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Abstract: Precision agriculture aims at optimizing crop production by adapting management actions
to real needs and requires that a reliable and extensive description of soil and crop conditions is
available, that multispectral satellite images can provide. The purpose of the present study, based
on activities carried out in 2019 on an agricultural area north of Ravenna (Italy) within the project
LIFE AGROWETLANDS II, is to evaluate the potentials and limitations of freely available satellite
thermal images for the identification of water stress conditions and the optimization of irrigation
management practices, especially in agricultural areas and wetlands affected by saline soils and
salt water capillary rise. Point field surveys and a very-high resolution thermal survey (5 cm) by
an unmanned aerial vehicle (UAV) supported thermal camera were performed on a maize field
tentatively at every Landsat-8 passage to check land surface temperature (LST) and canopy cover (CC)
estimated from satellite. Temperature measured in the soil near ground surface and from UAYV flying
at 100 m altitude is compared with LST estimated from satellite measurements using three conversion
methods: the top of atmosphere brightness temperature based on Landsat-8 band 10 (SB) corrected
to account only for surface emissivity, the radiative transfer equation (RTE) for atmosphere effects
correction, and the original split window method (SW) using both Thermal Infrared Sensor (TIRS)
bands. The comparison shows discrepancies, due to extreme difference in resolution, the systematic
hour of satellite passage (11 am solar time), and systematic differences between methods beside
the unavoidable inaccuracy of UAV measurements. Satellite derived temperatures result usually
lower than UAV measurements; SB produced the lowest values, SW the best (difference = -1.7 + 1.7),
and RTE the median (difference = —2.7 + 1.6). The correlation between contemporary 30 m resolution
temperature values of near pixels and corresponding tile-average temperatures was not significant,
due to the purely numerical interpolation from the 100 m resolution TIRS images, whereas the time
pattern along the season is consistent among methods, being correlation coefficient always greater
than 0.85. Correlation coefficients among temperatures obtained from Landsat-8 by different methods
are almost 1, showing that values are almost strictly related by a linear transformation. All the
methods are useful to estimate water stress, since its associated Crop Water Stress Index (CWSI) is,
from its definition, insensitive to linear transformation of temperatures. Actual evapotranspiration
(ETa) maps are evaluated with the Surface Energy Balance Algorithm for Land (SEBAL) based on
the three Landsat-8 derived LSTs; the higher is LST, the lower is ETa. Resulting ETa estimates are
related with LST but not strictly, due to variation in vegetation cover and soil, therefore patterns
result similar but not equivalent, whereas values are dependent on the atmosphere correction method.
RTE and SW result in the best methods among the tested ones and the derived ETa values result
reliable and appropriate to user needs. For real time application the Normalized Difference Moisture
Index (NDMI), which can also be derived from more frequent Sentinel-2 passages, can be profitably
used in combination or as a substitute of the CWSI.
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1. Introduction

Precision agriculture, which designates a combination of technologies and practices aiming to
optimize the production by accounting for variability and uncertainties within agricultural systems [1],
is emerging as a possible answer to the challenge of increasing food production in a sustainable way [2].
In practice, precision farming tries to supply variable rates of farming inputs (e.g., water and nutrients),
depending on local soil and plant conditions [3]. Therefore, a precise knowledge of crop deficiency
and quality of soils is required for the delineation of management zones, the optimization of farming
practices and, possibly, the prediction of crop yield within-field variability [4]. For this purpose, a near
real-time monitoring is needed with cost-effective technologies.

Remote sensing is certainly the most cost-effective method for large-scale monitoring [5] while,
to perform analyses at the scale of a single crop, a proper combination of satellite and unmanned aerial
vehicle (UAV) technologies is advisable [6]. On one hand, the use of both Landsat-8 and Sentinel-2
satellite platforms offers the opportunity to acquire multispectral images with appropriate resolution
between 10 and 30 m and a revisiting time of a few days [7]. On the other hand, UAV technologies
provide very high-resolution capabilities with the maximum timing flexibility, even though they are
suitable for surveys on smaller extent areas.

Remote sensing can provide accurate field mapping for plant stress monitoring, biomass or
nutrient estimation, weed detection and inventory [6]. Retrieving variables from remote sensing
data requires the inversion of radiative transfer models. Furthermore, transfer outputs require a not
straightforward interpretation in order to provide useful information for crop management [2]. As a
consequence, obvious and widely recognized standard solutions suitable for all cases are not available.
Methods to retrieve the variables of interest can be purely empirical (generally consisting in a regression
between the measured signal and the variable of interest), mechanistic (based on physical model
inversion) or contextual (e.g., classification techniques) [2].

When monitoring plant stress, a key aspect is the variation of the crop evapotranspiration [8].
Several indices have been proposed in literature that can be based on optical band ratios or on estimates
of surface temperature. While the optical domain is considerably exploited, the use of thermal sensors
in agriculture is less frequent [9], even though it is proven to be effective in the assessment of water
stress [10]. In fact, the surface temperature of vegetation canopy is closely related to the transpiration
rate, which is in turn controlled by the environment evaporative demand and the availability of water
in the soil. Furthermore, surface temperature is a rapid response variable, if compared to indices in the
visible and near-infrared domain [5] reflecting canopy status.

Thermal remote sensing from satellite platforms is still limited in spatial resolution and revisiting
time. The highest resolution is provided by Landsat-7 thermal band, with a ground sample distance
(GSD) of 60 m, whilst the more recent Landsat-8 provides two thermal infrared (TIR) bands at 100 m
resolution; in both cases the revisiting time is about 16 days. Unfortunately, the presence of data
gaps (black stripes) in the area under consideration due to a failure of the Scan Line Corrector,
represents a major obstacle to the use of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) images.
Due to these limitations, the use of thermal sensors installed on board UAV platforms becomes
particularly interesting for precision farming, even though their accurate calibration and the correction
of atmospheric effects are still a challenge [11].

