segmentation [41] was applied to delineate canopy segments. The point
cloud was then split according to the extracted crown segments using point-in-polygon approach.
The crown-segmented point cloud was further classified into stem and non-stem points based on a
general assumption that stem points had more planar, vertical, and cylindrical characteristics than
points representing branches and foliage [10,15]. These characteristics were distinguished by applying
surface normal filtering, point cloud clustering, and Random Sample Consensus (RANSAC)-cylinder
filtering on horizontal point cloud slices. A more detailed description of the point cloud classification
procedure can be found in [39].

Tree attributes, namely dbh, g, h, d-h-ratio, hc, and cr were extracted from the classified point
cloud (see Figure 1, Table 2). Dbh and h were measured following the procedure originally presented
in [10]. In other words, h was determined as the vertical distance between the highest and lowest points
for each tree. Stem taper curve was estimated to determine dbh by measuring diameters through circle
fitting at 20-cm vertical intervals to the stem points. The outliers in diameter-height-observations were
filtered out by comparing the measured diameters to the mean of three previous (or three closest at the
bottom of the stem) diameters. Then a cubic spline curve was fitted to the diameter-height-observations
to level unevenness in diameter measurements and to interpolate the missing diameters as suggested
in [42]. Dbh was then obtained as the diameter at 1.3 m height from the taper curve. Tree-level g was
computed from dbh measurements by considering the stem cross section as a circle (g = π ∗ dbh2/4)
and d-h-ratio was computed as a ratio between dbh and h (d-h-ratio = dbh/h). Hc was determined
by searching for a height threshold for each tree where an increase in crown horizontal dimensions
was recorded. This was done by first binning the non-stem points into horizontal slices with a
height of 20 cm, then computing a convex hull around the bin points projected to XY-plane and
hc was determined at the height where the convex hull area exceeded a 1.5 m2 threshold and the
perimeter-to-area ratio for the convex hull was smaller than 2 (Figure 1c). The threshold values of these
parameters were chosen by pre-investigating the characteristics of the crown features with respect
to the field-measured hc. Cr was computed as the proportion of the height of a living crown from
the tree height (cr = (h − hc)/h). Finally, the forest structural attributes (i.e., Dg, Hg, G, and TPH)
were computed by aggregating the tree-level attributes at the plot level (see Table 2). Dg and Hg were
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computed as a basal area-weighted mean from the TLS-derived dbh and h measurements whereas G
was a sum of g and TPH was the total number of trees within a sample plot per unit area.

Table 2. Description of the attributes used in this study to characterize trees and forest structure in
2014 (T1) and 2019 (T2). A = sample plot area in hectares, n = number of trees within a sample plot.

Tree/Forest Structural Attribute Abbreviation Description/Formula

Tr
ee

A
tt

ri
bu

te
s diameter-at-breast-height (cm) dbh tree diameter measured at a 1.3-m height

basal area (cm2) g π ∗ dbh2/4
tree height (m) h vertical distance between ground and treetop

diameter-height ratio d-h-ratio dbh/h
height of the crown base (m) hc height of the lowest living branches

crown ratio cr (h − hc)/h

Fo
re

st
St

ru
ct

ur
al

A
tt

ri
bu

te
s

basal area-weighted mean diameter (cm) Dg
n∑

i=1
dbhi ∗ gi/

n∑
i=1

gi

basal area-weighted mean height (m) Hg
n∑

i=1
hi ∗ gi/

n∑
i=1

gi

mean basal area (m2/ha) G
n∑

i=1
gi/A

number of trees per hectare (n/ha) TPH n/A

2.3. Quantifying Changes in Tree and Forest Structural Attributes Using Bi-Temporal TLS Data

Changes in tree and forest structural attributes were quantified by subtracting the TLS-derived T1
attributes from the respective T2 attributes. At tree level, we analyzed changes in dbh (∆dbh), g (∆g),
h (∆h), d-h-ratio (∆d-h-ratio), hc (∆hc) and cr (∆cr). At plot level, we analyzed changes in TPH (∆TPH),
G (∆G), Dg (∆Dg), and Hg (∆Hg).

2.4. Assessing The Performance of The TLS-Based Method in Quantifying Changes in Forest Structure

Performance of the TLS-based method to quantify changes in tree attributes and forest structure
was assessed by comparing the TLS-derived tree and forest structural attributes with the field-measured
counterparts. For each TLS-derived tree, a corresponding field-measured tree was searched based on
its spatial location. Capability of the TLS-based method to detect trees from the point clouds was then
assessed by using completeness as an accuracy measure, indicating how large a part of the trees was
detected from the point clouds. Accuracy of the TLS point cloud-derived estimates for tree and forest
structural attributes at time points T1 and T2 as well as their difference (∆) was assessed by using bias
(mean error) and root-mean-square-error (RMSE) as accuracy measures:

bias =

∑n
i=1

(
X̂i −Xi

)
n

(1)

