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Abstract: To examine skipjack tuna’s habitat utilization in the western North Pacific (WNP) we
used an ensemble modelling approach, which applied a fisher- derived presence-only dataset and
three satellite remote-sensing predictor variables. The skipjack tuna data were compiled from daily
point fishing data into monthly composites and re-gridded into a quarter degree resolution to match
the environmental predictor variables, the sea surface temperature (SST), sea surface chlorophyll-a
(SSC) and sea surface height anomalies (SSHA), which were also processed at quarter degree spatial
resolution. Using the sdm package operated in RStudio software, we constructed habitat models
over a 9-month period, from March to November 2004, using 17 algorithms, with a 70:30 split
of training and test data, with bootstrapping and 10 runs as parameter settings for our models.
Model performance evaluation was conducted using the area under the curve (AUC) of the receiver
operating characteristic (ROC), the point biserial correlation coefficient (COR), the true skill statistic
(TSS) and Cohen’s kappa (k) metrics. We analyzed the response curves for each predictor variable per
algorithm, the variable importance information and the ROC plots. Ensemble predictions of habitats
were weighted with the TSS metric. Model performance varied across various algorithms, with the
Support Vector Machines (SVM), Boosted Regression Trees (BRT), Random Forests (RF), Multivariate
Adaptive Regression Splines (MARS), Generalized Additive Models (GAM), Classification and
Regression Trees (CART), Multi-Layer Perceptron (MLP), Recursive Partitioning and Regression
Trees (RPART), and Maximum Entropy (MAXENT), showing consistently high performance than
other algorithms, while the Flexible Discriminant Analysis (FDA), Mixture Discriminant Analysis
(MDA), Bioclim (BIOC), Domain (DOM), Maxlike (MAXL), Mahalanobis Distance (MAHA) and
Radial Basis Function (RBF) had lower performance. We found inter-algorithm variations in predictor
variable responses. We conclude that the multi-algorithm modelling approach enabled us to assess
the variability in algorithm performance, hence a data driven basis for building the ensemble model.
Given the inter-algorithm variations observed, the ensemble prediction maps indicated a better
habitat utilization map of skipjack tuna than would have been achieved by a single algorithm.

Keywords: ensemble modelling; machine learning; skipjack tuna; western north pacific; satellite remote
sensing; fisheries oceanography

1. Introduction

Species distribution modelling is based on the ecological niche concept, which is considered as
the volume in the environmental space that permits positive growth of a species [1,2]. The ecological
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niche concept provides a theoretical basis upon which the fundamental relationships between a
species distribution and habitat are established [3]. While the concept is thought to address four
main facets: niche characteristics, niche interactions, community-wide processes and niche evolution,
species distribution modelling and habitat suitability models mainly contribute to the understanding of
niche characteristics [3]. Habitat suitability modeling is widely applied to model and predict habitats
of highly migratory pelagic species [4,5], fishery hotspots [6,7] as well as habitat overlaps [8]. In many
of these studies, the relationship between the species presence (occurrence) and the environment
is established using single habitat suitability modeling algorithms. The scientific knowledge made
available from such work has broadened our understanding of the utilization of the marine environment
by pelagic species, and contributes significantly to management decisions around resource harvesting,
conservation, and the effects of climate change.

Recent advances in the use of ensemble models has demonstrated that they have the capacity
to improve the accuracy and predictive power of individual models, addressing model-based
uncertainty [9], as well as provide a modelling framework where inherent limitations of constituent
algorithms can be observed. A recent review by [9] on the best practices for working with marine
species distribution models recommended the implementation of multi-algorithm ensemble techniques
that account for the degree of similarity and/or variance between model outputs. The authors
also recommended the assessment of model accuracy based on multiple validation scores, as well
as extrapolation of model outputs in space or time. By employing multi-algorithm approaches,
it is possible to compare the outputs using different algorithms and, therefore, derive more robust
results. The increasing adoption of ensemble modelling techniques is consistent with developments
in computing technologies through hardware, software and algorithm innovations, which has also
given rise to several ensemble species distribution modelling software packages. The Biomod [10],
OpenModellor [11], ModEco [12], dismo [13], mopa [14], sdm [15] and Aquamaps [16] packages are
among the widely used software packages for ensemble modelling. Each of these softwares have their
strengths and limitations which are also dependent on user experience and preferences, hardware
and software specifications, number of algorithms implemented, support and maintenance of the
packages among other factors. Nevertheless, there are obvious advantages associated with using a
software package that calls a number of algorithms in one platform, among them, the ability to fit
models using a suite of algorithms concurrently from the same dataset, undertake model performance
evaluations using a suite of performance metrics, model selection and predictions on the same
platform. Furthermore, a multi-algorithm platform minimizes input data manipulations as a result of
software architecture variations, and eliminates platform specific disparities in data file formats and
computational adjustments.