Monitoring crop growth and water stress was a major objective of the supporting project LIFE
AGROWETLANDS II (LIFE15 ENV/IT/000423); it was originally (2015) proposed to monitor water
stress by UAV over a couple of fields, but was later decided to perform this monitoring action over
extended areas in extensive form through satellite images combined with UAV survey over a restricted
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area. Carlson [12] and Liou and Kar [13] present reviews of methods for estimating land surface
temperature (LST), soil moisture, and actual evapotranspiration (ETa) from satellite imagery; the project
decided to use in particular the Surface Energy Balance Algorithm for Land (SEBAL, [14]) whose main
output is the estimate of ETa, obtained from the surface energy balance, in which surface temperature
plays an essential role causing long-wave outgoing radiation that is measured by Landsat Thermal
Infrared Sensor (TIRS). LST is both an intermediate result of the ETa estimate procedure and a variable
from which crop water stress can be derived. A check of the resulting temperature was therefore
planned that motivated the UAV thermal survey. It was considered useful to plan at the same time a
chromatic optical survey, since it provides complementary information with higher resolution.

The present paper aims at describing the UAV survey characteristics and calibration, the comparison
between the UAV survey and satellite-derived temperatures over a maize field north of Ravenna (Italy),
providing a cross-validation of the two approaches and evidence of their primary merits, as well as an
assessment of the potential of freely available satellite imagery to estimate evapotranspiration and crop
water stress in the farmer perspective of precise agriculture implementation.

The present paper is structured as follows. Section 2 describes the study site, the crop and
field surveys, UAV and satellite imagery acquisition as well as ground truth information. Section 3
presents methods followed in the analysis of UAV and satellite images in order to obtain temperature,
evapotranspiration, and water stress values. Section 4 presents the results of the analysis and
comparisons for cross-validation. Section 5 presents a brief discussion about the utilization of results
for irrigation management and perspectives. Section 6 summarizes the conclusions.

2. Materials

2.1. Study Site

The study site is located in the Adriatic coastal plain, between the outlets of the Reno (44°35'N)
and Lamone (44°32'N) rivers, approximately 18 km north of the city of Ravenna in the Emilia-Romagna
region, Northern Italy (Figure 1).

The low-lying Ravenna coastal area has been historically affected by a widespread land subsidence
process due to the superposition of natural processes, mainly the compaction of Quaternary deposits,
and anthropogenic activities related to aquifer overexploitation, mechanical drainage, and gas
withdrawal from a number of deep reservoirs scattered inland and offshore [15,16]. A recent survey
of subsidence in the Emilia-Romagna plain carried out by the Regional Agency for Prevention,
Environment and Energy (ARPAE) through interferometric data processing has quantified the
subsidence of the study area over the period 2011-2016 being around 2-3 mm/year [17]. Combined
with sea level rise, land subsidence significantly increases the exposure to flood risk of coastal areas
and favors saltwater intrusion into the shallow coastal aquifer [18], seriously threatening groundwater
quality, fertility and productivity of agricultural soils, and wetland biodiversity.

A field was selected for the paper investigation in the Biomarcabo unit which is managed by
Agrisfera Cooperative according to the principles of organic farming. The field is located about 2.5
km to the west of the Adriatic coastline and is bordered to the north by the artificial embankment
of the Reno river. The field is subdivided by a dirt road into two land parcels: the north one has an
extension of about 16.5 ha and the south one of 12.2 ha. The mean elevation of the field is approximately
0.30-0.40 m above mean sea level (m a.m.s.l.). In the summer of 2018 the ditches of the field were
replaced by a subsurface drainage system consisting of perforated corrugated polyvinyl chloride
(PVC) pipes placed 0.80 m below the ground surface at 10 m interval, with slope 1:1000 towards
the interceptor ditch, located at the southern edge of the two parcels. By lowering the water table,
removing the excess water and leaching out the salt solutions from the upper horizons of the soil, the
drainage pipes actually separate the upper agricultural soil from lower layers, where brackish or saline
water is normally present [19]. During the crop growing season soil and groundwater characteristics
were monitored at the node P09 (Figure 1) by the wireless sensor network installed within the project.
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Figure 1. Location of the study area with unmanned aerial vehicle (UAV) survey area marker in
blue. North and south parcels are highlighted. Red squares are measure points in the area. Special
network nodes: P02 and P07 are also equipped with agro-meteorological stations; P09 detects soil
and groundwater properties. Orthophoto AGEA 2011 displayed as base-map is provided by Regione
Emilia-Romagna Geoportal. Grid coordinates are UTM-ETRS89 Zone 33T.

Soil properties in the area are extremely variable reflecting the sedimentary response of coastal
progradation in the form of alternating littoral dunes and interdunal depressions, filled with recent fine
sediments, mainly silt and clay, deposited in fresh swamp or lagoon and salt marsh environments [20].

The climate of the study area is Mediterranean, characterized by mild wet winters and warm to
hot dry summers [21]. The climate in the area features an average annual precipitation of 696 mm/year
(estimated by ARPAE [22] over the period 1991-2015) with a minimum in the summer season and two
weak peaks, the main one in autumn and the secondary one in spring. The mean annual temperature
is 14.1 °C with the coldest period in January, when the monthly average temperature is 3.4 °C, and the
hottest period in July with 24.2 °C. Rainfall in summer is episodic and highly variable from year to
year, so that a few irrigation events are normally necessary to obtain high yield from summer crops.

