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Abstract: Vegetation phenology and productivity play a crucial role in surface energy balance,
plant and animal distribution, and animal movement and habitat use and can be measured with
remote sensing metrics including start of season (SOS), peak instantaneous rate of green-up date
(PIRGA), peak of season (POS), end of season (EOS), and integrated vegetation indices. However,
for most metrics, we do not yet understand the agreement of remotely sensed data products with
near-surface observations. We also need summaries of changes over time, spatial distribution,
variability, and consistency in remote sensing dataset metrics for vegetation timing and quality.
We compare metrics from 10 leading remote sensing datasets against a network of PhenoCam
near-surface cameras throughout the western United States from 2002 to 2014. Most phenology
metrics representing a date (SOS, PIRGd, POS, and EOS), rather than a duration (length of spring,
length of growing season), better agreed with near-surface metrics but results varied by dataset, metric,
and land cover, with absolute value of mean bias ranging from 0.38 (PIRGd) to 37.92 days (EOS).
Datasets had higher agreement with PhenoCam metrics in shrublands, grasslands, and deciduous
forests than in evergreen forests. Phenology metrics had higher agreement than productivity metrics,
aside from a few datasets in deciduous forests. Using two datasets covering the period 1982-2016 that
best agreed with PhenoCam metrics, we analyzed changes over time to growing seasons. Both datasets
exhibited substantial spatial heterogeneity in the direction of phenology trends. Variability of metrics
increased over time in some areas, particularly in the Southwest. Approximately 60% of pixels
had consistent trend direction between datasets for SOS, POS, and EOS, with the direction varying
by location. In all ecoregions except Mediterranean California, EOS has become later. This study
comprehensively compares remote sensing datasets across multiple growing season metrics and
discusses considerations for applied users to inform their data choices.

Keywords: phenology; productivity; forage; green up; growing season; phenocam; timing; land
surface phenology; elk; deer

1. Introduction

Vegetation phenology and productivity are important drivers of ecosystem function by influencing
processes as varied as surface energy balance [1] and plant species distribution [2]. Shifts in the
timing of plant seasonality occur largely due to annual weather patterns and climate change [3],
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and these dynamics have consequences throughout terrestrial ecosystems. For example, phenology
and productivity patterns strongly influence animal behavior, survival, and population dynamics [4].
Shifts in the timing and amount of vegetation can lead to trophic mismatch [5] and put stress on
migratory species resilience and adaptive capacity [6]. Thus, to understand changes to the scale, rate,
spatial configuration, and variability of ecological processes, we need to accurately measure vegetation
phenology and productivity at broad spatial and temporal scales [7].

In recent decades, land surface phenology (LSP), the study of vegetation phenology and
productivity from remote sensing, has revolutionized our understanding of ecological responses to
phenological change [8]. LSP observations broaden the spatial scale of data to previously unattainable
extents, enabling analyses of regional and continental vegetation patterns over time, with certain
datasets extending back more than 30 years. Studies of LSP metrics in recent decades in North
America have shown trends toward later senescence in the fall but inconclusive evidence for earlier
spring green-up [9]. Green-up trends within ecological communities are complex, with plant species
in the same community often showing opposite responses in both sign and magnitude to general
warming patterns [10]. These trend analyses, along with annual LSP metrics, provide users (researchers,
biologists, ecologists, natural resource managers, etc.) from a variety of fields with important insights
into ecosystem processes and changing landscape dynamics driven by weather, climate, and human
and natural disturbances. However, few studies have provided regional summaries of change that are
accessible to users who are managing resources [7,11] or provided information on trends in variability
of phenology over time. Insights into changing variability is important for wildlife researchers,
as environmental predictability may shift habitat use, population density, and movement patterns [12].

Wildlife biologists began using LSP metrics in the early 2000s to better understand the influence
of vegetation on the dynamics and distribution of animal populations including birds [13,14] and
ungulates such as elk and deer [4,8,15-19]. For example, the timing of spring has implications for
the fitness and body condition of ungulates [16,20-22] and peak instantaneous rate of green-up date
(PIRGA), the date half way between start of season (SOS) and peak of season (POS) and representative
of optimal forage quality, explains migratory patterns of ungulates surfing the green wave [23-25].
In addition, spatial heterogeneity of plant phenology, which may be declining due to warming
temperatures, relates to the reproduction rates of caribou [26]. Autumn phenology, which has received
considerably less attention than that of spring, can influence body mass and overwinter survival of
mule deer [4] and migratory patterns of elk and red deer [18,27,28]. In addition to phenology, vegetation
productivity is closely correlated to greenness indices such as Normalized Difference Vegetation Index
(NDVI) [8] and explains ungulate habitat use [24,29], health characteristics [30], and demographic
parameters [16].

Changes in the seasonal timing of LSP metrics and the development of new datasets from various
satellite platforms have received substantial focus from the remote sensing field [9,31-34]. However,
despite the importance of LSP metrics to ecological applications, few studies have tested the quality
of competing datasets in measuring LSP metrics against ground or near-surface observations or
examined their relative agreement across various land cover types (but see [32,35]). Because LSP
metrics synthesize information from millions of individual plants and multiple species, large biases
across diverse vegetation communities can occur, and metrics may not directly represent the biological
processes of the vegetation of interest [36]. Differences in the processing algorithm of LSP data, such as
the use of logistic curve fitting techniques versus splines, can also greatly impact performance [37].
Although users choose datasets based on their desired temporal and spatial scale, often several datasets
exist with similar resolution yet different processing methodologies. A comparison of the quality of
freely accessed and commonly derived LSP datasets against near-surface observations would assist
users in selecting the best dataset for their application.

Here, we provide a comparison of commonly used phenology and productivity metrics derived
from 10 freely available LSP datasets. We examine correlation and bias in the western United States
from 2002 to 2014 with near-surface observations from PhenoCam, a network of cameras spread
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throughout North America providing data multiple times per day [38]. We provide users of phenology
and productivity metrics derived from remote sensing an indication of the strengths and weaknesses
of different datasets, especially as related to land cover. We also compare long-term (1982-2016) trends
in phenology from two leading LSP data products to identify spatial patterns, assess the agreement
about changing vegetation dynamics over time, and describe changing variability in phenology.
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Figure 1. The western United States (11 states) overlaid with Level 1 Ecoregions [39] and the locations
and vegetation types of 29 PhenoCam sites. Note that some PhenoCam locations are slightly jittered to
prevent overlap and therefore may not represent exact location (but are always in same ecoregion).

2. Materials and Methods

We evaluated six phenology and three productivity metrics across the western United States,
which represents a diverse range of ecosystems and land cover types (Figure 1). To evaluate agreement
with PhenoCam data, we focused on 10 datasets from 2002 to 2014 (Table 1), comparing overall
agreement and agreement within land cover types. We then assessed long-term trends using a subset
of more strongly associated datasets from 1982 to 2016.