For marine applications, the importance of multi-algorithm models in pelagic species habitat
predictions has been shown in conservation planning [17], assessing the impacts of climate change [18],
invasive species distributions [19], exploring the functional relationships between the marine organisms
and their environment [20,21], and fishery forecasting [7,9]. The application of multi-algorithm
and ensemble models for fishery hotspot studies in squids [22], tunas [23], whale sharks [24],
and marine biodiversity [18] has shown that ensemble models provide more robust habitat information.
The performances of the individual algorithms contributing to the ensembles can be evaluated,
which helps in optimization of the ensemble model [25], in addition to the ability to vary individual
algorithm parameterization settings. Some of the important factors shaping recent applications of
ensemble modeling in marine habitat studies include: (i) increased number of user friendly open-source
modelling platforms which diversifies choice; (ii) implementation of multiple algorithms in open-source
packages which were previously only operable as single algorithm packages; (iii) implementation of
comprehensive functionalities for model performance evaluation using a wide range of metrics;
(iv) inclusion of functions to create ensemble predictions; and (v) availability of a variety of
geo-referenced marine species distribution datasets as response variables, satellite datasets for use
as input predictor variables of current conditions, and predicted climate datasets which represent
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future conditions [26,27]. From this background, we found it feasible to apply a multi-algorithm
modelling approach to derive skipjack tuna habitats in the western North Pacific, where to the best
of our knowledge such an approach has not been employed for skipjack tuna with the number of
algorithms we have used. Our choice of the sdm package was informed by its ability to execute a suite
of 17 algorithms using RStudio, and allow for substantial flexibility in evaluation of model performance,
predictions and generation of ensemble models [9,15].

The skipjack tuna (Katsuwonus pelamis) fishery in the western North Pacific is closely associated
with the seasonal migration of the fish northwards from spring to summer, and southwards at the onset
of winter, which is closely linked to feeding [28,29]. The fish track highly productive areas around
oceanographic features observable from sea surface temperature (SST) and ocean color gradients,
eddies and warm streamers [8,30,31]. They inhabit the upper mixed layer [32,33], and are opportunistic
predators which feed voraciously on pelagic fishes, squids, a variety of crustaceans and young
skipjacks [34,35]. They are known to migrate over large areas in search of high concentrations of
forage [32]. Consequently, these bio-physical oceanographic signals with strong trophic linkages are
important indicators of skipjack tuna aggregation sites. The signals are easily monitored with satellite
observations and are, therefore, very useful for modeling skipjack tuna habitat formations through
correlative or machine learning techniques. Various studies have provided detailed information
on skipjack tuna habitat, both from surface [5,8,36] and sub-surface variables [37,38]. The role of
temperature, chlorophyll-a concentration and currents in skipjack tuna habitat characterization is well
known from several studies [21,29]. For instance, a lower limit SST at 18 ◦C, surface chlorophyll-a at
0.2–0.3mg/L and warm core eddies in the western North Pacific have been shown to indicate frontal
oceanographic features that define skipjack tuna habitat [8,30,36].

Much of the work done on skipjack tuna habitat in the western North Pacific either using
surface satellite data or sub-surface data relies heavily on single algorithm computations to relate
tuna occurrence to their environment [5,29,30,36,37,39]. These studies are fundamental in elucidating
skipjack tuna’s habitat utilization, and can be enriched by exploring algorithms which have received
little attention in this field. While multi-algorithm ensemble habitat predictions have been tried for
other species in the North Pacific [22], we did not find work that has explored skipjack tuna habitat
utilization in the western North Pacific using multi-algorithm species distribution models, hence our
work seeks to enhance previous studies in this area [5,8,36]. Our specific objectives were: (i) to model
skipjack tuna habitats in the western North Pacific using a suite of 17 presence-only species distribution
algorithms and remotely sensed information; (ii) compare the performances of these algorithms using
model performance metrics; and (iii) generate ensemble predictions of habitat suitability maps using
the sdm package.