The area was the object of surveys and monitoring during the project period, autumn 2016 to
spring 2020. The monitoring action referred in this paper was carried out during the summer crops
growing season in 2019. It is highlighted that, after a very dry first quarter and a normal rainfall in
April, May was characterized by exceptionally high precipitations and by temperatures much lower
than normal [23]. Furthermore, exceptionally high temperatures, with maximum value close to 40 °C,
occurred in the last week of June due to a high pressure system located over Europe, accompanied by
hot, stable, and dry air intrusion of Saharan origin [24]. Local weather data are recorded by the two
agro-meteorological stations installed in the study area at nodes P02 and P07 (Figure 1).

Due to the aforementioned unfavorable weather conditions, sowing of maize in the field under
investigation was delayed until May 23. Maize (Pioneer P1517W, FAO class 600, 128 days growing
period to physiological maturity) was sown with row spacing of 0.75 m and seed spacing of 0.15 m
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along the north-south oriented rows. The maize plants started flowering in the penultimate week of
July and were harvested on August 24 at the dough stage, 94 days after sowing. The plants were cut at
a height of about 20-30 cm from the ground and chopped to produce maize silage.

Field observations were performed about once a week to monitor maize phenological
development. Maize growth stages were classified according to the BBCH (Biologische Bundesanstalt,
Bundessortenamt und Chemische Industrie) scale [25] with its associated decimal coding system.

The field plot measurements were integrated with satellite images to explore within-field spatial
variability in crop growth and final yield. Furthermore, optical and thermal images obtained from
UAV for a sample strip were used for field validation of satellite remote sensing.

2.2. Imagery Surveyed from UAV and Satellites

The reference area surveyed from sensors mounted on the UAV consists of a 64 m wide and
780 m long strip oriented from S-W to N-E (Figure 2). The total surveyed area is therefore equal to
5 ha and covers two different kind of crops: maize in the N-E field and soybean in the circular S-W
field. This paper aims to study the first crop. The area was in fact carefully selected as an optimal
compromise between the UAV’s flight autonomy and the coverage of a large portion of the studied
crops and habitats. Interferences of the UAV flight with other activities in the field area were also taken
into account, besides the compliance of the flight and the necessary authorizations. The UAV reference
area is the portion of territory where image cover and a planimetric precision of 5 cm are guaranteed
thanks to methods described in the following section.
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Figure 2. Reference area for UAV surveys is highlighted with a red polygon. The Landsat-8 grid of 30 X
30 m pixels at ground level in path 192 is overlaid in light blue. The 12 selected tiles discussed in this paper
are highlighted. The orthophoto is produced from images acquired on July 19 accurately geo-referenced
with 10 ground control points (GCPs) thermal target (a). Grid coordinates are UTM-ETRS89 Zone 33T.
The Reno river is visible at the NE end of the strip.
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The UAV that met the described requirements is an industrial grade quadri-copter, model Matrice
210 from manufacturer DJL This UAV has a dual-gimbal configuration that can handle the simultaneous
use of two sensors’ payloads.

By using a dual-gimbal UAYV, it was possible to acquire imagery in one single flight with both
sensors necessary for the experimental study over the surveyed area. It was therefore possible to
optimize the use of the UAV battery and to perform the flight in the shortest time window.

In fact, the defined area was surveyed from a UAV in precise dates during the whole agricultural
season from late spring (16 May 2019, first survey S01) to end of summer 2019 (4 September 2019,
last survey S09; Figure 3). The dates were selected in order to be as close as possible to Landsat-8
overpasses. Thanks to the availability of information on the satellite orbit, it was possible to anticipate
each satellite overpass and plan the UAV surveys accordingly. The surveys were then confirmed
accounting for weather forecasts and carried out only in clear-sky conditions.

l ‘ ‘ l Field
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™ o e * . . . . g -
£ z
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T

Figure 3. The calendar of survey activities and satellite passages. Grey and black dots represent surveys
or passages that for any reason resulted in not useful images (cloud cover, hazy sky at high altitude or
technical problems).

In order to obtain an accurately geo-referenced survey, 10 topographic ground control points
(GCPs) were properly displaced covering the whole study area. Appropriate positioning has been
crucial for consistent results, in particular since the study area is elongated [26]. GCPs placement
was also challenging due to the search for undisturbed locations during the whole season without
interfering with farming activities carried out in the fields. Each GCP location was then identified,
marked, and precisely located with GNSS NRTK instrument.

2.3. UAV Thermal and Optical Surveys

The first payload of the dual-gimbal UAV platform is a thermal camera, with technical specifications
properly chosen for the experimental study. The thermal sensor acquires brightness temperature
measurements within the spectral band from 7.5 to 13.5 pm. The camera is a DJI Zenmuse XT with
resolution equal to 0.3 MP, pixel size of 17 um, delivering thermal imagery with 640 x 512 pixels.
The chosen focal length for the survey is equal to 13 mm.

The flight was planned with a GSD of approximately 12.5 cm, flying at an average height of 95 m
above the surveyed surface.

Each flight was planned with a minimum overlap of 80% between subsequent images and a
sidelap of at least 65% between each track, with heading perpendicular to the main strip dimension.
In order to avoid blur movements in the acquired imagery, the UAV moved at a reduced speed and each
thermal image was captured only when the UAV was hovering, avoiding any undesired movement.

In order to be visible from the UAV platform, each GCP on the ground consisted of a custom-made
target, created using highly reflecting aluminum foils. Therefore, each target offered enough contrast
in the thermal band, compared to the ground temperature, becoming highly visible in the surveyed
imagery. Furthermore, the target overall dimensions (30 x 30 cm) were appropriately set accordingly



Remote Sens. 2020, 12, 2506 7 of 31

to the GSD of the planned survey. A white plastic square board with installed thermocouples was
placed aside the target for thermal camera calibration.