Phenology and productivity metrics can be derived from reflectance values recorded in optical
satellite imagery. Optical satellite imagery captures differences in the reflectance of vegetation through
phenology cycles. Most commonly users measure vegetation indices as a ratio between reflectance in
the visual and near-infrared parts of the electromagnetic spectrum, with slightly different formulas
for NDVI and Enhanced Vegetation Index (EVI; [40]). From curves describing the cycle of change,
users extract and evaluate key LSP phenology and productivity metrics including those evaluated here
(Figure 2): SOS, PIRGd, POS, end of season (EOS), length of spring (LOSp), length of growing season
(LGS), integrated vegetation index (IVI), peak vegetation index (PVI), and amplitude of vegetation
index (AVI).
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Figure 2. Six phenology and three productivity metrics shown through an example growing season by
day of year (DOY). Note that these metrics are described through values of Normalized Difference
Vegetation Index (NDVI)/Enhanced Vegetation Index (EVI) but certain datasets may produce metrics
using other methods/algorithms.

Most datasets we evaluated use NDVIor EVI calculated from the surface reflectance of the Moderate
Resolution Imaging Spectroradiometer (MODIS) or Advanced Very High Resolution Radiometer
(AVHRR) sensors (Table 1). We also evaluated one dataset, the National Phenology Network first leaf
spring index, hereinafter referred to as NPN, that models spatially explicit temperature measurements
parametrized via an extensive network of in situ phenological observations [41]. This is the only
dataset evaluated that does not incorporate optical satellite imagery, but we included it because it is
readily available and provides annual SOS estimates across the contiguous United States (CONUS). We
also assessed two net primary productivity (NPP) datasets (CONUS Landsat NPP and CONUS MODIS
NPP) that combine remote sensing with meteorological data and plant physiological parameters [42].
Because they represent the total productivity across the season, we include NPP in the IVI comparisons.
AVI and PVI both measure the height of the curve at the peak, but AVI only includes the height from
the baseline to the peak. Spatial resolutions spanned 30 m to approximately 5 km (0.05 degrees) and all
data were freely available. Most datasets required minimal code and memory because the relevant
phenology and productivity metrics were pre-processed and could be downloaded directly (e.g., SOS,
POS, and EOS; Table 1). When necessary, we derived metrics (e.g., PIRGd and LOSp) from available
metrics (see Appendix A Table Al and Equations (A1)—(A7) for a complete description of metric
availability, source, and derivation formula). We calculated all metrics for one dataset based on MODIS
MOD09Q1 NDVI (referred to as DLC for “double logistic curve”), fitting a double logistic curve and
accounting for snow cover following methods of [24], because of its use in many wildlife applications.
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Table 1. Abridged data table summarizing the 10 freely available datasets evaluated against PhenoCam. See Table Al and Equations (A1)—-(A7) for more information
including methods used to derive individual metrics and data acquisition information.

Significant Post-processing

Dataset Base Input Spatial Resolution Temporal Coverage Accessible Online? Time Requirement? Under Production? Spatial Coverage Reference
AVHRRP NDVI 1km 1989-2014 yes no no CONUS [43]
eMODIS NDVI 250 m 20012018 yes no yes CONUS [44]
MCD12Q2 EVI 500 m 2001-2017 yes no yes Global [45]
CMGLSP EVI 0.05° 1982-2016 no no yes Global [46]
VIPPHEN-EVI2 EVI 0.05° 1981-2016 yes no no Global [47]
VIPPHEN-NDVI NDVI 0.05° 1981-2016 yes no no Global [47]
NPN (First Leaf Spring Index) Temp, in situ observations 0.0417° 1981-2019 yes no yes CONUS [41]
Landsat NPP NDVI, meteorological inputs 30 m 1986-2018 yes no yes CONUS [42]
MODIS NPP NDVI, meteorological inputs 250 m 2001-2018 yes no yes CONUS [42]
DLC NDVI 250 m 2000—present yes yes yes Global [23]
PhenoCam Green chromatic coordinate Point 2000—present yes no yes U.S. and Canada 2 [48]

1 Collection 6 of eMODIS starts in 2003, but Collection 5 data is available from 2001. This analysis used Version 5 for 2002; 2 Phenocam also has a limited number of sites in Panama, Hawaii,

and Europe
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To compare datasets, we evaluated the agreement of LSP metrics from each dataset with metrics
from PhenoCam data [48] at 29 sites (106 site-years) across the western United States (Figure 1) from
2002 to 2014. Using the R package phenocamr [49], we downloaded 3 day window PhenoCam data
and calculated the 90th percentile green chromatic coordinate (GCC; Equation (1)). The 90th percentile
value effectively accounts for day-to-day variation due to weather and illumination patterns [50].
We defined rising and falling phenophases with a 10% amplitude threshold (to derive SOS and EOS) as
described in PhenoCam documentation [48,50]. We chose the 10% threshold because it more closely
resembles SOS than a 25% or 50% threshold and minimizes the bias between PhenoCam transition
dates and MODIS transition dates [35]. GCC is a vegetation index derived from RGB camera imagery

and is defined as:
DNG

cee= (DNR + DNG + DNB) @
where DNG, DNR, and DNB represent the digital number (i.e., strength) of the green, red, and blue
channels, respectively.

To assess the agreement of LSP metrics with PhenoCam, we compared correlation using the
coefficient of determination (R?) and the magnitude of difference using mean bias. These common
measures of statistical agreement have been previously used to compare LSP and near-surface
phenology [36,51,52]. Mean bias is defined as:

N
. 1
Mean bias = N Z{(esti —obs;) (2)
i=

where est; and obs; are the ith estimate (from LSP dataset) and observation (from PhenoCam)
respectively. For productivity metrics, scales differ across datasets and thus we focused on correlation.
We compared both overall agreement and agreement by landcover type, using the following vegetation
types defined for PhenoCam sites (PhenoCam metadata: grasslands (GR, 45 site-years), shrublands
(SH, 7 site-years), deciduous/broadleaf (DB, 27 site-years), evergreen (EN, 25 site-years), and wetlands
(2 site-years). We excluded two sites in the Mediterranean California ecoregion that displayed a
non-northern-temperate seasonal signal (SOS > 225) because green-up begins in late fall with rainfall
and ends in early spring with drought. We excluded wetlands from the analysis by land cover
classification due to the limited number of sites.

We analyzed long-term trends (1982-2016) across the western U.S. using CMGLSP and
VIPPHEN_EVI2, which agreed best with PhenoCam of the datasets that extended back to the
1980s. Of the six phenology metrics, we reported trends for SOS, POS, and EOS, because the other
three are derived directly from these metrics and PIRGd spatial patterns are similar to SOS and POS.
Using the Theil-Sen slope, the median of slopes between all pairs of observations within a pixel [53],
we assessed each metric by pixel, including only pixels with data for at least 18 of 35 years. As a
non-parametric test the Theil-Sen is more robust to outliers and provides higher statistical power
when non-normality exists [54]. Negative slopes indicate change to earlier dates and positive slopes
indicate change to later dates. We did not screen pixels for disturbances as the goal of this work
is to identify patterns and magnitudes of change, rather than make inferences about the causes of
phenological change.