2. Materials and Methods

2.1. Study Area

The skipjack tuna caught in the western North Pacific (WNP) off Japan (18–50◦ N and 125–180◦ E)
arrive in the area via the Nansei Islands and the Pacific Coast of Japan [40]. The oceanographic
features in this area influence the migration routes (Figure 1) of the fish as they migrate north [29,41].
The Kuroshio Current, which assumes three major paths south of Japan, is of critical importance
to the skipjack’s migration because it transports warm oligotrophic waters, forming pathways for
migration, hence influencing formation of pelagic fisheries [42]. The behavior of the Kuroshio Extension,
warm streamers and warm core rings (WCR) in the productive Kuroshio Oyashio Transition Zone
(KOTZ) is an important feeding and migratory area for skipjacks, which also influences fishing ground
formation [30,31]. Further north, towards the northern limit of skipjack tuna migration, the cold
Oyashio Current waters flow southward [43], transporting low temperature, low salinity and nutrient
rich waters to the sub-tropical gyre [44], and forming two southward tongue-shaped intrusions off

Honshu, known as the First and Second Oyashio Intrusions [42,45]. These cold Oyashio waters and the
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Oyashio Front [46] inhibit skipjack tuna’s northern migration because they avoid waters whose SSTs
are below 18 ◦C [29]. The Oyashio meanders are separated by a WCR originating from the northward
movement of the ring produced by the Kuroshio [47], and the frontal zones between the WCR and
the meanders are key foraging areas [8]. The behavior of the major currents also influences the lower
trophic level dynamics through the distribution and circulation of nutrients, hence the density of
phytoplankton and zooplankton populations in the WNP [42]. The high densities of phytoplankton in
high nutrient waters subsequently support large populations of various zooplankton species, which are
fed upon by smaller nekton [43,46,48]. This creates a downstream trophic chain where skipjack tuna
and other pelagic predators exploit such areas of high productivity to forage on the small organisms
(squids, crustaceans, and fishes) [7,29,31,32]. Consequently, fishers of skipjack tuna in the WNP often
track oceanographic features such as thermal and ocean color fronts, upwelling zones, and edges of
large eddies [5,49], to locate areas with dense aggregations of skipjack tuna.
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2.2. Fishery Data

Fishery data are often used as indicators of a species presence. We obtained daily skipjack tuna
catch data from the Ibaraki Prefecture Fisheries Research Station, covering March to November 2004,
the period when the skipjack tuna fishery is active in this area. These data were recorded from pole
and line vessels fishing for skipjack tuna in the study area, which usually record their fishing locations
and catches. The data were digitized, compiled into monthly composites and converted into 0.25◦

resolution grids [50] in cells where catches were positive. Re-gridding the data was necessary to ensure
that the fishery data matched the resolution of the environment grids. Matching the gridded presence
data to predictor variables for a corresponding time period provides a record of the environmental
conditions prevailing at the location where the fish were caught.

2.3. Environmental Data

A monthly predictor variable database was compiled consisting of SST, sea surface chlorophyll-a
(SSC), and sea surface height anomalies (SSHA). Given their importance as environmental predictors
of skipjack tuna habitat [28,41], the three variables are widely used in modelling studies. Skipjack
tuna have a wide tolerance range for ambient temperature, hence SST data are an important indicator
of their distribution patterns [32,41]. The SSC data provide information on ocean productivity [51],
and are important for detecting fronts and eddies that are not always evident in SST maps [52,53].
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The elevated productivity around these features attracts large schools of tuna, which aggregate around
them to feed on lower trophic level organisms [6,31]. The SSHA data are an indicator of ocean dynamic
topography, which provides information on movement of water masses, and by extension the flow of
heat and nutrients, which subsequently influence productivity [54]. We downloaded daily resolved
optimally interpolated SST global data from the National Oceanic and Atmospheric Administration’s
(NOAA) National Climatic Data Center (NCDC) (Table 1), for the year 2004. The optimally interpolated
data from the Advanced Very High Resolution Radiometer (AVHRR) and Advanced Microwave
Scanning Radiometer on the Earth Observing System (AMSR-E) provided better coverage of the
fishing locations because the effect of missing data due to clouds is eliminated. Monthly Aqua-MODIS
(Moderate Resolution Imaging Spectroradiometer) ~4 km standard mapped images of SSC for 2004
were downloaded from the National Aeronautics and Space Administration (NASA) Ocean Color data
portal (Table 1). The monthly averaged SSHA data were downloaded from the BloomWatch 180 portal
(Table 1). Data processing (monthly averaging and sub-setting) and mapping was undertaken in the
SeaWiFS (Sea-viewing Wide Field-of-view Sensor) Data Analysis System (SeaDAS) [55] version 5.3 and
the Generic Mapping Tools (GMT) version 6.0.0 [56].

