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Abstract: Maintenance and expansion of transport and communications infrastructure requires
ongoing construction work on a large scale. To plan and execute these in the best possible
way, up-to-date and highly detailed digital maps are needed. For example, until recently,
telecommunication companies have performed documentation and mapping of as-built urban
structures for construction work manually and with great time expense. Mobile mapping systems
offer a solution for documenting urban environments fast and mostly automated. In consequence,
large amounts of recorded data emerge in short time, creating the need for automated processing
and modeling of these data to provide reliable foundations for digital planning in reasonable time.
We present (a) a procedure for fully automated processing of mobile mapping data for digital
construction planning in the context of nationwide broadband network expansion and (b) an in-depth
study of the performance of this procedure on real-world data. Our multi-stage pipeline segments
georeferenced images and fuses segmentations with 3D data, which allows exact localization of
surfaces and objects, which can then be passed via interface, e.g., to a geographic information system
(GIS). The final system is able to distinguish between similar looking surfaces, such as concrete and
asphalt, with a precision between 80% and 95%, regardless of setting or season.

Keywords: mobile mapping systems; road surface texture; supervised learning; semantic
segmentation; broadband infrastructure

1. Introduction

A well-developed and accessible infrastructure is a prerequisite for a functioning economy.
The essential infrastructure includes basic supplies, transport routes, and nodes but also elements
necessary for the digital interconnection of society, such as broadband access. In most
countries in the European Union, the basic supply and transport infrastructure network expands
nationwide–preservation and maintenance are therefore the most important tasks for the future.
The situation with regard to digital supply is significantly worse. The broadband network in particular
still has many gaps and requires a high degree of densification, especially in rural areas.

A basic challenge for the construction and expansion of infrastructure—regardless of type—is
the lack of documentation for existing natural (e.g., landscape and vegetation) and artificial objects
(e.g., buildings) on sites. Often, accurate plans do not exist or are outdated [1]. For small-scale
construction sites, such as single-family houses, documentation can be produced with suitable, mostly
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terrestrial measuring methods [2] to allow reliable planning. In the case of large structures—especially
long-term infrastructure projects—full-coverage documentation is considerably more complex.
Currently, documentation is either carried out (a) with little effort, resulting in a poor spatial resolution
of the data (e.g., simple photo documentation of the conditions), or (b) with mobile measuring systems
that generate dense spatial information, but produce a large amount of data (in the range of several
GB per km) in very short time [3,4]. The process of transferring the recorded measurement data into
digital models usable for infrastructure planning requires experience and time [5]. Usage of digital
models has the potential to reduce planning time compared to conventional manual planning. To fully
or semi-automate the task of processing mobile mapping data and thus accelerate the modeling is,
therefore, a much-researched topic; extensive reviews of the different techniques have, e.g., been
published by Reference [6,7].

We present an approach specifically tailored to the application of digital planning for expanding a
broadband network, utilizing mobile mapping data from both LiDAR (Light Detection and Ranging)
and camera sensors. A key element of our approach is the use of supervised learning to train a
convolutional neural network (CNN) that is able to distinguish surfaces and objects relevant to civil
engineering (e.g., different types of pavement) in images captured by a mobile mapping system.
We use this information to segment a dense point cloud, from which we extract localized objects and
represent them as pairs of shape and height, yielding a 2.5D map of the recorded area with detailed
surface texture information. The purpose of the resulting data stream is to inform a routing algorithm
tasked with finding a reliable (i.e., not disrupted by objects hindering construction, such as rails) and
cost-efficient (i.e., through surfaces that can be easily restored) route for construction work.

Deep learning techniques based on CNNs are the current state-of-the-art in computer vision, [8–10].
For object detection, classification, or segmentation in 3D data, only recently approaches based on
deep learning have gained traction due the lower resolution compared to images and sparseness of
the point cloud. Approaches can be categorized into volumetric (e.g., VoxNet [11], which transform
the input point cloud into structured voxel data), point-wise (e.g., PointNet [12], which use points as
input without a previous transformation), and multi-view-based (e.g., VoteNet. [13], where 3D point
clouds are transferred into 2D images for classification or segmentation). Most recently, integrations of
point-wise and volumetric methods have shown promise [14]. A comprehensive survey of methods
for 3D classification can be found for example in the work of Reference [15].