We evaluated overall variation within each pixel based on the standard deviation for each metric
and whether variability has increased across years by applying the Theil-Sen slope to the absolute
values of the residuals of the trend estimate against time. In addition, we measured consistency
between the two datasets, defined as the by-pixel agreement that phenology dates are trending earlier
or later. Lastly, to assess agreement in regional patterns of change, we report the proportion of area
where both datasets agreed on direction of change by ecoregions using the United States Environmental
Protection Agency Level 1 Ecoregions of North America dataset [39]. We used the statistical computing
environment R for all analyses [55] and R package rkt [56] to calculate the Theil-Sen slope estimator.
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3. Results

3.1. Agreement of LSP metrics with PhenoCam

We compared LSP metrics to 106 site-years of PhenoCam data from 29 sites. We found substantial
variation in agreement between remotely sensed datasets and near-surface observations (Figure 3;
Figure 4; Appendix B Tables A2-A6 for full results). Across datasets and six phenology metrics,
R? ranged from 0.03 to 0.37 (SOS), 0.20 to 0.55 (PIRGd), 0.25 to 0.54 (POS), 0.16 to 0.45 (EOS), 0.01 to
0.11 (LOSp), and 0 to 0.10 (LGS). Absolute value of mean bias (in days) ranged from 4.39 to 25.49
(S0OS), 0.38 to 17.66 (PIRGd), 7.05 to 23.82 (POS), 0.52 to 37.92 (EOS), 12.45 to 44.66 (LOSp), 3.78 to
58.47 (LGS). Mean bias was lowest for SOS and PIRGd. Four datasets matched SOS and PIRGd
from PhenoCam within 7 days (MCD12Q2, VIPPHEN_EVI2, DLC, and eMODIS for SOS; CMGLSP,
MCD12Q2, VIPPHEN_EVI2, and VIPPHEN_NDVI for PIRGd). Generally, R? values were higher for
PIRGd and POS than SOS and EOS. Datasets were least correlated with PhenoCam transition dates for
LOSp and LGS. In pairing a high R? value with a low mean bias, MCD12Q2 and CMGLSP had best
overall agreement with PhenoCam.
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Figure 3. R? and mean bias (in days) for six phenology metrics classified by land cover type identified
in PhenoCam metadata and overall for all data points. The phenology metrics are start of season (SOS),
peak instantaneous rate of green-up date (PIRGd), peak of season (POS), end of season (EOS), length of
spring (LOSp) and length of growing season (LGS). The classifications are grasslands (GR), shrublands
(SH), deciduous/broadleaf (DB), evergreen (EN) and overall (OV). In general, this illustrates how the
overall evaluation falls between the landcover-specific values for each dataset and metric combination.

Phenology metrics had large differences in correlation and bias by land cover type
(Figure 3). Most datasets agreed moderately well with PhenoCam in grasslands, shrublands and
deciduous/broadleaf forests for the four key phenology dates (SOS, PIRGd, POS, and EOS). Duration
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metrics (LOSp and LGS) correlated poorly with PhenoCam across all datasets. At grassland sites (1 =45),
dates for most datasets correlated well with PhenoCam dates. At shrubland sites (n = 7), eMODIS
was best for SOS, PIRGd, and POS, whereas CMGLSP was best for EOS. At deciduous/broadleaf sites
(n = 27), CMGLSP and NPN agreed best for SOS, DLC for POS, and MCD12Q2 and eMODIS for EOS.
Most datasets agreed well for PIRGd in deciduous/broadleaf forests. Datasets generally showed poor
agreement with PhenoCam at evergreen forest sites (n = 25), with the exception of MCD12Q2.

Overall, datasets better represented phenology than productivity metrics (Figure 4).
Across datasets, R? for the three productivity metrics ranged from 0.00 to 0.16 (IVI), 0.00 to 0.15
(PVI) and 0.00 to 0.34 (AVI), with low values in overall R? masking high correlations in a few land
cover types. For the IVI metric, MODIS_NPP had an R? value of 0.9 at deciduous/broadleaf locations
and VIPPHEN_EVI2 and VIPPHEN_NDVI both agreed well. MCD12Q2 was highly correlated with
PhenoCam at evergreen locations for PVI and AVL

B AvHRRP DLC P cveLsp [ evopis [ LANDSAT_NPP
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Figure 4. R? for three productivity metrics classified by land cover type identified in PhenoCam
data and overall for all data points. The productivity metrics are integrated vegetation index (IVI),
peak vegetation index (PVI) and amplitude of vegetation index (AVI). The classifications are grasslands
(GR), shrublands (SH), deciduous/broadleaf (DB), evergreen (EN) and overall (OV).

3.2. Historical Trend Analysis for Western United States

Of the 10 datasets evaluated, five extend back to 1982 (CMGLSP, VIPPHEN_EVI2, VIPPHEN_NDV],
AVHRRP and NPP) and therefore provide an appropriate historical record for relatively long-term trend
analysis. Based on the comparison with PhenoCam, we chose to analyze CMGLSP and VIPPHEN_EVI2,
plus NPN for SOS (NPN results in Appendix C Figures A2-A4). CMGLSP most often had the ideal
combination of high R? and low mean bias across land cover types and VIPPHEN_EVI2 also agreed
well with PhenoCam, especially in grasslands and shrublands.

Long-term trends indicate large changes in key phenology dates in some places by more than
70 days (2 days per year for 35 years) between 1982 and 2016 (Figure 5; see Figures A1 and A5-A7
for mean and standard deviation maps and histograms of changes). Trend patterns had high spatial
heterogeneity, with substantial interspersion of pixels with delayed and advanced phenology in
both datasets and all metrics. The strength of the trends varied spatially, but in both datasets the
areas of greatest change in date occurred in New Mexico and Arizona (later SOS), low-lying areas of
California (earlier EOS), and the Great Basin (earlier SOS, mixed strong trends for EOS). EOS in the
Southwest was also generally later but was more variable in California. Higher elevation areas across
Montana, Washington, Idaho and Colorado showed trends toward later SOS but mixed results for
EOS. Over time, variation in phenology dates slightly increased across most regions, with very large
increases in variability corresponding to areas with larger changes in date, namely the Southwest for
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SOS and POS, and scattered areas around the edges of the Great Basin as well as California for EOS.
The spatial patterns of agreement on the direction of trend across CMGLSP and VIPPHEN-EVI2 were
also relatively heterogenous, with the least consistency occurring in Wyoming for SOS and in the Great
Basin for EOS.

The consistency results over the entire study region showed ~60% agreement in trend direction for
all three metrics (Figure 6). For SOS and POS ~30% of pixels agreed on earlier and later dates in trends,
whereas for EOS, 44.4% of pixels in both datasets agreed on a later EOS (16.2% agreed on an earlier
EOS). In assessing consistency by ecoregion, we found agreement between the datasets in the range of
50-70% of pixels for most of the regions and metrics as well as agreement on the predominant direction
of change within ecoregions (Figure 6). For SOS, the two datasets agreed that more area trended
towards earlier dates in Marine West Coast Forests, Mediterranean California, North American Deserts,
and Northwestern Forested Mountains, and later dates in Great Plains, Southern Semiarid Highlands,
and Temperate Sierras. For POS, the datasets agreed on more area trending toward earlier dates in
Marine West Coast Forests, Mediterranean California, and North American Deserts, and later dates in
Great Plains, Northwestern Forested Mountains, Southern Semiarid Highlands, and Temperate Sierras.
We found the most dataset agreement across ecoregions for EOS, in which all regions agreed on more
area trending towards later dates except Mediterranean California.