The second payload of the dual-gimbal configuration was a DJI optical camera with resolution
equal to 12 MP (4000 x 3000 pixels), with a pixel size of 1.6 pm. The focal length expressed in standard
35 mm equivalent sensor is 26 mm. Flying at an average height of 95 m, the resulting GSD for the
optical camera is equal to 3 cm.

2.4. Acquisition of Satellite Data

The time series of images acquired by the Landsat-8 in the period from 16 May to 5 September
2019 were used, testing their consistency for monitoring of crop growth and with thermal UAV data.

In the present analysis Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor
(TIRS) Collection 1 level-1 images were used for the study. Landsat Collection 1 products are made
publicly available by the U.S. Geological Survey (USGS) website: https://earthexplorer.usgs.gov/.
The images are already processed to a level-1 precision and terrain corrected product (L1TP), that
means radiometrically calibrated and orthorectified using GCPs and digital elevation model (DEM).
The Landsat products are delivered in GeoTIFF format, using World Geodetic System (WGS) 84 datum
and Universal Transverse Mercator (UTM) map projection (32 or 33 in the case under examination). The
two thermal bands (band 10 and 11 with central wavelength 10,895 and 12,005 nm in the order) capture
data with 100 m resolution but are delivered after resampling by cubic convolution to 30 m to match
OLI multispectral bands. Landsat-8 level-2 data, i.e., atmospherically corrected surface reflectance
data using the Land Surface Reflectance Code (LaSRC) [27] and Normalized Difference Vegetation
Index (NDVI), provided by USGS, were used to evaluate surface emissivity for methods employing
atmosphere effects corrections.

Technical features can be derived from official sensors handbooks [28,29], while image acquisition
dates are presented in Figure 3, along with the crop growth stage, expressed in the BBCH scale, detected
during the field surveys. Landsat-8 images acquired under clear-sky conditions were selected for
the analysis.

Sentinel-2 images are marginally used in this paper, but due to the higher passage frequency, they
gave extensive contextual information as field surveys provided detailed point-wise data.

A digital terrain model (DTM) is required by SEBAL. The DTM with spatial resolution of 5 m
produced for the AGROWETLANDS II project was used. It covers the area of interest; it was derived
from the National Cartographic Portal (http://www.pcn.minambiente.it/mattm/) and was integrated
with the topo-bathymetric survey carried out in 2016 by ARPAE [30].

2.5. Ground Temperature Acquisition for Validation

A Sentek Drill & Drop probe 60 cm long was installed at the northern edge of the southern parcel
for measuring soil properties during the growing season (P09 in Figure 1). Soil moisture, temperature,
and electrical conductivity sensors were placed at depths of 0.05, 0.15, 0.25, 0.35, 0.45, and 0.55 m
and measurements were recorded approximately every 15 min. Accounting for solar radiation, air
conditions, and precipitation measured at the meteorological station P07 (Figure 1), temperature
was hindcast at each sensor depth and extrapolated up to the soil surface with the numerical model
HYDRUS-1D [31], representing 1D evolution of water phases, liquid and vapor, and of temperature
through mass and heat balance equations.

Temperature was also monitored in several near water bodies: Valli di Comacchio at Bellocchio
outlet (data kindly delivered by ARPAE), Valle della Canna outlet, and Canale Destra Reno in proximity
of the sea outlet (data collected by AGROWETLANDS II project).

2.6. Irrigation Water Management

Water needed to fulfill the crop requirements for its full growth was supplied by above-canopy
sprinkler irrigation, scheduled by using the Smart AGROWETLANDS Decision Support System
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(SA-DSS) implemented within the project. The SA-DSS is mainly constituted by a wireless sensor
network for real-time monitoring of weather, soil, channel- and ground-water conditions [32] and by
a forecast model of crop growth, for which the AquaCrop model developed by the Land and Water
Division of FAO (Food and Agriculture Organization of the United Nations) [33,34] was adopted.

The field was irrigated twice; the first time on 3-7 July with 45 mm of water and the second
time on 30 July-3 August with 50 mm. During the growing period rainfall contributed with 161 mm,
the major amount concentrated in three events (42 mm around 27 May, 49 mm on 22 June, and 40 mm
around 13 July).

3. Methods

3.1. UAV Imagery Pre-Processing

Both thermal and optical imagery datasets were further processed using Structure from Motion
(SfM) techniques. In the first part of the SfM processing Global Positioning System (GPS) locations
recorded by the UAV platform were used as approximate coordinates for the camera positions. Then,
using coordinates obtained with greatest accuracy from GCP survey, the whole photogrammetric block
was georeferenced and mosaicked. For each planned survey in the crop season both thermal and
optical orthophotos were produced.

Having a good coverage and overlap between the whole dataset, at the end of the SfM processing,
the final mosaicked output products were delivered with 0.05 m for thermal imagery and 0.02 m for
the optical one, ready to be further processed in the experimental workflow. Figure 4 presents the
thermal orthomosaic acquired on 19 July by the end of stem elongation stage.

280800 281000

281200 281400

4939800
0086€6Y

4939600
0096€£6Y

4939400
ooveeey

Temperature (°C)

<30. 34. 36. 40. >49.

280800 281000 281200 281400

Figure 4. Thermal orthomosaic acquired on 19 July 2019. Reported temperatures are derived with a
constant 0.95 emissivity. Grid coordinates are UTM-ETRS89 Zone 33T.
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From the radiometric point of view, the images recorded by the thermal camera were corrected for
the atmospheric effects using the model implemented in the FLIR ResearchIR software (version 4.40).
At the same time, each image file format was converted from radiometric JPEG (RJPEG), as recorded in
camera, to a Tagged Image File Format (TIFF). Air temperature and humidity were derived from the
project meteorological stations. At a first step, the surface emissivity was assumed constant and equal
to 0.95. Analyzing the histogram of these first surface temperature values, it is possible to recognize a
bimodal distribution, roughly corresponding to vegetated and non-vegetated surfaces. In order to
better separate the two populations, the mixed pixels were cancelled using the edge detection Canny
method implemented in MATLAB environment.