Our approach can be placed within multi-view-based research, where most recently advanced ways
of combining RGB and depth views of the point cloud have emerged, for example, with ImVoteNet [16].
However, our goal differs from most applications in the field, which work on classification of indoors
scenes or autonomous driving applications; we focus on distinguishing urban surface textures, such as
concrete, asphalt, pavement, or gravel, for which color information is an essential feature, while depth
is negligible. Instead of working with depth or intensity 2D maps, we extract object information from
RGB images only, which have been recorded synchronously with the point cloud and offer multiple
perspectives of the objects and surfaces visible in the 3D data. A similar approach is described by
Reference [17], who classified images with a CNN trained on the CityScapes dataset [18], mapped
segmentation results to 3D points using camera parameters, and refined the result with features
extracted from the point clouds. However, their pipeline stops at the classified point cloud, while our
procedure also includes the extraction of object instances and their shapes for the creation of a digital
map. Since—to our knowledge—there is no dataset publicly available at the current time that provides
annotations of fine-grained classes of urban surface textures, a custom dataset of 90,000 segmented
RGB images was created in the process of building our system, as well as an extensive reference map
in two different locations in Germany.

In general, the focus of our paper is not on novel methods for individual steps of the pipeline
(e.g., image or point cloud segmentation) but on the practical application of scene classification and
reaching high accuracy and robustness in feasible processing time in practice; so far, little research has
been conducted in this direction [19].
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2. Materials and Methods

2.1. Mobile Mapping System and Data

Mobile mapping is the process of collecting data by means of a mobile caring platform (e.g., a car)
equipped with different sensors [20]. The main sensor of such a system is the positioning and
orientation sensor (POS), which represents a combination of an inertial measurement unit (IMU),
a global navigation satellite system (GNSS), and an odometer (OD). Data streams from the POS, IMU,
GNSS, and OD are fused to a trajectory using a Kalman filter, which calculates a continuous forward
solution in real time. The calculated trajectory represents the route driven by the measurement vehicle
including the corresponding spatial orientations in a global reference frame (referenced in time and
space: x, y, z, alpha, beta, gamma, t). In a first step, this information refers to the origin of the POS.
All other sensors are secondary sensors, which are synchronized with the POS by time or distance.
These sensors can be video cameras, single frame cameras, LiDAR, or georadar systems. Once the
position and orientation of all sensors in relation to the origin of the POS is known (usually determined
by the extrinsic calibration of the entire system), all data can be brought into spatial relation to the
common global frame. The result of a measurement run are georeferenced images and 3D points.

The measurement vehicle used for the project presented here is equipped with a LiDAR
(the Fraunhofer Clearance Profile Scanner (CPS) with a measurement frequency of 2 MHz and
a scanning frequency of 200 Hz), four cameras with a single resolution of 5 megapixel and a POS
(Applanix LV420). The LiDAR data is generated and time-stamped in a free-running mode, whereas
images are recorded in a way-triggered mode. The system synchronously captures four images every
5 m (aligned to the front, back, and sides). Examples of captured image and 3D points (point cloud)
are shown in Figures 1 and 2.
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Figure 1. Three-dimensional point cloud (intensity values depicted in grayscale).
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road surface from different angles. 

Figure 2. Perspectives of the four cameras mounted on the mobile mapping vehicle: images taken with
(a) front, (b) left, (c) right, and (d) rear camera. As the vehicle moves forward, it captures the road
surface from different angles.
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2.2. Processing Pipeline

Figure 3 contains a visualization of the full data processing pipeline. The software comprises two
main stages and processes large chunks of mobile mapping data by splitting point clouds and images
into smaller overlapping units of 20 m.
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Figure 3. Full processing pipeline (from left to right): 2D RGB images are processed with a convolutional
neural network (CNN), resulting in a pixel-wise segmentation map. Using the camera parameters,
the 2D segmentation is mapped onto 3D points, which are clustered to extract 3D objects. These objects
are projected onto the computed street plane to generate a map with object height information.