RMSE =

√∑n
i=1

(
X̂i −Xi

)2

n
(2)

where n is the number of trees or sample plots, X̂i is the TLS-derived tree attribute or forest structural
attribute for tree or plot i, and Xi is the corresponding attribute based on field measurements.
Relative RMSE (RMSE%) and bias (bias%) were computed by dividing the absolute RMSE and bias
with average value of the respective field-measured attribute. For tree attributes, the accuracy was
assessed by tree species (Scots pine, Norway spruce, and broadleaved trees) while for forest structural
attributes the accuracy was assessed by main tree species of a sample plot (Scots pine-dominated,
Norway spruce-dominated, and mixed-species sample plots). Coefficient of determination (R2) was
used to measure the relationship between the TLS-derived and field-measured tree and forest structural
attributes at time points T1 and T2 as well as their change. Paired-sample t-tests were used to test
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whether the TLS-based estimates for tree and forest structural attributes at time point T1 significantly
differed from the respective estimates at time point T2.

3. Results

3.1. Performance of Detecting Trees Using Bi-Temporal TLS Data

Out of the total number of 1280 trees that were measured in the field, 795 trees (62.1%) were
detected from the point clouds at both time points T1 and T2. The detected trees represented 84.5% of
the total basal area of all trees. Tree detection accuracy was highest among Scots pine trees, followed by
Norway spruce and broadleaved trees (Table 3). Trees that remained undetected were mainly small in
size, while large trees were detected at both time points with high accuracy (Figure 2).

Table 3. The number of trees by tree species that were measured in the field (Nref) and detected from
the TLS point clouds (NTLS) at the beginning (2014) and at the end of the monitoring period (2019).
Completeness indicates how large a part of the detected trees represented the total number and the
total basal area of the field measured trees.

Tree Species Nref NTLS Completeness: Total Stem Number Completeness: Total Basal Area

All trees 1280 795 62.1% 84.5%
Scots pine 270 227 84.1% 91.3%

Norway spruce 649 366 56.4% 85.7%
Broadleaved 361 202 56.0% 73.3%

3.2. Performance of Characterizing Trees in Space Using TLS

Strong relationships (R2 = 0.99) between the field-measured and TLS-derived estimates for
dbh and g were recorded at both time points (Figure 3a,b,d,e). Dbh was estimated with an RMSE
of 1.18 cm (5.7%) and 0.90 cm (4.1%) at T1 and T2, respectively, with no significant (p > 0.05)
differences in accuracy between the tree species (Table 4). However, g was estimated more accurately
for Norway spruce (RMSE% 6.2–10.6%) than for Scots pine (RMSE% 12.5–13.0%) and broadleaved
trees (RMSE% 14.5–16.0%). On average, dbh of Norway spruce were overestimated by 0.26–0.30 cm,
while dbh of Scots pine and broadleaved trees were underestimated by 0.43–0.32 cm and 0.03–0.19 cm,
respectively. Considering all the trees, slightly lower RMSEs and biases of dbh and g were obtained at
T2 than at T1.

Table 4. Bias and root-mean-square-error (RMSE) of TLS-derived estimates for tree attributes,
namely diameter-at-breast-height (dbh), basal area (g), tree height (h), diameter-height-ratio (d-h-ratio),
height of the crown base (hc) and crown ratio (cr) by tree species at time points T1 (2014) and T2 (2019)
as well as their change (∆). Negative bias denotes underestimation.

Tree Attribute Tree Species Bias RMSE

T1 T2 ∆ T1 T2 ∆

dbh (cm)

All trees −0.05 (−0.3%) 0.04 (0.2%) 0.10 (8.3%) 1.18 (5.7%) 0.90 (4.1%) 1.13 (97.4%)
Scots pine −0.43 (−2.0%) −0.32 (−1.4%) 0.12 (10.1%) 1.11 (5.2%) 0.99 (4.5%) 0.99 (83.9%)

Norway spruce 0.26 (1.2%) 0.30 (1.3%) 0.04 (3.8%) 1.26 (5.7%) 0.77 (3.3%) 1.22 (103.5%)
Broadleaved −0.19 (−1.1%) −0.03 (−0.15%) 0.17 (15.0%) 1.11 (6.3%) 0.99 (5.27%) 1.12 (100.4%)

g (cm2)

All trees −7.65 (−1.9%) −3.39 (−0.7%) 4.26 (10.2%) 49.28 (11.9%) 47.59 (10.4%) 49.40 (118.4%)
Scots pine −21.47 (−5.1%) −18.48 (−3.9%) 2.99 (7.0%) 52.82 (12.5%) 60.81 (13.0%) 44.14 (102.8%)

Norway spruce 1.75 (0.4%) 7.38 (1.4%) 5.64 (12.9%) 50.51 (10.6%) 32.35 (6.2%) 55.49 (126.6%)
Broadleaved −9.16 (−3.1%) −5.96 (−1.8%) 3.21 (8.7%) 42.42 (14.5%) 53.51 (16.3%) 42.98 (117.1%)

h (m)