The thermal camera was calibrated accounting for temperature measurements by thermocouples
on white plastic surfaces used as thermal reference points (TRPs) on ground surface, having measured
emissivity (0.84-0.86). The thermal camera calibration factor resulted equal to 1.049, leading to a
significant temperature overestimation in the absence of compensation. The two modal temperatures
were further corrected accounting for more realistic emissivity values of the two surface classes
(i-e., 0.98 for vegetation and 0.95 for bare soil). Calibration produces a temperature reduction of about
4.5 °C, of which 3 °C are due to thermal camera and the rest to soil and vegetation emissivity.

For the UAV surveys on bare soil (16 May and 4 September), the obtained surface temperatures
are in good agreement with those derived from field sensors in the soil and interpreted with HYDRUS
model. Figure 5 shows the simulation results starting from 11 May. The detail presented for Landsat
and UAV passage on 16 May shows that, despite the short delay, the bare soil surface temperature
increased 2.5 °C between the two passages under the effect of strong sunshine. The air temperature
over the same time interval varied only 0.5 °C and was 14 °C below ground surface temperature.
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Figure 5. HYDRUS simulation of soil temperature based on meteorologic conditions compared with
Sentek temperature measurements.

Despite efforts to reduce UAV flight in the shortest time window, UAV surveys and Landsat-8
passage are not perfectly synchronized. Therefore, UAV measurements are corrected accounting for
soil surface and air temperatures time variation. Corrections are presented in Table 1. The resulting
expected root mean square (r.m.s.) error for synchronous UAV values is estimated to be around
1.5°C: 1.2 °C for the calibrated thermo-camera residual error and 0.8 °C for synchronization correction,
assumed to be statistically independent.
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Table 1. Temperature statistics over tiles derived from UAV and Landsat-8 using single band method
uncorrected for atmospheric effects (SB), radiative transfer equation (RTE), and split window method
(SW). Statistical results of thermal surveys of the study area. Average (up row) and standard deviation
(low) over 12 tiles.

UAV Landsat-8

Surve Fy Tv Ts T;s DT? Tab Tsp TRTE Tsw NDvrI 4 w Ta®

Y I °c °Cc °Cc °Cc °c °C °C °C I g/em?  °C
0.00 305 305 212 235 237 013

S01 .00 13 13 25 168 4o 02 03 0.01 20 163
025 399 478 458 345 381 387 0.26

805 o011 16 16 11 MO 32 4n 03 04 0.03 30 31l
039 340 440 401 312 374 380 0.35

806 510 19 15 25 O 306 45 45 o7 0.04 &0 50.5
096 287 383 291 %7 297 303 0.67

S08 003 16 16 18 0 BT o5 04 06 0.04 36 280
0.00 337 337 340 354 381 017

509 .00 08 08 17 2 o5 02 06 0.00 25 256

2 DT is the correction term to compensate for time delay of UAV survey relative to Landsat-8 passage. Tz is air
temperature. © w is water vapor content in the atmosphere column derived from Moderate Resolution Imaging
Spectroradiometer (MODIS) images. ¢ NDVI (Normalized Difference Vegetation Index) presented here is evaluated
at the top of atmosphere (without atmospheric corrections).

3.2. Relation between UAV Measured LST and Landsat Derived One

The relation is assessed by comparing surface temperature value at the Landsat pixels with the
UAV derived temperature averaged over the corresponding 30 x 30 m tiles (see Figure 2 for tiles
identification). Comparison is restricted to 12 tiles corresponding to the central area of the maize field
(Figure 2) where irrigation scheduling under saline conditions was implemented by using the DA-DSS.
Parts of the UAV derived orthomosaic contained in the selected tiles are identified and statistics over
the tiles are evaluated.

Landsat TIRS data are distributed with 30 m resolution, even if original measurements are obtained
with 100 m resolution; temperatures in adjacent pixels are therefore not independent. Selected tiles
are scattered in the area to reduce the effect of non-independence and statistics over the set of tiles
disregard any effect of dependence.

The temperature analysis of UAV thermal survey is carried out to obtain vegetation cover and
the typical temperatures of vegetation and soil. The average surface temperature of the tile (Trg) is
evaluated by definition (arithmetic average of all pixel values). Typical temperatures of vegetation
and soil were obtained by cancelling the mixed pixels and obtaining in such way a clearly bimodal
distribution of temperatures over the tile (see Figure 6) from which the optimal threshold separating
cold vegetation from hot soil can be easily identified, 45 °C in Figure 6. This temperature value
is then used to count pixels below and above threshold, and hence to derive fractional vegetation
cover (Fy) and bare soil fraction (Fg), with Fy + Fs = 1. Typical temperatures of vegetation and
soil are preliminarily assumed equal to the two modal or peak values; average vegetation and soil
temperatures, Ty and T, are then derived so that they conform to the measured average surface
temperature, Equation (1) where T1g = LST, with minimal surface weighted discrepancy from modal
values Typ and Tsp, i.e., by minimizing Fs(Ts - Tsp)> + Fy(Ty - Typ)?, resulting in the correction
Equations (2) and (3):

Trs =FsTs + FyTy 1)

Ts =Trs + Fy (Tsp — Typ) (2)
Ty =Trs + Fs (Typ — Tsp). 3)
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Figure 6. Image of the tile (left) and corresponding temperature distribution before calibration and
after edge removal.