Change in Date Consistency Change in Variation
CMGLSP VIPPHEN_EVI2 CMGLSP:VIPPHEN_EVI2 CMGLSP VIPPHEN_EVI2

T, - .
ST

o | £

@)

n
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n
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Agree Earlier Date
Disagree

<-70 DOY >70 iAgree Later Date <-70 Days >70
Figure 5. Change in date, consistency, and change in variation of CMGLSP and VIPPHEN_EVI2 across
three phenology metrics from 1982 to 2016. Negative values correspond to earlier dates (or fewer days)
and positive values to later dates (or more days). Consistency shows agreement in the direction of
change between datasets. Change in date is the regressed trend slope multiplied by the number of
years. Change in variation is the regressed trend slope, multiplied by the number of years, of the
absolute value of the residuals of the trend estimate against time.
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Figure 6. Consistency of CMGLSP and VIPPHEN_EVI2 long-term (1982-2016) trend direction over the
entire study area and classified by ecoregion.
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4. Discussion

In our comparison of 10 leading LSP datasets against a network of PhenoCam near-surface cameras,
we found promising results in terms of R? and mean bias in some landcover types, but substantial
variation between datasets and metrics (similar to [32] for SOS estimates). This highlights a need for
improved communication and more extensive dialogue on the strengths, weaknesses and development
goals of LSP datasets, especially with the proliferation of applied data users from a variety of research
and management practices.

When choosing an appropriate dataset for analysis, applied users should consider study location,
years needed, spatial resolution, processing capacity, and quality in different land cover classes.
For phenology metrics, our results indicate MCD12Q2 and CMGLSP best matched PhenoCam
observations derived using a 10% amplitude threshold and the 90th GCC percentile (Figure 3).
For those interested in phenology prior to the 2000s, CMGLSP has global coverage and extends back
to 1982, but has a coarse 0.05 degree (~5 km) spatial resolution and can only be acquired by request.
VIPPHEN_EVI2 has the same temporal coverage and spatial resolution, can be downloaded directly,
and agreed almost as well. For users working with high resolution data (such as from GPS collars in
the wildlife field) and conducting analyses after 2001, MODIS-based datasets at 250 to 500 m spatial
resolution provide finer-scale observations. MCD12Q2, with 500 m spatial resolution and global
coverage, agreed best with PhenoCam and was the only dataset that had high correlations in evergreen
forests. eMODIS also agreed well and has 250 m spatial resolution but is only available in the CONUS.
The DLC method can be applied globally (we used MOD09Q1 as the base input) but requires substantial
processing which may be prohibitive depending on study area size. This method also provides daily
values of NDVI and instantaneous rate of green-up (IRG), which are useful for certain movement
ecology and habitat questions such as those relating to the green-wave hypothesis [21,23-25,57].
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Readily available datasets from MODIS (e.g., MOD13A1, MOD13Q1, and eMODIS NDVI) only provide
cleaned and pre-processed weekly to bi-weekly NDVI/EVI values and therefore could provide a coarser
resolution IRG time series.

Based on the differences in dataset correlation and bias we found between land cover types,
users should consider the predominant land cover of their study area in choosing a phenology or
productivity dataset (Figure 3; Figure 4). For instance, eMODIS agreed best for PIRGd in shrublands,
yet MCD12Q2 was better in grasslands and evergreen forests. Large differences in correlation were
observed between productivity datasets, which correlated poorly overall but well in certain landcover
types. For IVI, DLC agreed well in grasslands, but MODIS_NPP agreed best in deciduous/broadleaf
forests. The lowest correlations between LSP estimates and PhenoCam observations were in evergreen
forests, where identifying phenological metrics is challenging because of the small annual change
in greenness amplitude and over-saturation [35,58]. Using the red chromatic coordinate to process
PhenoCam transition dates, as opposed to GCC, has shown potential to improve predictions of SOS
and EOS in these environments [59]. Of all the LSP datasets, MCD12Q2 agreed best with PhenoCam
at evergreen sites, possibly because it is EVI based [40]. Ecologists studying wildlife in areas with
multiple land cover types should be aware that phenology metrics in some land cover types are more
reliable than others, which could influence results for analyses comparing wildlife GPS locations across
different land cover classes [17,60,61]. Quality of LSP metrics may differ geographically, and therefore
our results are not necessarily indicative of dataset quality in other parts of North America or around
the world [62].

Quantifying phenology and productivity trends through time is crucial to improve our
understanding of ecosystem processes, such as how changing forage in critical habitat or management
units affects wildlife and how to manage for future climate and phenology scenarios [8,26,63,64].
We found a 44.4% agreement between CMGLSP and VIPPHEN_EVI2 trends toward a later EOS across
the Western U.S and only a 16.2% agreement toward an earlier EOS, which is consistent with other
studies signaling a general pattern toward a later EOS [9,65,66]. Trends are influenced by a variety of
factors, including temperature and precipitation, species succession, human and natural disturbance,
and land management practices (as observed by [37] from 1982 to 2006). The complex interactions
between these factors make it difficult to interpret the ecological significance of large and spatially
heterogeneous trends, especially across diverse ecosystems.

The large phenology trends and high variability we observed over a 35 year period likely
reflect real changes in remote sensing metrics, but highlight the need to understand what exactly is
changing throughout time, the role of data processing choices, and whether the changes are biologically
significant. We know that patterns of temperature and precipitation in some areas are complex,
leading to variability in the timing, seasonality, and spatial heterogeneity of snow coverage [67],
soil moisture, drought, and storms that may all influence the timing, variability, and heterogeneity
of vegetation phenology and productivity. Variability can be an important component to ecosystem
processes and to understanding the degree and mechanism of trends. For instance, vegetation
strongly affected by climate conditions, such as invasive grasses responding to rainfall, can cause
high year-to-year variability and therefore introduce uncertainty into the direction of overall trend,
as well as have large effects on the ecosystem [68,69]. In our results, some regions in which LSP metrics
changed by more than 70 days often showed high and increasing variability. Though these trends may
be showing real changes in phenology throughout time within a pixel, it is challenging to interpret
whether these changes are driven by variability caused by weather, invasive species, or other factors,
or actually represent the changing dynamics of vegetation of interest, such as important forage species.
This overall assessment is a first step in understanding the overall patterns and degree of change across
the CONUS.

Several challenges exist in producing accurate LSP estimates and assessing their quality.
Large differences in LSP metrics and trend are related to sensor-specific characteristics, such as revisit
time and spectral resolution, as well as processing algorithms used to extract metrics, which may include
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cloud and atmospheric correction, gap filling and curve fitting. Greenness (NDVI/EVI/GCC) values
differ between satellite platforms, as well as with near-surface cameras, and are therefore not always
comparable without applying translation equations [70]. Future work may scale PhenoCam and satellite
derived productivity metrics to enable a comparison of mean bias and other statistics. Differences in
consistency (by-pixel agreement on trend direction) between CMGLSP and VIPPHEN_EVI2 result
solely from different processing algorithms, as both CMGLSP and VIPPHEN_EVI2 are based on
EVI2 calculated from AVHRR and MODIS at a 0.05 degree spatial resolution (for CMGLSP, see [46];
for VIPPHEN_EVI2, see [47]). These two datasets yielded conflicting yet large trends in phenology
around the Great Basin and Eastern Washington and Oregon, specifically for EOS. These areas
experienced large fires, landcover changes, and other disturbances. It is possible that the different
approaches to fitting NDVI/EVI curves and extracting metrics for these datasets are affected differently
by these landcover type changes and thus lead to these conflicting signals.