All trees −1.33 (−6.9%) −0.74 (−3.6%) 0.59 (42.1%) 4.37 (22.5%) 4.10 (19.7%) 3.53 (251.6%)
Scots pine −0.89 (−4.8%) −0.47 (−2.3%) 0.43 (27.3%) 2.52 (13.7%) 2.42 (12.1%) 1.91 (122.8%)

Norway spruce −0.51 (−2.6%) 0.39 (1.8%) 0.90 (72.3%) 3.99 (20.1%) 3.03 (14.4%) 3.43 (274.6%)
Broadleaved −3.31 (−16.8%) −3.11 (−14.6%) 0.21 (13.8%) 6.26 (31.7%) 6.56 (30.8%) 4.85 (321.5%)

d-h-ratio

All trees 0.10 (9.7%) 0.07 (6.3%) −0.04 (226.6%) 0.35 (33.6%) 0.30 (29.5%) 0.33 (2028.6%)
Scots pine 0.05 (4.6%) 0.03 (2.6%) −0.02 (78.3%) 0.28 (24.9%) 0.24 (21.6%) 0.28 (942.6%)

Norway spruce 0.06 (5.3%) −0.01 (0.1%) −0.06 (563.8%) 0.26 (23.6%) 0.16 (14.8%) 0.22 (2123.3%)
Broadleaved 0.24 (26.9%) 0.23 (26.2%) −0.01 (88.6%) 0.53 (59.8%) 0.51 (57.7%) 0.49 (4516.2%)

hc (m) Scots pine −1.70 (−16.1%) −1.36 (−10.9%) 0.34 (20.7%) 2.71 (25.7%) 2.55 (20.4%) 1.97 (120.6%)
cr Scots pine 0.05 (11.7%) 0.04 (10.3%) −0.01 (36.2%) 0.10 (22.8%) 0.09 (22.5%) 0.09 (318.1%)
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Figure 2. Diameter at breast height (dbh) distributions presenting the relative frequency (f) of trees in
1 cm dbh classes by tree species. Mean values (µ) and standard deviations (σ) based on field (Ref) and
terrestrial laser scanning (TLS) measurements are presented as well. The colored bars represent the
proportion of trees by dbh classes that were detected from the TLS point clouds at both time points
2014 (T1) and 2019 (T2).

Relationship between the field-measured and TLS-derived estimates for h was stronger for Scots
pine and Norway spruce (R2 = 0.84–0.92) than for broadleaved trees (R2 = 0.31–0.39; see Figure 3g,h).
In general, TLS-derived h was underestimated, and the accuracy of h estimates were improved from
T1 to T2 (Table 4). For Scots pine trees, RMSEs of 2.52 m (13.7%) and 2.42 m (12.1%) were recorded at
time points T1 and T2, respectively. The estimation accuracy for Norway spruce was slightly lower
being 3.99 m (20.1%) for T1 and 3.03 m (14.4%) for T2. For broadleaved trees, the estimation accuracy
decreased even more, being 6.26 m (31.7%) at T1 and 6.56 m (30.8%) at T2. Additionally, differences in
the accuracy of h estimates led to differences in the accuracy of d-h-ratio estimates between the tree
species. R2 of 0.76–0.79 was recorded between the field-measured and TLS-derived d-h-ratio for
Scots pine, while the respective values for Norway spruce and broadleaved trees were 0.58–0.73 and
0.43–0.51, respectively (Figure 3j,k).

Hc and cr were estimated for Scots pine trees only. R2 between the field-measured and TLS-derived
estimates for hc and cr were 0.78–0.79 and 0.52–0.58, respectively (Figure 3p,q). For hc estimates an
RMSE of 2.71 m (25.7%) for T1 and 2.55 m (20.4%) for T2 with an underestimate of 1.36–1.70 m (Table 4).
On average, cr was overestimated by 10.3–11.7% with a relative RMSE of 22.5–22.8% (Table 4).
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Figure 3. Relationship between the field-measured reference measurements and the TLS-derived
estimates on tree attributes, such as diameter-at-breast-height (dbh), basal area (g), tree height (h),
diameter-height-ratio (d-h-ratio), and crown ratio (cr) by tree species measured in 2014 (T1) and 2019
(T2) as well as their difference (∆dbh, ∆g, ∆h, ∆d-h-ratio, and ∆cr). The solid black line represents the
1:1 relationship between the reference and the estimated values. R2

p, R2
s, and R2

b denote coefficient of
determination for Scots pine, Norway spruce, and broadleaved trees, respectively.