It is worth to remark that the tile image (Figure 6, left) contains much more information than the
temperature distribution, information relative to the spatial structure of the crop. Rows are easily
identified, as well as a row oriented structure of dense/sparse canopy cover that suggests that sowing
may be the cause of yield deficit. This information is lost at the tile scale.

Temperatures presented in Figures 4 and 6 and used in Equations (1)—(3) are temperatures before
calibration. Tg and Ty are then calibrated accounting for thermal camera calibration factor (1.049) and
the proper emissivity of soil and crop. Calibration and representation of proper emissivity produces a
temperature reduction of about 4.0-4.3 °C for the soil and 4.9-5.0 °C for the crop.

In this study land surface temperature is retrieved from Landsat-8 satellite data according to three
different methods: 1) by using Artis and Carnahan equation [35] as implemented in the Surface Energy
Balance Algorithm for Land (SEBAL) described in Section 3.3.1; 2) the radiative transfer equation based
method; and 3) the split window algorithm.

The simplest method 1) was implemented first with good results on water bodies” temperatures,
but when applied to land surfaces a significant gap remained between satellite and UAV derived
temperatures that has to be related to atmosphere effects. The complete and enlightening review [36]
published at Landsat-8 launch time, and the specific paper on the subject [37] guided us to the choice
of the two atmosphere correction methods better described in Sections 3.2.2 and 3.2.3.

3.2.1. LST from Artis and Carnahan Equation

In the first method surface temperature is derived from Landsat-8 TIRS band 10 by using Artis
and Carnahan equation [35] as implemented in the SEBAL model which we used for estimation of
actual evapotranspiration [38,39], not accounting for atmosphere correction parameters but only for
surface emissivity:

_ T
14 (ATg/c2) In(eng)

where Tp is the satellite brightness temperature, A is the thermal band central wavelength, and enp is

Ts 4)

the narrow band surface emissivity, representing the surface emissivity within the band range of the
satellite thermal sensor. ¢y = hc/kg where & is the Planck constant, ¢ is the velocity of light in vacuum
and kg is the Boltzmann constant.

Following Landsat-8 Handbook [28], determination of top of atmosphere brightness temperature
is a two-step process. In the first step level-1 digital number (DN) values of Landsat-8 band 10 are
converted to at-sensor spectral radiance values through Equation (5):

Li\m = MLQcal +AL (5)



Remote Sens. 2020, 12, 2506 12 of 31

where My, is the radiance multiplicative scaling factor for the given band provided in the image
metadata file, Ay is the radiance additive scaling term for the given band, available in the same file,
and Q,, refers to level-1 pixel value in DN. Then TIRS data can be converted from spectral radiance to
brightness temperature, which is the effective temperature viewed by the satellite under the assumption
of unity emissivity, by using the formula

K>

Tp= —————
K
in{ 1)

(6)

where L is the top of atmosphere spectral radiance and K; and K; are band specific thermal conversion
constants available from the image metadata file.
The following empirical equations are used in SEBAL model to evaluate ¢yp from OLI reflectance
data as a function of NDVI and Leaf Area Index (LAI) [40].
where NDVI > 0:
eng = min(0.97 + 0.0033 - LAL 0.98). (7)

For water, where NDVI < 0, eng = 0.99.

NDVI is an indicator of the amount and condition of green vegetation. In SEBAL model NDVI is
normally calculated from the top of atmosphere reflectance p of the red and near-infrared bands;
for Landsat-8 bands 4 and 5 in the order:

P5 — P4

NDVI = .
p5 + P4

®)
LAT is defined as the ratio of the total area of all leaves on a plant to the ground area represented by the
plant. It is an indicator of biomass and canopy resistance to vapor flux and is computed using the

following empirical equation [40]:
h’l( 0.69—559AVI )

LAl=————=
0.91 ©)
where the Soil Adjusted Vegetation Index (SAVI) is calculated as follows:
SAVI = (1 + Lgav) (p5 — pa)/ (Lsavi + p5 + ps) (10)

and Lgayy is a constant (a value of 0.5 is used).
This single band method for retrieving LST from Landsat-8 TIRS data uncorrected for atmospheric
effects is denoted as SB in what follows and Tsp is the derived LST (T in Equation (4)).

3.2.2. LST from the Radiative Transfer Equation Based Method

The second method used to retrieve LST from the Landsat-8 TIRS band 10 is based on the
inversion of the radiative transfer equation. According to Ottle and Stoll [41], a simplified radiative
transfer equation that indicates the radiance measured by a remote sensor at satellite level for a given
wavelength A can be expressed as:

L™ = 1) [eABA(Ts) + (1—e0)L3] + LT (11)

where A is the given wavelength; LY is the at-sensor radiance; B, (Ts) is the emitted radiance by a
black body at temperature Ts; 7, is the atmosphere transmittance from the surface to the top; ¢, is
the land surface emissivity; L/l\ is the downwelling atmospheric radiance and L; is the upwelling
atmospheric radiance. According to Planck law, the emitted radiance for a black body at temperature

Ts can be expressed in the form
1

B/\(Ts) = W

(12)
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with ¢; = 2hc? (1.19104 x 102 W um* m™2 sr™!) and ¢, = hc/kp (1.43877 x 10* um K). Therefore, Ts can be
obtained from B, (Ts) as in Equation (13):

C
T, = 2

(13)

Aln C1TAA +1
AS(Lsen—7) (1-£, )L ~L)

At-sensor spectral radiance L¥" is obtained for Landsat-8 band 10 as indicated in Equation (5).
In this study the atmospheric parameters needed for retrieving land surface temperatures, 7,, Lﬁ, and

LI\, are calculated for each Landsat-8 scene by using the National Aeronautics and Space Administration
(NASA) Atmospheric Correction Parameter Calculator developed by Barsi et al. [42,43], and available
online at https://atmcorr.gsfc.nasa.gov/.