In general, LSP datasets use different processing methodologies and different threshold
values [36,37,71], and dataset development goals rarely correspond to specific biological events
important to data users. For instance, biological events recorded by a botanist to mark the start of
growing season may include first leaf or flower dates, whereas an LSP dataset such as MCD12Q2
captures SOS as the date when EVI crosses the 15% threshold of AVI [45]. Ref. [32] used in situ
first leaf observations to validate SOS from various LSP datasets and found high root mean squared
error (~20 days), indicating a need to better understand the link between biological events and image
reflectance values. Our use of near-surface cameras removes variability that may occur when comparing
LSP metrics with the timing of biological processes from in situ observations. Although some research
assesses LSP quality through comparison with other kinds of ground-based datasets [72,73], this may
confound differences resulting from discrepancies between biological events and their reflectance
values with differences in image quality, which can vary inter-annually and regionally [62].

Datasets also vary in how they deal with growing seasons that span calendar years or have
multiple annual cycles. Most datasets calculate phenology metrics based on a continuous time series
yet report metrics in discrete annual data layers. The one exception in our analysis is the DLC dataset,
which fits a curve to a single year of data. When phenology cycles span calendar years, such as when
SOS occurs in the fall and/or when EOS occurs in late winter/early spring, users should ensure they
understand the approach used to store the metrics within an annual data layer. Datasets handle
patterns of multiple or missing annual wetness cycles in different ways, with some datasets reporting
up to three annual cycles while others only report phenology dates from a single cycle that is not
indexed to a general time of year. We most commonly see multiple annual cycles of green-up in arid
and monsoonal environments, such as in the Southwest [74] and Mediterranean California, but this
varies by year.. When the number of cycles varies, such as when drought years lead to missed wet
periods [75], or seasonal weather patterns dictate two to three annual cycles, analyses of trends by year,
as we have conducted, could suggest large changes in dates that might not reflect the complexity of
the ecological impacts well. We briefly evaluated these potential issues, and did find strong positive
trends in SOS and POS in areas prone to multiple annual cycles, but overall found that both varying
numbers of cycles and small amplitude cycles had more limited extent than could easily explain the
large changes in trend we found.

Inherently, the scale of near-surface PhenoCam observations does not match those of remote sensing
pixels, which include heterogenous vegetation and even land cover class [36,38,76]. The mismatch
can be substantial even for our comparisons of PhenoCam with MODIS-based 250 or 500 m spatial
resolution products versus CMGLSP at ~5 km resolution, in which the synthesis of large pixels could
include billions of plants. LSP observations effectively provide only a broad picture of landscape
phenology, and the scale of imagery has important implications for users. For example, CMGLSP at
~5 km spatial resolution may not provide the spatial variability needed to assess the behavior of a
white-tailed deer or other animals with home ranges within one or two pixels, whereas it may be
useful for understanding movement patterns of long distance migrating animals such as eagles or
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mule deer. Given the heterogeneity of vegetation within large pixels, we were surprised at the high
agreement of CMGLSP with PhenoCam, at a spatial resolution of 0.05 degrees. The dynamics of LSP
metrics in large pixels are complex and do not necessarily represent the average of smaller pixels [77].
For SOS, [78] found that the heterogeneity of landcover and SOS, as well as vegetation growth speed
during spring, all influenced the scale effect. Variation in spatial footprints of PhenoCam data and
resolution of LSP datasets could also add noise to the comparison of LSP and near-surface datasets.
New fine-resolution datasets, such as daily 30 m EVI products developed using fusion between MODIS
and Landsat [79,80] or combinations of Landsat and Sentinal-2 imagery to increase temporal resolution
and enable 30 m phenology retrievals [81], could better match the scale of reference data and user
analysis objectives.

Applied data users will benefit from future developments in processing capacity and dataset
construction, a better understanding of phenology drivers, and greater understanding of how algorithms
intersect with phenology predictions. The growing popularity of platforms able to process large data
quickly (such as Google Earth Engine) may render daily, global datasets derived from the DLC method
readily available in the future. In terms of improving LSP estimates, the use of mechanistic models to
predict key metrics [82-84] may help to address data quality issues and discrepancies across land cover
types and ecoregions. These models couple remote sensing data with local observations or other models
of elevation, temperature, precipitation, and plant phenology to improve phenology and productivity
metrics. While still limited, in the future these models may be developed into a single framework to
derive more relevant phenology and productivity estimates across diverse regions using localized
data. Similarly, an increased understanding of the drivers of phenological changes and variability on a
local or regional scale may help users to better interpret and plan for long-term patterns of change.
For example, [85] showed that temperature, growing-season precipitation, and snowpack had larger
effects than most management and habitat treatments on annual phenology metrics in sagebrush
communities in Southwestern Wyoming, but identified that treatments had some impact on IVI and late
season phenology metrics. Finally, deeper examination of how processing and curve-fitting techniques
influence the resulting NDVI/EVI time series and phenology metrics will improve understanding of
how to interpret large differences in phenology that are predicted from LSP data.

5. Conclusions

Land surface phenology (LSP) data provide the means to assess large spatial and temporal patterns
in environmental change and understand a variety of ecological questions, such as those related to
surface energy balance and animal fitness, movement, and habitat use. The quality of these data depend
on factors including cloud cover, atmospheric effects, processing algorithm, land cover type, spatial
resolution and regionality. We found highly variable agreement between 10 leading LSP datasets and
PhenoCam and outlined dataset choices based on spatial and temporal coverage, processing capability,
and agreement across ecosystems, providing a basis for informed and justifiable decisions about data
choices. Most datasets we examined and many of the highest-quality datasets are readily available
and do not require users to extract metrics, as is often performed by individual users using raw NDVI
or EVI values. Given the popularity and importance of phenology and productivity data in a wide
range of research and management fields [61,86], a better understanding and justification for the use of
certain datasets can only help to bolster the effectiveness and validity of results.
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Appendix A

Detailed table of phenology and productivity metrics along with formulas for metric calculations
where not readily available.
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Table Al. Detailed table of phenology and productivity metrics.