3.3. Performance of Characterizing Tree Attributes in Time Using TLS

It was possible to quantify changes in tree attributes using TLS. Paired sample t-tests showed that
the tree attributes estimated at T1 significantly (p < 0.01) differed from the respective attributes estimated
at T2 (Table 5). Relationship between the changes in field-measured and TLS-derived tree attributes
was stronger for attributes characterizing changes in horizontal tree structure (i.e., ∆dbh and ∆g) than
attributes characterizing changes in vertical tree structure (i.e., ∆h, ∆hc, and ∆cr; Figure 3). In general,
the changes in tree attributes were estimated with smaller RMSE for Scots pine than for Norway spruce
and broadleaved trees (Table 4). RMSE in ∆dbh estimates was 0.99–1.22 cm (83.9–103.5%), and most
often ∆dbh was overestimated by 0.04–0.17 cm (3.8–15.0%) depending on tree species. Differences in
the accuracy of ∆g estimates between the tree species were small and not considered statistically
significant (p > 0.05). On average, ∆h was overestimated by 0.21–0.90 m (13.8–72.3%) with an RMSE of
1.91–4.85 m (122.8–321.5%). In this case, the highest accuracy was recorded for Scots pine, followed by
Norway spruce and broadleaved trees. The accuracy of ∆d-h-ratio was considerably lower than the
accuracy of other tree attributes. Relative errors in ∆d-h-ratio were large (RMSE 942.6–4516.2%) due to
uncertainty in tree height estimates.

Attributes characterizing changes in crown structure were estimated for Scots pine trees only.
R2 of 34% and 35% were recorded between the field-measured and TLS-derived estimates for ∆hc and
∆cr, respectively (Figure 3o,r). On average, ∆hc was overestimated by 0.34 m (20.7%) with an RMSE of
1.97 m (120.6%) which is at the same level to the accuracy of ∆h estimates for Scots pine trees (Table 4).
Relative errors in ∆cr estimates were larger (RMSE% 318.1%) due to uncertainty in h and hc estimates.
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Table 5. The p-values from the paired-sample t-tests indicating the significance of the differences
between the TLS-derived estimates of tree attributes, such as diameter-at-breast-height (dbh), basal area
(g), tree height (h), diameter-height-ratio (d-h-ratio), and crown ratio (cr) by tree species measured in
2014 (T1) and 2019 (T2).

Tree Species dbh g h d-h-Ratio hc cr

All trees <0.000 <0.000 <0.000 <0.000 <0.000 <0.000
Scots pine <0.000 <0.000 <0.000 <0.000 <0.000 <0.000

Norway spruce <0.000 <0.000 <0.000 <0.000 - -
Broadleaved tree <0.000 <0.000 <0.000 0.003 - -

3.4. Performance of Characterizing Forest Structural Attributes in Space with TLS

Forest structural attributes were estimated accurately with TLS point clouds from both time
points. Strong relationships (R2 > 0.86) between the field-measured and the TLS-derived estimates for
Dg, Hg, G, and TPH were recorded for Norway spruce-dominated sample plots (Figure 4). On Scots
pine-dominated sample plots, the R2 indicated a stronger relationship between the field-measured
and the point cloud-derived estimates for Dg and Hg (R2 > 0.96) than for TPH (R2 = 0.46–0.66) and G
(R2 = 0.21–0.34). On mixed-species sample plots, an R2 of 0.93–0.95 was recorded for Dg, 0.50–0.64 for
Hg, 0.63–0.72 for G, and 0.44–0.63 for TPH. Considering all the sample plots, the estimation accuracy
for Dg and G was at the same level for T1 and T2 while Hg and TPH estimates seemed to be slightly
more accurate at T2 (RMSE% 7.9% for Hg and 49.3% for TPH) than at T1 (RMSE% 11.2% for Hg and
58.5% for TPH; Table 6).
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Table 6. Bias and root-mean-square-error (RMSE) of TLS-derived estimates for forest structural attributes, namely basal area-weighted mean diameter (Dg) and
-height (Hg), mean basal area (G) and number of trees per hectare (TPH) in 2014 (T1) and 2019 (T2) as well as their change (∆). Negative bias denotes underestimation.

Forest Structural Attribute Main Tree Species
Bias RMSE

T1 T2 ∆ T1 T2 ∆

Dg (cm)

All plots 0.08 (0.3%) 0.25 (0.9%) 0.17 (13.2%) 1.42 (5.2%) 1.72 (6.0%) 0.93 (72.6%)
Scots pine-dominated 0.08 (0.4%) 0.55 (2.4%) 0.47 (40.5%) 0.59 (2.7%) 0.77 (3.4%) 0.60 (52.5%)

Norway spruce-dominated −0.26 (−0.7%) −0.15 (−0.4%) 0.10 (7.8%) 0.87 (2.5%) 1.06 (2.9%) 1.13 (86.4%)
Mixed-species 0.39 (1.6%) 0.41 (1.6%) 0.02 (1.4%) 2.09 (8.4%) 2.51 (9.6%) 0.91 (67.9%)

Hg (m)