A NDVI threshold method is used in this context to estimate land surface emissivity from
Landsat-8 satellite data, based on the following equation, as suggested by Sobrino et al. [44]:

a + byps, NDVI < NDVIg
£y =1 eyaPy 4 €5y (1= Py) + Cy,NDVIg < NDVI < NDVIy (14)
ey, NDVI > NDVIy

where a2, and b, are channel dependent regression coefficients and ¢y, and ¢g, are respectively
the vegetation and soil emissivities at wavelength A, estimated by using the values proposed by
Skokovi¢ et al. [45]. Landsat-8 level-2 data and surface reflectance derived NDVI were used in ¢,
evaluation. NDVIy and NDVIg represent the NDVI values corresponding to full vegetation and bare
soil and were set at 0.65 and 0.15, in the order. C, is a term which takes into account the cavity effect
due to surface roughness. It is evaluated by using the expression suggested in [46]:

Cr = (1-esp)evaF’ (1-Py) (15)

where F’ is a geometrical factor ranging between 0 and 1, depending on the geometrical distribution
of the surface; a mean value of 0.55 was assumed according to Cristobal et al. [46] and Yu et al. [47].
Py refers to the vegetation fraction and is calculated as follows:

_ NDVI-NDVIg
~ NDVIy - NDVIs

Py (16)
Py is then set to 0 for pixels with NDVI < NDVIg and set to 1 for pixels with NDVI > NDVIy.
This method is denoted as RTE in what follows and Tgrr the derived LST (T in Equation (13)).

3.2.3. LST from the Split Window Algorithm

The third used method is based on the split window algorithm proposed by
Jiménez-Mufioz et al. [48]. It uses data of both TIR bands and derives from the difference of brightness
temperature in the two bands an optimized corrective term to be applied to temperature derived from
band 10. The split window algorithm used in this study has the following mathematical structure:

Ts =Ti+co+c1(Ti - T/‘) + o (T; - T]')z + (c3 4+ cqw)(1 = em) + (c5 + cow)Ae (17)

where T; and T; are top of atmosphere brightness temperatures for the band i and j (in K) obtained
through Equations (5) and (6). For Landsat-8, these two bands are band 10 and 11 respectively. ¢, is
the mean land surface emissivity of the two bands and is calculated as ¢, = 0.5(81‘ + & ]-) ; Ae is the
emissivity difference given by Ae = (¢ —¢;). w is the total atmospheric water vapor content (in
g cm™2). ¢ to cg are coefficients derived by statistical linear regression performed on a simulated
dataset of brightness temperatures over different surface and atmospheric conditions. In the split
window algorithm given by Equation (17), the coefficients ¢ to c¢ take the following values as indicated
in [48]: —0.268, 1.378, 0.183, 54.30, —2.238, —129.20, and 16.40.
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The NDVI threshold method described in the previous subsection for RTE method is also used in
this case to derive the land surface emissivity from satellite data.

The total atmospheric water vapor content required for retrieving LST by this method was obtained
for each Landsat-8 scene from the Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra
level-2 Total Precipitable Water Vapor product (MODO05_L2, freely available at https://ladsweb.modaps.
eosdis.nasa.gov/search/), since the time of this satellite overpass over the study area is close enough to
the Landsat one.

This method is denoted as SW in what follows and Ty the derived LST (T in Equation (17)).

The difference of temperature obtained from Landsat-8 data by using different methods is widely
discussed in different papers [49,50] and is just documented in the present one. Our contribution is an
analysis of the effect of survey resolution, as it is clear from Figure 6 that ground temperature is far
from uniform on a 30 or 100 m grid element.

3.3. Actual Evapotranspiration and Crop Water Stress

The interest on temperature in agriculture is related to the fact that all biochemical processes
depend on temperature and, specifically for irrigation management, that it is a variable necessary to
evaluate evapotranspiration and crop water stress.

We have therefore finally made use of the Landsat derived temperatures to obtain actual
evapotranspiration (ETa) and water stress (WS) maps by using SEBAL. ETa is obtained from the surface
energetic balance with some information on the subdivision between latent and sensible heat fluxes.
The innovative component of SEBAL is the use of a near-surface temperature difference dT related to
the radiometric surface temperature T by a linear relation determined by two extreme conditions:

e ahot or dry pixel, representing zero ETa conditions, and
e acold or wet pixel, representing areas where ETa equals the potential value as LST equals air
temperature canceling sensible heat flux convected to the air.

SEBAL is not autocalibrating and ETa maps depend on absolute LST maps, in the sense that
if surface temperature is varied the energy balance items and in particular evapotranspiration are
changed consequently.

METRIC [51,52], otherwise, is provided with an internal calibration fixing two anchor points
where ETa can be evaluated, for instance, with the established and well-calibrated alfalfa-based formula
for reference ET (ETr; ASCE-EWRI equation [53]; FAO paper 56 [54]). In any case maps will depend on
how precisely anchor points satisfy conditions assumed for them, so that both approaches can be the
best depending on contextual conditions.

We have finally used the SEBAL model with the different methods described for retrieving LST
from Landsat-8 data (Equations (4), (13) and (17)) to obtain actual evapotranspiration and water
stress maps and verify how much maps depend on the temperature correction method to account for
atmosphere effects.

3.3.1. Surface Energy Balance Algorithm for Land (SEBAL)

SEBAL is a satellite-based image processing model with the main objective to provide estimates of
ETa at relatively high resolution from remotely sensed land surface temperatures. The major principles
of the SEBAL model are described in detail in [14,55,56].