15 of 27

Dataset AVHRRP eMODIS MCD12Q2 CMGLSP VIPPHEN-EVI2 VIPPHEN-NDVI NPN F“;;;::f Spring Landsat NPP MODIS NPP DLC PhenoCam
Temperature, weather MODIS NDVI MODIS NDVI
Calibrated 3 oted radiance data Timeseriesof ~ AVHRRand ~ AVHRR and MODIS  AVHRR and MODIS events, insitu composites, composites, MOD09QL RGB photo time
Input data radiance data observations of one lilac meteorological meteorological surface reflection L
(level 1-B). Aqua only NBAR-EVI2 MODIS EVI2 EVI2 NDVI . X . . K series
(level 1-B). and two honeysuckle inputs, biome inputs, biome 8 day composites
species specific contraints specific contraints
2 band EVI Data are smoothed Data are smoothed
Cleaned, NDVI Cleaned, NDVI (EVI2) with 2 step filter and 3~ with 2 step filter and 3
calculated, and ! Eliminating L year moving window  year moving window Calculated at PRISM Daily GPP and Daily GPP and
. . calculated, and . determination . . H H
. . combined into 7 X N outliers and approach, AVHRR approach, AVHRR minimum and maximum maintenance maintenance Cleaned, NDVI
Raw data processing details d - combined into 7 day I from raw data. A - N s . e . GCC
ay composites . X filling dormant . and MODIS continuity ~and MODIS continuity ~— temperature values reach  respiration values respiration values calculated
N composites using max A Smoothed with N N N . " L,
using max NDVI . period values L is based on linear is based on linear a “stable” state. calculated calculated
. NDVI and quality Savitsky-Golay . N
and quality filter regressions between regressions between
overlapping data. overlapping data.
SOS NDVI value Cubi line it henological Aver.  the first d NPP extracted from  NPP extracted from 2 piece logisti PELT method,
compared with average wole spine Bt prenoiogica Phenological changes  Phenological changes erage of the firs” day daily GPP, daily GPP, piece Oglse AlC-selected
. . R SOS is 15% of changes are . o N . i . each year that the . . model. SOS/EOS . .
Did not receive  of previous 36 days and are identified using are identified using maintenance maintenance smoothing spline,

Metric extraction details . N
information

SOS is when a trend AVI EOS is 15%

identified using

half-max method (at

half-max method (at

properties of the three

respiration, and

respiration, and

are local SOS at 10% of AVI,

shift is identified. of AVI hybr.ld precewise only 35%) only 35%) individual species models annual growth annual growth mlrljmzfx fr'om EOS at 10% of
. green-down logistic model are met (SOS only) O o 2nd derivatives
Opposite for EOS respiration respiration green-down curve
Spatial resolution 1km 250 m 500 m 0.05° 0.05° 0.05° 0.0417° 30m 250 m 250 m Point
Temporal coverage 1989-2014 2001-2018! 2001-2017 1982-2016 1981-2016 1981-2016 1981-2019 1986-2018 2001-2018 2000—present 2000-present
Accessible online? yes yes yes no yes yes yes yes yes yes yes
Slgm.hcemt post-processing no no no no no no no no no yes no
time requlrement?
Under production? no yes yes yes no no yes yes yes yes yes
Spatial coverage CONUS CONUS Global Global Global Global CONUS CONUS CONUS Global U.S. and Canada 2
Years acquired 2002-2014 2002-2014 1 2002-2014 1982-2016 1982-2016 1982-2016 1982-2016 2002-2014 20022014 20022014 2002-2014
Reference [43] [44] [45] [46] [47] [47] [41] [42] [42] [23] [48]
http:
https: . https://www.ntsg. P ,
https://www.usgs.gov/ Xiaoyang. . .o //files.ntsg.umt.edu/
/WwWw.usgs.eov/ o"o :/[ea ata. - L 2 St S/ VWW.usa .org/ X /] Cl N ~ s://ea ata.
Retrieval location Jfwww .\15,,5.3,0}, land-resources/eros/ https://earthdata zhang@sdstate. https: ) https: ) https: //\T ww usjl\grj org/ umt {?d u/ pm]-e« t/ data/NTSG https: /,-P'Il’lhd'l'ﬂ phenocamr
land-resources/ nasa.gov/ /[earthdata.nasa.gov/ //earthdata.nasa.gov/ data/spring_indices landsat/landsat- 5 iy - nasa.gov/
0s/phenology phenology edu © © sroductivity.ph Products/MOD17/ ©
crosip LY F Y-Php MODIS_250/
Metrics available or
calculated by authors? (A is
available, C is calculated, N is
not available/used)
SOSs A A A A A A A N N C C
PIRGd C C C C C C N N N C C
POS A A A A A A N N N C C
EOS A A A A A A N N N C C
LOSp C C C C C C N N N C C
LGS A A C C A A N N N C C
VI A A A A A A N A A C C
PVI A A C A A A N N N C C
AVI A A A C A A N N N C C

1 Collection 6 of eMODIS starts in 2003, but Collection 5 is available from 2001. This analysis used Collection 5 for 2002; 2 Some sites in Panama, Hawaii, and Europe.


https://www.usgs.gov/land-resources/eros/phenology
https://www.usgs.gov/land-resources/eros/phenology
https://www.usgs.gov/land-resources/eros/phenology
https://www.usgs.gov/land-resources/eros/phenology
https://www.usgs.gov/land-resources/eros/phenology
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Metrics reflecting different components of forage phenology and productivity were derived (or
readily provided) from the 10 datasets used in this analysis. In total we assessed ten different metrics,
six related to phenology and three related to productivity. Many of the datasets provide the desired
metrics, and when available these values were used. In other cases, the metrics were derived using the
following equations (with the exception of the Bischof dataset, for which methods can be found in [23]:

POS - S0OS

PIRGd = SOS + T(assuming logistic growth) (A1)
POS = MAXESS, Greenness; (A2)
LOSp = POS - SOS (A3)
LGS = EOS - 508 (A4)
EOS

IVl = Z Greenness; (Ab)

i=50S
PVI = AVI+ SMV (A6)
AVI = PVI-SMV (A7)

where PIRGd is peak instantaneous rate of spring greenup date, SOS is start of spring date, POS is
peak of season, MAX is the maximum value for the given period, EOS is end of season, greenness; is
the daily value of greenness (whether EVI, NDVI, or GCC), LOSp is length of spring, LGS is length of
growing season, IVI is integrated vegetation index, PVI is peak vegetation index, AVI is amplitude of
vegetation index and SMV is spring minimum value. All dates were represented as Julian date for
calculation Purp.

Appendix B

R? and mean bias results of 10 datasets tested against PhenoCam observation. The number of
observations is displayed in parenthesis.

Table A2. Overall results.

R Squared (N) Phenology Metrics Productivity Metrics
Dataset SOS PIRGd POS EOS LOSp LGS VI PVI AVI
AVHRRP 0.07 (98) 0.20 (98) 0.33 (106) 0.22 (79) 0.02 (98) 0.00 (72) 0.00(104)  0.13(106)  0.29 (106)
CMGLSP 0.37 (102) 0.52 (101) 0.39 (105) 0.20 (104) 0.03 (101) 0.06 (100) 0.03 (100) 0.00 (105) 0.00 (104)
Landsat_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) 0.10 (88) NA (NA) NA (NA)
MCD12Q2 0.35 (76) 0.55 (76) 0.54 (76) 0.35 (76) 0.02 (76) 0.02 (76) 0.01 (76) 0.01 (76) 0.02 (76)
MODIS_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) 0.00 (78) NA (NA) NA (NA)
NPN 0.03 (104) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
VIPPHEN_EVI2  0.26 (106) 0.42 (106) 0.32 (106) 0.16 (106) 0.01 (106) 0.04(106)  0.15(106)  0.13(106)  0.34(103)
VIPPHEN_NDVI 0.36 (106) 0.44 (106) 0.37 (106) 0.23 (106) 0.09 (106) 0.10 (106) 0.16 (106) 0.15 (106) 0.26 (97)
DLC 0.35 (106) 0.50 (106) 0.53 (106) 0.45 (106) 0.11 (106) 0.09 (106) 0.00 (106) 0.05 (106) 0.05 (106)
eMODIS 0.26 (99) 0.33 (99) 0.25 (103) 0.22 (101) 0.05 (99) 0.05 (97) 0.02(103)  0.11(106)  0.19 (103)
Mean Bias (N) Phenology Metrics
Dataset SOS PIRGd POS EOS LOSp LGS
AVHRRP 9.88 (98) 15.92 (98) 20.54 (106) 37.92 (79) 14.09 (98) 43.44 (72)
CMGLSP 8.41(102) —0.38 (101) -12.10 (105) 0.52 (104) -17.75(101) ~ —3.78 (100)
Landsat_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
MCD12Q2 —4.39 (76) 0.83 (76) 7.05 (76) 19.92 (76) 12.45 (76) 24.32 (76)
MODIS_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
NPN ~19.10 (104) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
VIPPHEN_EVI2  —4.39 (106) 2.69 (106) 1076 (106) 2358 (106)  16.15(106)  27.97 (106)
VIPPHEN_NDVI ~ -25.49 (106) —4.16 (106) 18.17 (106) 32.98 (106) 44.66 (106) 58.47 (106)