All plots −1.73 (−7.8%) −0.50 (−2.1%) 1.24 (96.3%) 2.51 (11.2%) 1.85 (7.9%) 1.64 (127.8%)
Scots pine-dominated −0.35 (−1.9%) 0.20 (1.0%) 0.55 (35.3%) 0.53 (2.9%) 0.70 (3.5%) 0.81 (51.9%)

Norway spruce-dominated −2.88 (−10.7%) −0.83 (−2.9%) 2.05 (165.0%) 3.12 (11.6%) 1.09 (3.9%) 2.26 (182.2%)
Mixed-species −1.67 (−8.0%) −0.69 (−3.1%) 0.98 (86.6%) 2.72 (13.1%) 2.76 (12.6%) 1.39 (122.9%)

G (m2/ha)

All plots −6.49 (−20.5%) −6.60 (19.1%) −0.11 (−3.7%) 8.52 (26.9%) 9.27 (26.9%) 1.84 (64.2%)
Scots pine-dominated −5.32 (−23.6%) −5.56 (−21.8%) −0.23 (−8.1%) 7.03 (31.1%) 8.05 (31.6%) 1.40 (48.9%)

Norway spruce-dominated −3.84 (−10.2%) −3.24 (−8.1%) 0.59 (26.4%) 5.09 (13.5%) 4.23 (10.6%) 1.48 (66.4%)
Mixed-species −9.79 (−30.2%) −10.46 (−29.2%) −0.67 (−19.3%) 11.50 (35.5%) 12.82 (35.7%) 2.34 (68.0%)

TPH (n/ha)

All plots −373 (−35.2%) −292 (−27.9%) −81 (−570%) 620 (58.5%) 515 (49.3%) 143 (1008.7%)
Scots pine-dominated −337 (−35.0%) −268 (−26.9%) −68 (−200.0%) 486 (50.5%) 428 (42.9%) 130 (381.5%)

Norway spruce-dominated −91 (−14.3%) −47 (−7.7%) −45 (−146.7%) 117 (18.5%) 65 (10.7%) 74 (245.1%)
Mixed-species −659 (−43.3%) −536 (−36.0) −124 (−366.7%) 914 (60.0%) 753 (50.6%) 193 (569.3%)
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Dg was underestimated by 0.15–0.26 cm (0.4–0.7%) on Norway spruce-dominated sample plots
while overestimated by 0.08–0.55 cm (0.4–2.4%) on Scots pine-dominated, and by 0.39–0.41 cm (1.6%)
on mixed-species sample plots (Table 6). More accurate estimates for Dg were recorded on Norway
spruce-dominated and Scots pine-dominated sample plots (RMSE% 2.5–3.4%) than on mixed-species
sample plots (RMSE% 8.4–9.6%). Hg was underestimated on all the sample plots by 0.35–2.88 m
(1.9–10.7%) except Scots pine-dominated plots at T2 when it was overestimated by 0.20 m (1.0%).
Accuracy of Hg estimates was highest on Scots pine-dominated sample plots (relative RMSE 2.9–3.5%)
followed by Norway spruce-dominated (RMSE% 3.9–11.6%) and mixed-species sample plots (RMSE%
12.6–13.1%).

G and TPH were underestimated on all the sample plots (Table 6). On Norway spruce-dominated
sample plots the underestimation in G estimates was the lowest being 3.24–3.84 m2/ha (8.1–10.2%),
followed by Scots pine-dominated and mixed-species sample plots with 5.32–5.56 m2/ha (21.8–23.6%)
and 9.79–10.46 m2/ha (29.2–30.2%) of underestimation, respectively. More accurate estimates for
G were recorded on Norway spruce-dominated sample plots (RMSE% 10.6–13.5%) followed by
Scots pine-dominated sample plots (relative RMSE 31.1–31.6%) and mixed-species sample plots
(RMSE% 35.5–35.7%). A similar trend was also visible in the accuracy of TPH estimates. On Norway
spruce-dominated sample plots the underestimation of TPH was considerably lower (7.7–14.3%) than
on Scots pine-dominated sample plots (26.9–35.0%) and mixed-species sample plots (36.0–43.3%).
RMSE in TPH estimates was 65-117 n/ha (10.7–18.5%) on Norway spruce-dominated sample plots,
428-486 n/ha (42.9–50.5%) on Scots pine-dominated sample plots, and 753–914 n/ha (50.6–60.0%) on
mixed-species sample plots (Table 6).

3.5. Performance of Characterizing Forest Structural Attributes in Time Using TLS

Changes in forest structural attributes were quantified using TLS. Paired sample t-tests showed
that Dg, Hg, and G estimated at T1 significantly (p < 0.000) differed from the respective attributes
estimated at T2 (Table 7). In the case of TPH, the differences between T1 and T2 estimates were not
considered significant (p > 0.05). Based on field measurements, TPHT1 was significantly larger than
TPHT2 on Norway spruce-dominated and mixed-species sample plots due to fallen or harvested trees.
On these sample plots, some of the trees that were fallen or harvested were not detected at T1, and thus,
change in TPH was not captured. On Scots pine-dominated sample plots, however, the change in TPH
was not considered significant and thus, not expected to be captured with TLS. In general, accuracy of
characterizing changes in forest structural attributes was at a higher level on Scots pine-dominated
sample plots than on Norway spruce-dominated and mixed-species sample plots (Table 6).