During the first stage, images receive a pixel-wise classification, resulting in a 2D semantic
segmentation of all perspectives recorded by the mobile mapping vehicle. The segmentation is then
transferred into the point cloud by projecting pixels onto points using the extrinsic calibration of
scanner and respective camera. Many points have been recorded from multiple camera perspectives,
so there are different options to use the label information to determine the final class of a point.
We experimented with two strategies: (a) classify every point with the label information received from
the camera position closest to the point; and (b) apply a voting scheme and classify every point with
the majority class, if it received more than one label. The pixel-wise image classification is derived
with a CNN using the well-established VGG16 encoder in an FCN 8 architecture [9] (Figure 4).
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Figure 4. VGG16 feature extractor.

As most publicly available data sets for image segmentation focus on street objects and categories,
such as sidewalk versus street, rather than details of the surface texture, a large dataset tailored specifically
to the application was created from scratch to train the network. To make the system robust enough to
deal with mobile mapping data from all over Germany, from different camera sensors and at different
seasons of the year, a large and diverse set of data was recorded in advance. The collection was
organized in three campaigns (from September until December 2017, in March 2018 and in August 2018)
with two different mobile mapping vehicles in more than 20 locations. This resulted in a data collection
of 1.3 million images, from which 90,000 images where handpicked—specifically looking for recordings
of surface textures or objects that appeared rarely, such as concrete and rail tracks, or seasonal variations
(Figure 5)—and annotated manually with a segmentation mask (for an example, see Figure 6).
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Figure 6. Manual surface segmentation (green: grass, red: small paving, blue: large paving, grey:
asphalt: magenta: manhole cover, cyan: curbstone).

Main classes, on which we focus in this paper, were surface textures (asphalt, concrete, gravel,
grass, small pavement, and large pavement) and objects disrupting the road surface (rail tracks and
curbstone). Additionally, helper classes, such as vehicles, building, people, road inventory, and more,
were annotated (however, we do not report results on these classes currently, as the routing algorithm
makes no use of them at the current time). We list target object classes and their appearance rate in the
final training in Table 1.

Table 1. Object classes ranked by relative pixel frequency in the manually produced segmentation
masks for the training data set.
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Object Class Asphalt Grass Curbstone Small
Paving

Hole
Cover Gravel Large

Paving
Rail

Tracks Concrete

Appearance
Rate 93% 80% 78% 59% 44% 13% 6% 4% 4%

The CNN was trained using the Caffe framework [5], which is especially suited for deployment
in a large distributed application (the final pipeline runs in the cloud) and very robust. As the point
cloud processing rather than the image processing is the bottleneck of our pipeline, speed was a lesser
consideration in choosing the deep learning framework. We applied data augmentation especially
adapted to the types of variations observed in the images produced by the two different mobile
mapping camera systems. These were mainly strong shifts in color due to a dynamic white-balance
adaptation thrown off by large colored areas in an image (such as the side of a bus or painted facades)
and shifts in brightness due to sections of images frequently being over- and underexposed. This can
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be attributed to a slow exposure adaptation in settings with strong contrast, e.g., with bright sunlight.
The final CNN was trained using the Adam optimizer [21] with Caffe default parameters. The best
model was found after training for 7 epochs on the whole training dataset on a single Nvidia GTX 1080
over the course of three weeks.

The segmented point cloud is processed during the second stage (Figure 7): Using the object
class information derived from the image projection, a plane is fitted using the subset of points that
received a surface label in the voting scheme, using the RANSAC algorithm [22]. We then apply this
information to label the point cloud a second time, prohibiting points from receiving surface labels
that are not in close range of the assumed street plane and banning helper object labels from the street
plane area.
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Figure 7. Detailed description of the second stage of the pipeline: After the point cloud has received
the initial labels from the segmented images, we fit a plane using all points that received a surface label,
the street plane (white points in the second image). The point cloud is then labeled a second time using
the street plane as a filter criterion: Points on or slightly above (up to 50 cm) the street plane will only
receive surface labels, not labels from background objects, such as trees or cars. This removes shadows
of foreground objects caused by points “traveling through” the object due to the lower resolution of
the point cloud compared to the images. We extract object point clouds from the filtered point cloud
by finding clusters of points that received the same class labels with euclidean clustering. We flatten
these object clusters by projection onto the street plane and compute the concave hull for each flattened
object, resulting in the final object polygon.