(
DLC -563(106)  -17.66 (106)  21.32 (106) 4.13 (106) 27.95 (106) 9.76 (106)
eMODIS 461 (99) 15.74 (99) 23.82(103) 2326 (101) 24.26 (99) 25.15 (97)
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Table A3. Grasslands (GR) results.

R Squared (N) Phenology Metrics Productivity Metrics
Dataset SOs PIRGd POS EOS LOSp LGS IVI PVI AVI
AVHRRP 0.10 (41) 0.13 (41) 0.32 (45) 0.52 (38) 0.03 (41) 0.15 (34) 0.30 (45) 0.05 (45) 0.32 (45)
CMGLSP 0.38 (44) 0.52 (44) 0.55 (45) 0.56 (44) 0.00 (44) 0.01 (43) 0.00 (43) 0.00 (45) 0.05 (44)
Landsat_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) 0.15 (37) NA (NA) NA (NA)
MCD12Q2 0.45 (37) 0.69 (37) 0.78 (37) 0.51 (37) 0.00 (37) 0.00 (37) 0.00 (37) 0.05 (37) 0.40 (37)
MODIS_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) 0.00 (34) NA (NA) NA (NA)
NPN 0.07 (45) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
VIPPHEN_EVI2 0.41 (45) 0.64 (45) 0.69 (45) 0.50 (45) 0.04 (45) 0.24 (45) 0.03 (45) 0.12 (45) 0.48 (45)
VIPPHEN_NDVI 0.35 (45) 0.50 (45) 0.53 (45) 0.68 (45) 0.00 (45) 0.18 (45) 0.00 (45) 0.05 (45) 0.43 (45)
DLC 0.57 (45) 0.69 (45) 0.58 (45) 0.72 (45) 0.07 (45) 0.28 (45) 0.43 (45) 0.04 (45) 0.02 (45)
eMODIS 0.48 (42) 0.60 (42) 0.56 (44) 0.60 (44) 0.08 (42) 0.18 (42) 0.07 (44) 0.14 (45) 0.13 (44)
Mean Bias (N) Phenology Metrics
Dataset SOS PIRGd POS EOS LOSp LGS
AVHRRP -7.17 (41) 4.32 (41) 15.56 (45) 62.47 (38) 24.98 (41) 74.35 (34)
CMGLSP 9.68 (44) 3.02 (44) —3.22 (45) 18.93 (44) —-11.32 (44) 11.40 (43)
Landsat_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
MCD12Q2 —-8.57 (37) -1.11 (37) 7.35 (37) 40.32 (37) 16.92 (37) 48.89 (37)
MODIS_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
NPN —20.18 (45) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)

VIPPHEN_EVI2  -15.07 (45)  0.31 (45) 16.69 (45) 4644 (45)  3276(45) 6151 (45)
VIPPHEN_NDVI ~ —33.00 (45)  —8.67(45)  16.67 (45) 5444 (45)  50.67 (45)  87.44 (45)
DLC —16.04 (45) -24.19(45) 1971 (45) 2504 (45) 3676 (45)  41.09 (45)
eMODIS —5.43 (42) 8.80 (42) 2064 (44)  39.02(44)  3045(42)  49.74 (42)

Table A4. Shrublands (SH) results.

R Squared (N) Phenology Metrics Productivity Metrics
Dataset SOS PIRGd POS EOS LOSp LGS VI PVI AVI
AVHRRP 0.01(7) 0.07 (7) 0.00 (7) 0.20 (4) 0.03 (7) 0.40 (4) 0.02 (7) 0.16 (7) 0.08 (7)
CMGLSP 0.22(7) 0.28 (7) 0.28 (7) 0.62 (7) 0.12 (7) 0.20 (7) 0.01 (7) 0.19 (7) 0.10 (7)
Landsat_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) 0.00 (7) NA (NA) NA (NA)
MCD12Q2 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)
MODIS_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) 0.01 (7) NA (NA) NA (NA)
NPN 0.13 (7) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
VIPPHEN_EVI2 0.35(7) 0.28 (7) 0.50 (7) 0.39 (7) 0.59 (7) 0.07 (7) 0.09 (7) 0.46 (7) 0.14 (7)
VIPPHEN_NDVI 0.31(7) 0.22 (7) 0.00 (7) 0.15 (7) 0.17 (7) 0.35 (7) 0.00 (7) 0.19 (7) 0.12 (7)
DLC 0.55 (7) 0.53 (7) 043 (7) 0.54 (7) 0.44 (7) 0.26 (7) 0.00 (7) 0.14 (7) 0.07 (7)
eMODIS 0.68 (7) 0.89 (7) 0.85(7) 0.03 (6) 0.52(7) 0.22 (6) 0.05 (7) 0.22(7) 0.11(7)
Mean Bias (N) Phenology Metrics
Dataset SOs PIRGd POS EOS LOSp LGS
AVHRRP 38.43 (7) 30.64 (7) 23.86 (7) 24.50 (4) —-13.57 (7) —34.00 (4)
CMGLSP 25.43 (7) 6.79 (7) —-10.86 (7) 8.71(7) —35.29 (7) -16.71(7)
Landsat_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
MCD12Q2 —-11.00 (1) —-11.00 (1) —10.00 (1) -2.00 (1) 2.00 (1) 9.00 (1)
MODIS_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
NPN —-108.57 (7) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
VIPPHEN_EVI2 25.71(7) 20.14 (7) 15.57 (7) 7.86 (7) -9.14 (7) —-17.86 (7)
VIPPHEN_NDVI 22.00 (7) 11.79 (7) 2.57 (7) -13.71(7) —18.43 (7) -35.71(7)
DLC 7.29 (7) -10.79 (7) 6.14 (7) —24.00 (7) -0.14 (7) -31.29 (7)

eMODIS 23.00 (7) 21.43 (7) 20.86 (7) 15.00 (6) ~1.14(7) ~6.67 (6)
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Table A5. Deciduous/Broadleaf (DB) results.