Table 7. The p-values from the paired-sample t-tests indicating the significance of the differences
between the TLS-derived estimates on forest structural attributes, such as basal area-weighted mean
diameter (Dg) and - height (Hg), mean basal area (G) and trees per hectare (TPH) by main tree species
measured in 2014 (T1) and 2019 (T2).

Main Tree species Dg Hg G TPH

All plots <0.000 <0.000 <0.000 0.105
Scots pine-dominated <0.000 <0.000 <0.000 0.014

Norway spruce-dominated <0.000 <0.000 <0.000 0.775
Mixed-species <0.000 <0.000 <0.000 0.984

The relationship between the field-measured and TLS-derived estimates for ∆Dg was similar on
Scots pine-dominated and Norway spruce-dominated sample plots (R2 of 0.32 and 0.22, respectively)
while being considerably lower on mixed-species sample plots (R2 = 0.01, Figure 4). On average,
∆Dg was overestimated by 0.02–0.47 cm (1.4–40.5%, Table 6). Most accurate estimates for ∆Dg were
obtained on Scots pine-dominated sample plots (RMSE% 52.5%) followed by mixed-species sample
plots (RMSE% 67.9%) and Norway spruce-dominated sample plots (RMSE% 86.4%).
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In the case of ∆Hg, the relationship between the field-measured and the TLS-derived estimates
was the strongest on Norway spruce-dominated sample plots (R2 = 0.32) while being considerably
lower on Scots pine-dominated and mixed-species sample plots (R2 = 0.05–0.09). On average, ∆Hg was
overestimated by 0.55 m (35.3%), 2.05 m (165.0%), and 0.98 m (86.6%) with an RMSE of 0.81 m
(51.9%), 2.26 m (182.2%), and 1.39 m (122.9%) on Scots pine-dominated, Norway spruce-dominated,
and mixed-species sample plots, respectively (Table 6).

R2 indicated a considerably stronger relationship between the field-measured and the TLS-derived
estimates for ∆G on Norway spruce-dominated sample plots (R2 = 0.56) than on Scots pine-dominated
and mixed-species sample plots (R2 = 0.01–0.04). On Norway spruce-dominated sample plots, ∆G was
overestimated by 0.59 m2/ha (26.4%) while on Scots pine-dominated and mixed-species sample plots ∆G
was underestimated by 0.23 m2/ha (8.1%) and 0.67 m2/ha (19.3%), respectively (Table 6). The estimation
accuracy was the highest on Scots pine-dominated sample plots (RMSE% 48.9%) followed by Norway
spruce-dominated and mixed-species sample plots (RMSE% 66.4–68.0%).

Relationship between the field-measured and the TLS-derived estimates for ∆TPH was the
strongest on Norway spruce-dominated sample plots (R2 = 0.27) followed by Scots pine-dominated
sample plots (R2 = 0.18, Figure 4). On average, ∆TPH was underestimated on all the sample plots
by 45–124 n/ha (146.7–366.7%). The highest accuracy of ∆TPH estimates was obtained on Norway
spruce-dominated sample plots (RMSE% 245.1%) followed by Scots pine-dominated sample plots
(RMSE% 381.5%) and mixed-species sample plots (RMSE% 569.3%).

4. Discussion

The objective of this study was to assess the feasibility of TLS in characterizing boreal forest
structure in space and time. We used a bi-temporal TLS dataset covering a five-year growth period in
between the data acquisition campaigns in 2014 (T1) and 2019 (T2) and analyzed the accuracy of the
TLS-based method to quantify changes in tree and forest structural attributes. The results showed that
changes in tree and forest structural attributes were captured using TLS. In general, tree and forest
structural attributes estimated at T1 differed significantly (p < 0.01) from the respective estimates at T2
(Tables 5 and 7). Only in the case of TPH the differences in the TLS-derived estimates at T1 and T2
were not considered statistically significant due to incomplete tree detection. In general, changes in
the tree attributes were estimated more accurately for Scots pine trees, followed by Norway spruce
and broadleaved trees (Table 4). Similarly, the accuracy of characterizing changes in forest structural
attributes was higher on Scots pine-dominated sample plots than on Norway spruce-dominated and
mixed-species sample plots (Table 6).