This step is necessary to deal with the problem of the lower resolution of the point cloud and a
useful heuristic to mitigate the effects of inaccurate extrinsic calibrations of sensors. Often, objects that
are obscured by another object from a given camera perspective receive labels from the foreground
object because the resolution of the object is lower in the point cloud than in the image and points
“travel through”. The same effect can occur if objects are only partially present in the point cloud
due to shading by other objects or objects that are see-through for the scanner but not for the camera
(e.g., car windows). In addition to the street plane filter, we also use a depth filter, which restricts
clusters of labels to a mutual depth plane, which helps with see-through objects, such as railings.
We then apply object extraction by means of euclidean clustering on the label-filtered point cloud.
The extracted point clusters are sorted by label and their points projected onto the street plane, from
which a concave hull for each object instance or area is subsequently computed [23], resulting in a
georeferenced polygon. The final step cleans and filters the resulting polygons based on class-specific
parameters; finally, the pipeline merges polygons of the same class for adjacent point clouds to create a
full and consistent map of the recorded area.



Remote Sens. 2020, 12, 2530 7 of 13

The inference time of the full pipeline depends on the available hardware, i.e., number of GPUs,
CPUs and available memory. On a Workstation equipped with an Intel i9 9920X (12c/24t) CPU and
64GB Ram, Samsung 970 EVO SSD, and 2 Nvidia RTX2080 GPUs, the system was able to process
3.1 km of mobile mapping data per hour (mean over 7 data sets). However, the standard deviation of
these measurements was quite high, at 0.86. While the first stage of the pipeline scales linearly with
the number of images to classify, the processing time for the second stage depends on the point cloud
density and the complexity of the scene (number of different classes, number of individual clusters).

3. Results

In the route planning process based on the stream of data output by our system, detected objects
serve different information needs. Broadly, two types of objects are of interest for this application:
surface textures and objects disrupting a continuous surface.

(a) Surfaces, i.e., areas of ground covered with a specific material (e.g., asphalt or grass; see above).
Knowing the exact extent of a surface is important in order to be able to calculate the cost of
implementing a planned route though several areas and minimize this cost during the routing
process (building through grass is cheaper than opening up pavement). We want to reflect this in
our evaluation strategy and compute measures based on area overlap.

(b) Disrupting objects, i.e., objects placed on or inside a surface, which may disrupt a potential
broadband route, such as curbstones or rail tracks. The exact area size of these objects is less
relevant for the application, since the route planning establishes buffer zones around disrupting
objects; however, since undetected “holes” in continuous objects can significantly alter planned
routes, high recall is important in the detection of these objects.

3.1. Reference Data Set

To guarantee that our system performs reliably in a real-world application with a broad range of
different scenes, weather, and lighting settings all over Germany, we manually created an extensive
reference map, covering all target objects and using diverse input data from various seasons and
locations. We selected two areas for evaluation, for which data was recorded exclusively for evaluation
and chronologically and geographically completely separate from the recording of the CNN training
data, namely an inner-city area from Freiburg, Baden-Württemberg (Germany), and a mix of suburban
and rural area from Bornheim, Nordrhein-Westfalen (Germany). Data from Bornheim was recorded in
July 2018. For the Freiburg area, two recordings were available, from March 2018 and July 2018. We
asked annotators to draw reference polygons of the shapes of surfaces and objects with the help of
aerial images. Especially for narrow objects, such as curbstones and rail tracks, aerial images turned out
to be far too low in resolution, as well as inaccurate in the exact localization of the objects. To solve this
problem, we used birds-eye views of the point cloud, visualizing intensity values at different resolutions
to help annotators identify reference shapes correctly, in combination with corresponding terrestrial
images from the mobile mapping cameras, for identifying the surface texture correctly (see Figure 8).
In total, five annotators worked on the ground truth, polygons for all objects were double-checked,
and more than 150,000 square meters of highly detailed ground truth created, corresponding to a route
of 8 kilometers driven by the mobile mapping vehicle. The data set covers the six surface texture
classes (concrete, asphalt, large paving, small paving, grass, and gravel) and two disrupting object
classes (rail tracks and curbstone).
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3.2. Evaluation