Table 1. Environmental data layers used, their resolutions and sources.

Data Resolution Source Agency

SST-v2, AVHRR-AMSR-E 0.25 https://eclipse.ncdc.noaa.gov/pub/OI-daily-v2/IEEE NOAA
SSC 0.05 https://oceancolor.gsfc.nasa.gov/l3/ NASA

SSHA-global 0.25 https://coastwatch.pfeg.noaa.gov/coastwatch/
CWBrowserWW180.jsp NOAA

2.4. Habitat Modeling Using sdm Package

The sdm package is based on a framework that uses presence-only data to compute habitat
suitability indices (HSI), where the values closer to or equal to 1 represent the high potential habitat areas,
and those close to zero represent poor habitat areas. The package comprises a suite of 17 algorithms,
whose operation in RStudio provides an ideal platform with sufficient flexibility to adjust for algorithm
selection, the associated parameter settings and generation of ensembles. We constructed 9 monthly
habitat models in RStudio (version 3.6.1) using the 17 algorithms implemented in the sdm package [15].
We created a script in RStudio which loads all the necessary R packages as described by [15], ingests the
fishery data and environmental variable ASCII grids, and subsequently calls the respective algorithms
for model fitting, performance evaluation, algorithm selection and ensemble predictions. The skipjack
tuna presence data were used as the presence variable and the SST, SSC and SSHA as predictor
environmental variables. We applied a 70:30 split for training and test data respectively [57,58],
with replication by bootstrapping, for 10 runs. In the bootstrapping technique, sampling with
replacement is repeated, each time a sample with equal size as the original data is drawn and used
for training data. The observations that are not selected are used for the evaluation at each run [15].
We used variable importance plots to assess the contribution of each predictor variable to model fit,
and the response curves to show the relationship between the probability of occurrence of skipjack
tuna and each of the predictor variables. Table 2 provides a summary of the 17 algorithms used and
their dependent packages in R.

https://eclipse.ncdc.noaa.gov/pub/OI-daily-v2/IEEE
https://oceancolor.gsfc.nasa.gov/l3/
https://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowserWW180.jsp
https://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowserWW180.jsp
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Table 2. Models used from the ‘sdm’ package and their dependent packages in R.

ID. Model Dependent
Package Source

01 Generalized Linear
Model (GLM) stats https://www.rdocumentation.org/packages/stats

02 Support Vector
Machine(SVM) kernlab https://www.rdocumentation.org/packages/kernlab

03 Boosted Regression
Trees(BRT) gbm https://www.rdocumentation.org/packages/gbm

04 Random Forests (RF) randomForest https://www.rdocumentation.org/packages/randomForest

05
Multivariate Adaptive

Regression
Splines(MARS)

earth https://www.rdocumentation.org/packages/earth

06 Generalized Additive
Models (GAM) mgcv; gam https://www.rdocumentation.org/packages/mgcv

07 Classification and
Regression trees (CART) tree https://www.rdocumentation.org/packages/tree

08 Flexible Discriminant
Analysis (FDA) mda https://www.rdocumentation.org/packages/mda

09 Mixture Discriminant
Analysis (MDA) mda https://www.rdocumentation.org/packages/mda

10 Bioclim (BIOC) dismo https://www.rdocumentation.org/packages/dismo
11 Domain (DOM) adehabitatHS https://www.rdocumentation.org/packages/adehabitatHS
12 Maxlike (MAXL) maxlike https://www.rdocumentation.org/packages/maxlike