The accuracy of using TLS in estimating tree and forest structural attributes at T1 and T2 was
comparable to the previous findings on the performance of TLS in forest characterization. Based on
previous studies, it is known that the performance of a TLS-based approach to characterize forest
structure is affected by (1) the ability of the method to detect trees, and (2) the accuracy of the method
to estimate tree attributes [10,39]. With our method, the g of trees that were detected at T1 and T2
accounted for 84.5% of the basal area of all trees (Table 3). Trees that remained undetected were
mainly Norway spruces and broadleaved trees, and small in dbh (Figure 2). Similar performance in
tree detection was reported in comparable forest conditions by Yrttimaa et al. [10]. Successful tree
detection and characterization requires that a tree must be sufficiently represented by a point cloud.
Occlusion decreases the capacity of a point cloud to properly digitize trees or forest stands [43]. Use of
a multi-scan approach in TLS data acquisition decreases point cloud occlusion, thus improving the
performance of a TLS-based method to characterize forest stands, especially the ones with a complex
structure [22,44,45]. On a forest stand, occlusion affects the performance of a TLS-based method on
both horizontal and vertical dimensions. Horizontal occlusion causes undetection of trees, as a part of
trees remain shaded by other trees and undergrowth vegetation [10,43]. Differences in the tree detection
accuracies between the different tree species can be explained by the different forest structures and
shapes of dbh distributions. On mixed-species sample plots the vegetation density was higher than on
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Scots pine-dominated and Norway spruce-dominated sample plots (Table 1), making the horizontal
forest structure more complex and occluded. Small trees have less surface visible to the scanner than
large trees and thus, are more likely to be completely occluded by other trees (Figure 2). Undetection of
trees directly affects the accuracy of G and TPH estimates which are, by definition, computed by
summing up individual tree attributes at the sample plot level (see Table 2). In this study, G and TPH
were underestimated by 19.1–20.5% and 26.9–35.0%, respectively, with RMSEs of 26.9% and 42.9–50.5%.
These results are comparable to the accuracy achieved in similar forest conditions by [10]. In general,
attributes characterizing horizontal tree dimensions of forest structure were estimated with high
accuracy. In this study, dbh of all trees was estimated with an RMSE of 0.90–1.18 cm (4.1–5.7%) which
is similar to results obtained by earlier studies in boreal forest conditions [20,22]. For Dg, the estimation
error (RMSE 1.42–1.60 cm/5.2–6.0%) was slightly smaller than in [10] where an RMSE of 3.1 cm (12.3%)
was recorded in comparable forest conditions.

Vertical point cloud occlusion causes uncertainty in h estimates as dense canopy layers and
overlapping crowns block the visibility from a scanner to treetops [8,46]. Thus, performance of
TLS-based approaches to correctly estimate h has been identified as a major bottleneck hindering the
use of TLS in practical forest inventory applications [47]. This was confirmed also in this study, as h
was underestimated due to limited visibility to treetops. An RMSE of 4.10–4.37 m (19.7–22.5%) in h
estimates was recorded for all the trees which is in line with previous findings in comparable forest
conditions [22,47]. As expected based on results reported in [10], accuracy of characterizing forest
height was improved at the sample plot level where an RMSE of 1.85–2.51 m (7.9–11.2%) was recorded
for Hg estimates. The highest accuracy in characterizing vertical forest structure was achieved in
Scots pine-dominated sample plots where the canopy structure was favoring the TLS-based method
more than in Norway spruce-dominated or mixed-species sample plots. For Scots pine trees, hc was
successfully estimated by investigating the outer dimensions of a horizontally binned point cloud
consisting of non-stem points (see Figure 1). Accuracy in hc estimates was similar to h estimates of
Scots pine trees, providing reliable estimates for cr (Table 4).

The absolute errors in quantifying changes in tree attributes were, in general, at the same level
than the errors in characterizing the attributes at T1 and T2 (Table 4). However, the bi-temporal
TLS data used in this study covered only five growing seasons, which is a very short time when
considering the lifetime of Scots pine or Norway spruce trees normally reaching the age from 80 to
120 years in boreal forests. Thus, changes in tree and forest structural attributes were relatively small,
which explains why the errors in quantifying changes in tree attributes were rather large relative to
the field-measured changes. In this study, for example, RMSE in dbh estimates (0.90–1.18 cm) was
similar to the recorded average increase in dbh (1.16 cm). Short monitoring periods have been still
applied in the previous studies related to investigating changes in forest structure using TLS due to
the novelty of the method. In this case, it needs to be noted that the effect of measurement errors
plays an important role when the changes in the monitored attributes were small. This means that,
for example, the recorded changes in dbh and h can be within the expected errors of both TLS-based
and traditional measurement methods reported by [8,37]. As Luoma et al. [37] showed earlier, there is
some variation also in the caliper and clinometer measurements when the measurements are repeated,
which can depend on the different measurement positions (e.g., determining the breast height for dbh
measurements) among other subjective factors. Dendrometers, such as a girth band for tree diameter
measurement [48], provide probably the most accurate observations for monitoring changes in the
dimensions of a living tree. However, dendrometers only measure one attribute at a time (e.g., dbh)
and installing girth bands on a large number of trees to only monitor changes in dbh at forest stand
level is rather expensive. Thus, data from clinometer and caliper measurements are typically used as a
reference for tree attributes. But with their reliability being on a similar level to TLS-derived estimates,
especially when measuring tree stem diameters, it needs to be remembered that actually either one of
the measurements could be the ground truth, or the true value may be somewhere between the two
observations. With longer monitoring periods, changes in tree attributes are expected to be larger and
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thus, the effect of the measurement errors should decrease, which further improve the reliability of
change monitoring. Despite the variation in accuracies, the results of this study allow us to expect that
with longer time periods, also the relative accuracies in change monitoring will be improved when the
changes in tree attributes to be captured also increases.