As we work towards a real-world application, we focus on a detailed inspection of the final
pipeline output, i.e. the quality and accuracy of 2D polygons, instead of intermediary results, such as
the segmentation of images and point clouds. Still, we use notions about the output quality similar to
measuring the performance of classifiers: we count True and False Positives, as well as False Negatives,
and compute evaluation measures based on these numbers. Table 2 shows the definition of these terms
in the context of our task, Figure 9 a visualization. Based on these counts, we compute Precision, Recall,
and F1-score.

Table 2. Counts for area-based evaluation.

True Positives (TP) Intersection area of output polygons of class A with ground truth
polygons of class A

False Positives (FP) Intersection area of output polygons of class A with ground truth
polygons of class B, C, . . . (all classes , A)

False Negatives (FN) Intersection area of ground truth polygons of class A with output
polygons of class B, C, . . . (all classes , A)
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Figure 9. Computation of true and false positive areas for pavement (light blue): (a) Reference;
(b) output; (c) overlay; (d) true positive (TP) (green), false positive (FP) (red), and false negative
(FN) (blue).

Table 3 shows the evaluation results for the six individual surface classes on all data sets separately
and averaged. Results show that the system can distinguish even similar looking surfaces, such as
concrete and asphalt, with high reliability (between 75% and 95%) when averaged over location and
season. Note that we did not filter the evaluation data with regard to image quality, so the set contains



Remote Sens. 2020, 12, 2530 9 of 13

images both with over- and underexposed regions. Especially, the data recorded in summer contains a
significant number of images, in which critical parts are over- and underexposed.

Table 3. Results for all surface classes on all three evaluations sets with size of ground truth data in m2
for each class. Note that the ground truth sizes for three classes (concrete, large paving, and gravel) is
very small on the Freiburg set, and the numbers are therefore not reliable (indicated in grey font).

Object
Class Freiburg (03/18) Freiburg (07/18) Bornheim Total

m2 Pr Rc F1 Pr Rc F1 m2 Pr Rc F1 m2 Pr Rc F1

concrete 409 49% 78% 60% 62% 65% 64% 3972 97% 90% 93% 4381 92% 89% 90%
asphalt 75,852 97% 97% 97% 94% 97% 95% 13,965 90% 97% 93% 89,818 94% 97% 96%

large
paving 480 53% 47% 50% 58% 83% 68% 2089 89% 78% 83% 2569 81% 75% 78%

small
paving 11,573 88% 88% 88% 89% 81% 85% 5997 94% 95% 94% 17,570 91% 89% 90%

grass/dirt 60,646 93% 94% 94% 91% 97% 94% 10,536 87% 97% 92% 71,182 91% 96% 93%
gravel 1820 65% 55% 60% 60% 30% 40% 17,585 98% 85% 91% 19,405 96% 82% 88%

We chose to keep this data in the evaluation set regardless, to gain a realistic impression of the
capabilities of a system faced with incomplete and impaired data. Figure 10 shows examples. Overall,
results are lower for classes for which less data is available in the reference set (such as large paving),
corresponding to lower frequency in the training set.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 14 
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lighting conditions. Images show the same gravel surface recorded in (b) spring and (c) summer.
Visibility is not improved in the following and preceding images.

The main challenge for our system is to distinguish reliably surface textures that look similar;
overexposed asphalt may closely resemble concrete and images of concrete, where no boundaries are
visible, and can be easily mistaken for asphalt, even by the human eye. Strongly distressed asphalt
often resembles gravel, and the difference between dirt and gravel is fluid. The same holds true for the
division into small and large paving. Even though the CNN handles scaling quite well due to the fixed
perspectives, there are paving patterns consisting of both large and small stones, leading to ambiguous
cases. We therefore performed a paired evaluation of related surfaces (see Table 4). Precision and
Recall for all combinations were up to 90% and higher, supporting the hypothesis that the system
mostly confuses visually similar textures. The paired evaluation of the surface classes makes sense in
the context of the application, as well. The difference in cost between construction works through the
respective surfaces is much smaller within those pairs than between pairs, meaning the error in cost
calculation is smaller, when there is a confusion between members of a pair.
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Table 4. Combined evaluation of related surface classes (mean over all data sets).