13 Mahalanobis Distance
(MAHA) none https://www.rdocumentation.org/packages/dismo

14 Radial Basis Function
(RBF) RSNNS https://www.rdocumentation.org/packages/RSNNS

15 Multi-Layer Perceptron
(MLP) RSNNS https://www.rdocumentation.org/packages/RSNNS

16
Recursive Partitioning
and Regression Trees

(RPART)
rpart https://www.rdocumentation.org/packages/rpart

17 Maximum Entropy
(MAXENT) maxent.jar Phillips et al. 2006

2.5. Evaluation of Model Performance

We evaluated the performance of our models using a multi-metric approach consisting of the area
under the curve (AUC) of the receiver operating characteristic (ROC), the point biserial correlation
coefficient (COR), the true skill statistic (TSS) and Cohen’s kappa (k) metrics, which is an approach
that has been applied in other studies [22,59]. The AUC metric measures the ability of a model to
discriminate between sites where a species is present, versus those where it is absent, which provides
an indication of the usefulness of the models for prioritizing areas in terms of their relative importance
as habitat for the particular species [60]. The AUC ranges from 0 to 1, where a score of 1 indicates
perfect discrimination, a score of 0.5 implies predictive discrimination that is no better than a random
guess, and values <0.5 indicate performance worse than random [60,61]. The COR is the correlation
between the observation in the presence-absence (pseudo-absences) dataset (a dichotomous variable)
and the prediction, and is calculated as a Pearson correlation coefficient [61]. It is similar to AUC,
but also accounts for how far the prediction varies from the observation, which gives further insight
into the distribution of the predictions [61]. The TSS, calculated as sensitivity plus specificity less one,
is an improvement of the k which takes into account sensitivity and specificity, and is insensitive to
prevalence [62]. Like kappa, it takes into account both omission and commission errors, and success as
a result of random guessing, and ranges from −1 to +1, where +1 indicates perfect agreement and
values of zero or less indicate a performance no better than random. [62]. The Cohen’s kappa is a
widely used statistic which corrects the overall accuracy of model predictions by the accuracy expected
to occur by chance [63]. It ranges from −1 to +1, where +1 indicates perfect agreement and values
of zero or less indicate a performance no better than random [63]. While the k is recognized for its
simplicity, the fact that both commission and omission errors are accounted for in one parameter,

https://www.rdocumentation.org/packages/stats
https://www.rdocumentation.org/packages/kernlab
https://www.rdocumentation.org/packages/gbm
https://www.rdocumentation.org/packages/randomForest
https://www.rdocumentation.org/packages/earth
https://www.rdocumentation.org/packages/mgcv
https://www.rdocumentation.org/packages/tree
https://www.rdocumentation.org/packages/mda
https://www.rdocumentation.org/packages/mda
https://www.rdocumentation.org/packages/dismo
https://www.rdocumentation.org/packages/adehabitatHS
https://www.rdocumentation.org/packages/maxlike
https://www.rdocumentation.org/packages/dismo
https://www.rdocumentation.org/packages/RSNNS
https://www.rdocumentation.org/packages/RSNNS
https://www.rdocumentation.org/packages/rpart
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and its relative tolerance to zero values in the confusion matrix, it is also criticized for being inherently
dependent on prevalence and that this dependency introduces bias and statistical artefacts to estimates
of accuracy [62].

2.6. Ensemble Model Development

The TSS has been shown to provide a more robust measure of performance than the other three
metrics that we calculated, particularly the AUC [25,59]. Given that the method to select algorithms to
create an ensemble is still a gray area, we chose to use a metric that has been shown to work better in
previous studies [22]. We constructed ensemble maps from all the 17 algorithms for each month, using
the TSS as a weighting factor [22]. This approach gave higher statistical weights to algorithms whose
TSS values were high, and lower weights to algorithms whose TSS values were low. The analysis
workflow is illustrated in Figure 2.
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3. Results