R Squared (N) Phenology Metrics Productivity Metrics
Dataset SOs PIRGd POS EOS LOSp LGS IVI PVI AVI
AVHRRP 0.37 (23) 0.50 (23) 0.21 (27) 0.10 (26) 0.02 (23) 0.05 (23) 0.26 (25) 0.10 (27) 0.34 (27)
CMGLSP 0.65 (24) 0.37 (23) 0.00 (26) 0.01 (26) 0.00 (23) 0.00 (23) 0.00 (23) 0.23 (26) 0.26 (26)
Landsat_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) 0.24 (20) NA (NA) NA (NA)
MCD12Q2 0.28 (26) 0.31 (26) 0.19 (26) 0.52 (26) 0.07 (26) 0.29 (26) 0.00 (26) 0.13 (26) 0.25 (26)
MODIS_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) 0.90 (10) NA (NA) NA (NA)
NPN 0.90 (27) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
VIPPHEN_EVI2 0.04 (27) 0.45 (27) 0.13 (27) 0.21 (27) 0.17 (27) 0.01 (27) 0.54 (27) 0.00 (27) 0.33 (27)
VIPPHEN_NDVI 0.59 (27) 0.33 (27) 0.07 (27) 0.21 (27) 0.07 (27) 0.13 (27) 0.59 (27) 0.16 (27) 0.25 (23)
DLC 0.28 (27) 0.51 (27) 0.77 (27) 0.33 (27) 0.45 (27) 0.07 (27) 0.22 (27) 0.20 (27) 0.32 (27)
eMODIS 0.02 (25) 0.36 (25) 0.26 (26) 0.59 (26) 0.02 (25) 0.03 (25) 0.24 (26) 0.05 (27) 0.59 (26)
Mean Bias (N) Phenology Metrics
Dataset SOS PIRGd POS EOS LOSp LGS
AVHRRP -13.61 (23) —5.28 (23) 0.30 (27) 17.15 (26) 18.65 (23) 39.83 (23)
CMGLSP -19.79 (24) -1833(23) -28.92(26) —37.04(26) —2.13 (23) —6.30 (23)
Landsat_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
MCD12Q2 —15.58 (26) —7.46 (26) 1.65 (26) 4.08 (26) 18.23 (26) 19.65 (26)
MODIS_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
NPN —-18.74 (27) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
VIPPHEN_EVI2  -17.56 (27) —-8.39 (27) 1.78 (27) -1.15 (27) 20.33 (27) 16.41 (27)
VIPPHEN_NDVI = —49.63 (27)  —27.22(27) —3.81(27) 10.63 (27) 46.81 (27) 60.26 (27)
DLC -20.19 (27)  -27.54(27) 18.52 (27) -11.85 (27) 39.70 (27) 8.33 (27)
eMODIS —8.08 (25) —0.08 (25) 8.92 (26) 11.15 (26) 18.00 (25) 21.48 (25)

Table A6. Evergreen (EN) results.

R Squared (N) Phenology Metrics Productivity Metrics
Dataset SOS PIRGd POS EOS LOSp LGS VI PVI AVI
AVHRRP 0.03 (25) 0.03 (25) 0.04 (25) 0.45 (9) 0.02 (25) 0.49 (9) 0.01 (25) 0.01 (25) 0.04 (25)
CMGLSP 0.33 (25) 0.40 (25) 0.28 (25) 0.11 (25) 0.11 (25) 0.08 (25) 0.01 (25) 0.13 (25) 0.01 (25)
Landsat_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) 0.04 (22) NA (NA) NA (NA)
MCD12Q2 0.44 (11) 0.54 (11) 0.64 (11) 0.31 (11) 0.08 (11) 0.07 (11) 0.15 (11) 0.91 (11) 0.75 (11)
MODIS_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) 0.02 (25) NA (NA) NA (NA)
NPN 0.00 (25) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
VIPPHEN_EVI2 0.16 (25) 0.06 (25) 0.01 (25) 0.00 (25) 0.04 (25) 0.06 (25) 0.06 (25) 0.01 (25) 0.09 (22)
VIPPHEN_NDVI 0.24 (25) 0.19 (25) 0.04 (25) 0.17 (25) 0.12 (25) 0.09 (25) 0.06 (25) 0.04 (25) 0.52 (20)
DLC 0.10 (25) 0.07 (25) 0.00 (25) 0.09 (25) 0.00 (25) 0.02 (25) 0.04 (25) 0.00 (25) 0.16 (25)
eMODIS 0.09 (23) 0.04 (23) 0.00 (24) 0.09 (23) 0.00 (23) 0.00 (22) 0.07 (24) 0.00 (25) 0.11 (24)
Mean Bias (N) Phenology Metrics
Dataset SOs PIRGd POS EOS LOSp LGS
AVHRRP 55.56 (25) 52.88 (25) 51.20 (25) 14.33 (9) —-3.36 (25) —23.56 (9)
CMGLSP 29.44 (25) 9.52 (25) —9.40 (25) 5.04 (25) —37.84(25)  —24.40(25)
Landsat_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
MCD12Q2 32.64 (11) 22.68 (11) 13.73 (11) -11.36 (11)  -17.91 (11)  —44.00 (11)
MODIS_NPP NA (NA) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
NPN 7.52 (25) NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)

VIPPHEN_EVI2 ~ 2452(25)  15.70 (25) 7.88 (25) 18.84(25)  -1564(25)  —5.68 (25)
VIPPHEN_NDVI  3.96 (25) 2614 (25)  4932(25)  39.36(25)  4636(25)  35.40(25)
DLC 25.64 (25) 2.06 (25) 28.68(25)  —5.60 (25) 404(25)  -31.24 (25)
eMODIS 3235(23)  4493(23)  47.17(24)  1017(23)  27.17(23)  -832(22)
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Additional figures relating to the long-term trend analysis of CMGLSP, VIP_EVI, and NPN.
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Figure A1l. Mean and standard deviation of historical (1982-2016) data from CMGLSP and

VIPPHEN_EVI2.
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Figure A2. Change in SOS date and variation of NPN from 1982 to 2016 alongside consistency with
CMGLSP and VIPPHEN_EVI2. Negative values correspond to earlier dates (or fewer days) and positive
values to later dates (or more days). Consistency shows dataset agreement with regards to the direction
of change. Change in date is the regressed trend slope multiplied by the number of years. Change in
variation is the regressed trend slope of the absolute value of the residuals multiplied by the number

of years.
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Change in Date Change in Variation
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Figure A4. Change in date and variation of CMGLSP, VIPPHEN_EVI2, and NPN across three phenology
metrics (only SOS for NPN) from 1982 to 2016. Shown here with a more robust color scheme to better
indicate change. Negative values correspond to earlier dates (or fewer days) and positive values to
later dates (or more days). Change in date is the regressed trend slope multiplied by the number of
years. Change in variation is the regressed trend slope of the absolute value of the residuals multiplied
by the number of years.
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Figure A5. Histogram of CMGLSP and VIPPHEN_EVI2 SOS change in date from 1982 to 2016
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Figure A6. Histogram of CMGLSP and VIPPHEN_EVI2 POS change in date from 1982 to 2016.
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Figure A7. Histogram of CMGLSP and VIPPHEN_EVI2 EOS change in date from 1982 to 2016.
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