Object Class Pr Rc F1

asphalt + concrete 95% 97% 96%
paving 92% 90% 91%

grass, dirt + gravel 95% 95% 95%

One aspect that makes the system robust in application is the availability of images taken from
multiple perspectives. Surfaces that are further away or partially hidden may appear again in an image
taken by a different camera. We experimented with two different settings for determining the label of a
point based on information from different images: majority label (voting) and nearest label (nearest
being the one received by the image taken from the camera position closest to the point in question).
Table 5 contains the results. Especially for object classes that appear less frequently, such as paving and
gravel, taking labeling information from the nearest camera improves final classification accuracy.

Table 5. Majority point labeling scheme vs. nearest label scheme (mean F1-score).

Object Class Majority Label Nearest Label ∆

concrete 89% 90% +1%
asphalt 95% 96% +1%

large paving 67% 78% +11%
small paving 81% 90% +9%

grass/dirt 88% 93% +5%
gravel 73% 88% +15%

Figure 11 shows the surface segmentation for two images taken of the same surfaces but from
different angles. Final output is a correct polygon for the whole area due to the higher weight given to
labeling information received from images taken closer to the point in question. On the other hand,
gaps in continuous objects are a regular occurrence caused by incomplete recordings of objects in 3D
(Figure 12); this problem can be only fixed by changing the mode of data collection, e.g., by driving
roads in both directions and adding additional LiDAR sensors at different angles.
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Figure 11. Classification of the same paved surface on an image taken by the front and tight camera.
(a) Segmentation on the image taken with the front camera contains a spot, where the paved surface
is misclassified as asphalt (grey); (b) in the image taken with a full view of the surface, it is correctly
classified as large paving (dark blue); (c) correct polygon output.
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Figure 12. Incomplete polygon map (a) due to shading by a hill in the point cloud (b). It is possible to
close this data gap with additional sensors or a more redundant recording strategy.

Table 6 contains evaluation results for disrupting continuous objects, rail tracks, and curbstones.
The results are conclusive; the percentage of False Positives is extremely low.

Table 6. Evaluation results for disrupting object classes, rail tracks, and curbstone.

Pr Rc F1

Rail Tracks 98% 83% 89%
Curbstone 94% 87% 90%

Note, that the ground truth annotation included parts of the objects that were obscured in
3D from the view point of the vehicle as discussed above, e.g., by parking or overtaking vehicles
(again, we assume it is relevant to the application to assume input data may be incomplete regularly).
Large continuous sections, where the object was obscured, e.g., at tram stations, which feature a high
sidewalk on both sides of the track separating the rail tracks in the middle of the street from the driving
lanes, were excluded from the annotation, though. The results should therefore closely reflect the
performance of the system in application and the missing data accounts for the lower Recall compared
to the high Precision. The larger presence of ambiguous objects can explain the lower precision for
curbstones: in some cases, sidewalks feature intersecting stones, e.g., a paved line separating bike and
pedestrian lane, which are visually indistinguishable from a low curbstone.

4. Conclusions

The paper at hand presents a study of how to apply deep learning techniques practically and
successfully to a remote-sensing application with an extensive evaluation on real-world data. The focus
of the work is on surface textures in urban scenes for the application of digital planning. Such a process
is (to our knowledge) novel; frequently reported applications, such as land cover classification and
autonomous driving, do not require the same level of detail in this area. Depending on the type of
surface, our system achieves reliability levels of over 90%, and an implementation of the system is in
productive use in the industry. However, due to this, we are not able to publish code and training
data at the moment. In the future, we plan to expand the number of object classes make the approach
robust for different levels of input data quality. The aim is to create a process chain that can be used
universally-independent of the mobile mapping system and its sensor configuration.
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