Our averaged model performance results for the monthly models for March to November,
constructed using 17 algorithms are shown in Figure 3, in which the AUC, COR, TSS and Kappa statistics
for many of the algorithms indicate good model performance. The Support Vector Machine (SVM),
Boosted Regression Trees (BRT), Random Forests (RF), Multivariate Adaptive Regression Splines
(MARS), Generalized Additive Models (GAM), Classification and Regression Trees (CART), Multi-layer
Perceptron (MLP), Recursive Partitioning and Regression Trees (RPART), and Maximum Entropy
(MAXENT) algorithms showed high performance consistently in all 9 months. However, the Flexible
Discriminant Analysis (FDA), Mixture Discriminant Analysis (MDA), Bioclim (BIOC), Domain (DOM),
Maxlike (MAXL), Mahalanobis Distance (MAHA) and Radial Basis Function (RBF) algorithms exhibited
low model performance in some of the months, especially when the COR and Kappa metrics are
considered (e.g., Figure 3d–f and 3h–i). The AUC statistic also shows high model performance for
all algorithms from March to November. The mean and standard deviations of the four performance
metrics for all algorithms are shown in Table S1, and the TSS values are in bold print. The mean ROC
plots for the 17 algorithms in each of the 9 monthly models are shown in Figure S1, with confidence
limits within 2 standard deviations of the mean. The ROC plots are probability plots of sensitivity
(true positive rate) against 1-specificity (false positive rate) where an algorithm which presents a curve
closer to the top-left corner indicates better performance compared to one where the curve is closer to
the 45-degree line of the ROC space. For instance, the July ROC plots generated with the generalized
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linear model (GLM), FDA and MAXL (Figure S1:(5,68,104)) algorithms indicate ROC plots whose
part of the plot lean towards the 45-degree line, hence lower performance. These results are quite
different from the MAXENT ROC plots (Figure S1:(145–153)) for all the months, which illustrate higher
performance. The variable response curves for SSC, SSHA and SST are shown in Figures S2, S3 and S4
respectively, where the values which influenced model performances are indicated by the peaks of
each curve in a specific algorithm. However, there are algorithms which show relatively monotonic
shapes for certain variables, e.g., the BRT and MAXL for the SSC, SSHA and SST variables. The shape,
peak, and range of values around the peak present important information which influences the HSI
map. Figure S5 illustrates the contribution of each variable in the respective model. These results
illustrate the relative importance of each of the 3 variables used to construct the model, hence variables
with high values on a plot indicate a relatively higher contribution by that variable to the model fit and
HSI map, and vice-versa. Notable, for instance, is the importance of SSHA in the GLM, SVM, MLP and
RPART algorithms between April and June, while SST shows a strong variable contribution in MAHA,
MAXENT, MAXL, and BIOC between September and November. The ensemble HSI maps for March
to November period are shown in Figure 4, which illustrates the aggregated map. The high value
pixels (HSI>0.7) show a consistent pattern where the latitudinal displacement increases northward
from March toward October and November.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 17 
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4. Discussion

We modelled skipjack tuna habitats in the western North Pacific from March to November,
using fishery data and satellite remotely sensed variables in 17 algorithms implemented in the sdm
package [15]. Our approach employed ensemble modelling techniques drawn from correlative and
machine-learning algorithms to generate an ensemble habitat prediction. This process enabled us to
explore the inherent characteristics of each algorithm as well as the ensemble modeling approach for
applications such as potential fishing zone forecasting and fishery management options. Given the
collection of algorithms we applied, our work explores a much wider scope of habitat algorithms
for skipjack tuna in this area than previously. Ensemble modelling has evolved from the need to
aggregate outputs from different models, optimize the success rates while minimizing the variations
and inherent modelling limitations of constituent models. Since models are representations of reality,
and no single model can be perfect in estimating real world conditions, using a number of models is
deemed an appropriate way of optimizing the true “signal” about the relationships a model is aiming
to capture, and minimizing some “noise” created by errors and uncertainties in the data and the model
structure [64]. Generally, consensus on the ideal method to aggregate outputs of single algorithms
into an ensemble is still lacking. Some authors find simple averages adequate [64] while others use a
threshold to select better performing algorithms first, followed by weighting of these map outputs into
an ensemble [22,64,65]. Indeed, the intended use of an ensemble prediction may largely determine the
aggregating method. Nevertheless, the practical applications (e.g., fishery and marine conservation) of
ensemble model outputs are clear, and include reducing the likelihood of making decisions based on
maps that are far from the ‘truth’, the costs of relying on a single algorithm prediction compared to an
ensemble, and the benefits of using ensembles to explore the impacts of future phenomena such as
fishery forecasts and impacts of climate change [66].