There are only a few previous studies where TLS has been used to capture changes in tree
attributes. Liang et al. [6] reported that TLS-derived bi-temporal changes accounted for 92 percent
of the changed basal area due to harvesting. Sheppard et al. [32] detected changes in the structure
and form of wild cherry trees. Kaasalainen et al. [31] and Srinivasan et al. [30] investigated changes
in biomass which were either studies in laboratory condition [31] or modeled [30], but not in forest
conditions or directly. All the earlier studies only concentrated on a few attributes with a relatively
small number of trees, hindering comparisons between this and previous studies. Luoma et al. [35]
tested the feasibility of detecting tree growth with TLS on 35 sample trees with a time period of 9 years
and made similar conclusions on the abilities of TLS in detecting changes in tree attributes. Whereas all
the measurements in this study were TLS-based, Luoma et al. [35] still used field-measured h in their
study. Based on our knowledge, this study is the first attempt to investigate changes in tree and forest
structural attributes using TLS, which has been performed with such a large number of trees and in
varying forest conditions.

The results of this study confirm the feasibility of TLS in characterizing forest structure in space and
time. If an increase or decrease in tree and forest attributes was recorded in the field with conventional
mensuration tools, a similar outcome was achieved by using bi-temporal TLS data. TPH was the
only attribute that could not be characterized in time due to incomplete tree detection at both time
points. Changes in TPH were minor, mostly because of a couple of fallen or harvested trees per
sample plot during the monitoring period. Thus, it is evident that all trees should be characterized
at the beginning and at the end of the monitoring period to reliably estimate ∆TPH. This requires
better performance in tree detection which could be achieved with a more complete coverage of
TLS data to avoid horizontal point cloud occlusion. However, increasing the number of individual
scans used in a multi-scan approach decreases the cost-efficiency of TLS data acquisition. Use of
mobile laser scanning (MLS) instead, where a point cloud is collected with a laser scanner mounted
on an all-terrain vehicle [49,50] or a backpack [50,51], or with a hand-held laser scanner [52,53],
would presumably be a more cost-efficient option to cover entire forest stands. When combined with
SLAM (Simultaneous Localization and Mapping)-technology [54], the accuracy of MLS-derived tree
attribute estimates is expected to be close to the TLS-derived estimates [51,53]. Another mobile platform
for a laser scanner to suit close-range forest monitoring is an unmanned aerial vehicle (UAV) which
can be used to collect detailed point clouds from above a forest canopy [55–57]. Due to different data
acquisition geometries between terrestrial and UAV-borne point clouds, UAV-borne laser scanning
is more suitable for characterization of the vertical forest structure whereas TLS or MLS can better
capture the horizontal forest structure. An alternative option to combine the benefits of both terrestrial
and aerial point cloud-based approaches is to collect the UAV-borne point clouds from inside the
canopy [58] or to use a multisensorial approach [59] where photogrammetric UAV point clouds were
integrated with TLS data. Use of a combination of bi-temporal terrestrial and aerial point clouds is
expected to improve the accuracy of vertical forest characterization in space and time.

5. Conclusions

It is known that TLS is capable of characterizing forest structure in detail in space. Thus far,
there has been a limited understanding of how forest structural changes can be quantified in time
using TLS in boreal forest conditions. The results of this study confirm the capacity of TLS in providing
information on the changes in tree and forest structural attributes. If an increase or decrease in tree
and forest attributes was recorded in the field with calipers and clinometers, a similar outcome was
achieved by using bi-temporal TLS data. However, incomplete digitization of trees and forest stands
due to vertical and horizontal occlusion causes uncertainty in TLS-derived estimates in tree and forest
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attributes and their changes. Vertical occlusion could be decreased by using a combination of terrestrial
and aerial point cloud data. Horizontal occlusion could be decreased with more complete point clouds
by applying the MLS technique to preserve cost-efficiency in data acquisition.

In this study, changes in tree and forest structural attributes were small due to a relatively short
monitoring period. It is expected that with a longer monitoring time, the changes in tree attributes
become more reliably detectable when automated point cloud-based approaches are used in boreal
forest conditions.
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