Our results showed that the performance of the 17 single algorithm models varied, with SVM, BRT,
RF, MARS, GAM, CART, MLP, RPART, and MAXENT, showing consistently high performance in all the
months (Figure 3). However, we also noted lower performance for FDA, MDA, BIOC, DOM, MAXL,
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MAHA and RBF algorithms in a number of months, particularly in May, July and August, October
and November (Figure 3). Algorithm performance has been the subject of some studies, where some
machine learning algorithms such as MAXENT and RF have been shown to outperform others [61,67].
In this work, four performance metrics were employed to measure algorithm performance, with the
understanding that each metric measures different aspects of performance [67]. The COR metric
for the MAHA algorithm was low in all months. However, previous work has shown that the TSS
is a more reliable metric than the AUC, COR, and Kappa, because it is independent of prevalence
and reflects true ecological phenomena rather than statistical artefacts [59,62], hence we relied on the
TSS to generate ensemble predictions. Algorithm performance can be influenced by a number of
factors, namely the inherent mathematical configuration, the environmental distribution of the data
in the region of interest, in the training sample, and in regions that might be used for projection, as
well as the input parameter settings [67]. For instance, it has been observed that MAXENT’s better
performance in comparison to the other algorithms might be partly due to how the environmental
variables and their interactions are modelled, where more mathematical complexity of the model is
progressively improved when more data are available [68,69]. In other studies, it has been pointed
out that generative methods such as MAXENT and RF render better results with small sample sizes,
maybe due to faster convergence to their higher asymptotic error than discriminative methods [68].
By contrast, discriminative methods such as GLM and GAM improve their accuracy as the number
of records increases and may even surpass results offered by generative methods at large sample
sizes [68,70]. In this study, we provided all algorithms with the same input datasets and configurations
as implemented in the sdm package and thus assessed the differences in output, which we largely
attribute to the individual algorithm behavior. It is also worth noting that our results depict outputs
of the currently implemented versions of the 17 algorithms as implemented in R, and it is likely that
future updates of the algorithms may lead to variations in observed performance.

The response curves and variable importance plots (Figures S2, S3, S4 and S5) showed consistencies
by some algorithms on the importance of either SST, SSC or SSHA over time. For instance, the GLM,
SVM, MLP and RPART models showed that SSHA had a higher importance between March and June,
while the RBF, MAHA, MAXL, DOM, BIOC and FDA placed higher variable importance on SST in
May and June. By contrast, between September and November, a number of algorithms placed higher
variable importance on SST and SSC. Visualizing the fitted functions of the various variables was
important in exploring the modelled relationships, and also understanding the differences among the
methods and how different fitted functions influenced mapped predictions [67]. From an ecological
perspective, between March and June, skipjack tuna are abundant in the Kuroshio area, which is
dominated by warm waters, as they advance north during the northward migration, hence the
models may not have been sensitive to the SST signal as an important variable during this period,
an observation made by earlier work [5]. However, as the fish migrated into the Kuroshio Oyashio
Transition Zone (June–August), and later towards the Oyashio area (September–November) where the
waters are cooler, the importance of SST was more apparent [8]. Skipjack tuna are warm water species,
and the mechanisms with which they forage within warm waters along productive thermal and ocean
color fronts are well explained in previous work [29,30,36,71]. Furthermore, it is worth noting that
some algorithms did not do well at detecting responses on some variables, hence displayed monotonic
response functions. For instance, the BRT and CART (March to June) algorithms showed a flat response
for SSC in all months, yet other algorithms were able to pick that signal. A similar response was
noted with the BRT algorithm for April, June, October and November, as well as the CART and MAXL
algorithms between April and June. In another study which compared the performance of 6 algorithms
(5 of which we also used), it was noted that individual models provided slightly different results with
the same dataset [25]. This underscores the importance of multi-algorithm approaches, compared to
relying entirely on single algorithm models [9,25].

The ensemble predictions (Figure 4) were created from a suite of 17 species distribution algorithms
which were weighted with the TSS values (Table S1). We used the TSS weighting for creating ensemble
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predictions since there isn’t a clearly defined selection criteria and weighting metric for creating
ensembles [22]. The TSS metric has been shown to be more reliable than the AUC, and to provide a
more reasonable output in other studies [22,25]. In addition to these considerations, we also concur
with [67] that the application for which an ensemble model is sought constitutes a fundamental question
that shapes the choice and weighting of the single algorithms that create the ensemble prediction.
The ensemble prediction maps aggregate the outputs of the individual algorithms, and are comparable
in pattern to maps derived from previous work in the same area [5]. Furthermore, the observed
northward displacement of high suitability indices from March to October is also consistent with recent
descriptions of skipjack tuna migrations in the same area [36]. However, comparisons of ensemble
outputs in a multi-year study could add more information on interannual variability of habitats.
The foreseeable applications of our findings in the western North Pacific include potential fishing
zone modelling and forecasting, and prediction of range shifts driven by climate change. Potential
fishing zone forecasting comprises a much shorter time scale compared to climate change driven range
shifts, but for both, it is important to understand how the algorithms perform when projected into new
environmental spaces not sampled by the training data [67].

Our work was subject to a number of data and modelling limitations which we point out here for
future consideration. First, we used a single-year fishery dataset as a response variable due to logistics
related to data availability for this study. An inter-annual dataset using a multi-algorithm approach
would have been more useful in elucidating the strengths and limitations of each algorithm, as well as
the inter-annual variability in habitat characteristics as depicted by each algorithm. This would also
have provided an opportunity for validations using an independent dataset as recommended by [9].
In addition, like any other field dataset, fishery-derived data are subject to sampling biases associated
with sampling effort distribution, either influenced by fisherfolk choices or weather considerations,
or both [26]. Second, our study used a set of 3 satellite-derived predictor variables (SST, SSC, SSHA)
which we acknowledge are not the only environmental variables that are important for skipjack tuna
habitat characterization. Indeed, other studies have also used variables such as oxygen concentration,
currents, sub-surface temperatures and mixed layer depths [22,23,36]. We limited our work to only SSC,
SST, SSHA since these are widely applied predictors in tuna habitat studies [7,72], which also enabled
us manage the algorithm and predictor variable permutations in our runs. Third, all the response and
predictor variable layers were standardized to ~25-km spatial resolution, monthly averaged files to
create consistency in spatial-temporal resolutions, while cognizant of the fact that resolution trade-offs
are often inevitable in species distribution modelling [26]. Therefore, it is possible to use a higher
resolution dataset, especially for smaller areas where there is need to resolve fine-scale oceanographic
features. Fourth, there are biases introduced by mismatches in space and time between the sampling
protocols for the response and predictor variable datasets [20]. For example, while the fishery data
were recorded at point spatial resolution, on a daily basis, for the purposes of this study, they were
aggregated to ~25-km resolution to match the resolutions of the environmental predictors. At times,
while temporal averaging to monthly timescales is deemed necessary to improve data coverage due to
cloud cover (e.g., for SSC), it may hinder a model’s ability to resolve fine-scale daily to weekly signals
that influence habitat characterization [5,26].

5. Conclusions

This work is a first attempt at a multi-algorithm species distribution habitat modelling for
skipjack tuna in the western North Pacific, using presence-only response data and satellite-derived
predictor variables. We draw the following conclusions within the confines of the datasets we used,
the algorithms applied, and the input parameter settings of the algorithms applied in the study
area. First, the multi-algorithm approach elucidated the strengths and weaknesses of the various
algorithms to model and predict skipjack tuna habitats. According to the performance statistics,
the SVM, BRT, RF, MARS, GAM, CART, MLP, RPART, and MAXENT achieved consistently better
performance than other algorithms. Some of the lowest-performing algorithms were the FDA,
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MDA, BIOC, DOM, MAXL, MAHA and RBF, although this also varied in different months. Second,
we found inter-algorithm variations in predictor variable responses, which we attributed to the inherent
mathematical configuration of each algorithm. Consequently, it is important that the performance
results and predictive ability of each algorithm are interpreted concurrently with the theoretical
assumptions that were made in formulation of the algorithm. Third, we hesitate to ‘declare a winning’
algorithm but, on the contrary, emphasize that it is important for a user to determine the applications
for which they require ensemble models for, and the questions they would want answered by the
model results, hence to design an appropriate ensemble model. Subsequently, a user should evaluate
the characteristics and parameter features of each algorithm in order to select an algorithm that is best
suited to answer the desired questions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/16/2591/s1,
Figure S1: Receiver operating characteristic (ROC) curves for 17 presence-only models, March to November.
The continuous black line indicates the mean ROC for 10 runs while the dotted gray lines show 2 standard
deviations of the mean. Figure S2: Mean response curves for SSC from 17 presence-only algorithms for 10 runs,
March to November. Figure S3: Mean response curves for SSHA from 17 presence-only algorithms for 10 runs,
March to November. Figure S4: Mean response curves for SST from 17 presence-only algorithms for 10 runs,
March to November. Figure S5: Variable importance of SST, SSC, and SSHA over 9 months, using 17 presence-only
algorithms. Table S1: Mean (color coded to emphasize high (green shade) and low (pink shade) values) and
standard deviations of performance metrics for all algorithms. TSS values are in bold.
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