An instantaneous value of the ETa flux (kg m=2 s~
calculated for every pixel of the satellite image at the overpass time as the residual of the surface energy
balance equation:

! or equivalently mm s~! of liquid water) is

AE+H=R,-G (18)

where AE is the latent heat flux and H is the sensible heat flux convected to the air, R;, is the net radiation
balance, and G is the sensible heat flux conducted into the ground. The latent heat flux represents the
amount of energy absorbed to maintain a certain ET rate.
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1. Net Radiation

The net radiation at the surface R is estimated quantifying all the incoming and outgoing
shortwave and longwave radiation components

R,=(1- a)RSl —Rpp + €oRpy (19)

where Rg| is the incoming shortwave radiation, Ry is the outgoing longwave radiation, Ry, is the
incoming longwave radiation, « is the surface albedo, and ¢y is the broadband surface thermal
emissivity.

The incoming shortwave radiation Rg| representing the direct and diffuse solar radiation flux
that actually reaches the Earth’s surface, is the principal energy source for ET and can be measured or
estimated assuming clear sky conditions, which is a prerequisite for a reliable evaluation from satellite
images, by using the following equation:

Rg) = Gse sin(f)drTsw (20)

where Gy is the solar constant value (1367 W/m?), § is the sun elevation angle contained in the metadata
file of Landsat imagery data, and d, is the inverse squared relative distance between the Earth and the
Sun depending on the day of the year.

The albedo at the top of the atmosphere arp4 is evaluated as the weighted average of spectral
reflectance over bands 1 to 7 of the Landsat-8 OLI:

aroa = Z (wrpa) (21)

where p, is the spectral reflectance of the band and w, is the fraction of the total solar irradiance in the
considered band. The albedo at the top of the atmosphere arp4 is then adjusted for the broadband
shortwave atmospheric transmissivity 7s,, as described in SEBAL manual [40], to obtain the surface
albedo. 74, is derived assuming clear sky conditions, in our case where land is at sea level 75,= 0.75.

The outgoing longwave radiation R} 4, that is the thermal radiation flux emitted from the Earth’s
surface to the atmosphere, is calculated by using the Stefan-Boltzmann equation

RLT = é‘oﬁT? (22)

where ¢ is the broadband surface emissivity, o is the Stefan—-Boltzmann constant (5.67 x 1078 W/m?/K*),
and Ts is the surface temperature in Kelvin. For surface temperature evaluation, in addition to
the SB method, we tested the use of Equations (13) and (17) which provide Ts values corrected for
atmospheric effects.

The following empirical equation is used in SEBAL to evaluate the broadband surface thermal
emissivity [40] on land, where NDVI > 0:

£0 = min(0.95 + 0.01 - LAI 0.98). (23)

For water, with NDVI < 0, ¢g = 0.985.
The incoming longwave radiation is the downward thermal radiation flux from the atmosphere,
which is calculated using the Stefan-Boltzmann equation

RLL = EuOTg (24)

where ¢, is the effective atmospheric emissivity and T is the near-surface air temperature. The following
empirical equation is used for &, [40]:

€a = 0.85(—In(7se)) % (25)
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where T, is the broadband atmospheric transmissivity given above.

Allen et al. [51], for calibration of METRIC, recommend to estimate T, in Equation (24) through
the temperature of a “cold pixel” which is a pixel selected from a wet, well-irrigated crop surface with
a complete vegetation cover (LAI > 4), since at that condition, H is generally small and near-surface air
temperature and surface temperature can be assumed to be similar.

2. Soil heat flux

Soil heat flux (G) is the rate of heat storage in the soil and vegetation due to conduction. In SEBAL
it is calculated through the ratio G/R; using the empirical equation proposed in [51,55] representing
values near midday:

G
= (Ts —273.15)(0.0038 + 0.0074a) (1 — 0.98 - NDVI4) (26)

n
where T is the surface temperature (K) and « is the surface albedo. For water bodies (NDVI < 0),
a mean value of 0.5 is assumed for the ratio G/R,,.

3.  Sensible heat flux

Sensible heat flux (H) is the flux of heat from the Earth’s surface to the atmosphere and is estimated
through similarity of turbulent diffusion of momentum and heat, i.e., by the aerodynamic resistance
equation transposed to heat, as proposed in [51,55]:

daT
H= puircpa (27)
a

where p,;, is air density (kg m™3), Cp is specific heat of air at constant pressure (1004 ] kg‘1 K1), and r,,
(s m™1) is the aerodynamic resistance to heat and/or momentum transfer between two near-surface
heights, z; and z; (usually 0.1 and 2.0 m above the displacement plane), between which temperature
difference is dT.

The assumed wind velocity vertical distribution u(z) in the elevation range between surface and
blending height zp, i.e., an elevation (usually 200 m) sufficient to retain wind velocity constant over the
area and independent from local surface roughness is

—) ~Vm(z) (28)

where k is the von Karman constant (0.41), u. is the friction velocity (m s71), and zoy, is the roughness
length for momentum transfer (m), that is calculated over the map as proposed in [57]:

Zom = exp(—5.809 + 5.62 - SAVI). (29)

Yi(z) 18 a correction term of the logarithmic velocity distribution accounting for stability conditions of
the low atmosphere that is 0 for neutral stability and in general depends on the ratio between z and
Monin-Obukhov length L [52].

The characteristic length scale L is defined as

_ Pair CPUETS

L= kgH

(30)
where g is the gravitational acceleration. At daytime L is usually negative and the boundary layer is
unstable; —L is in this case the height at which the buoyant production of turbulence kinetic energy is
equal to that produced by the shearing action of the wind; near the ground shearing action is dominant,
and for neutrally stable conditions L is not finite.
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The blending wind velocity is evaluated first using Equation (28) twice: the first time to evaluate
friction velocity at the meteorological station from the measured wind and the second time to obtain
blending velocity 1, from friction velocity at the station.

Then, since ¢/(z) through L depends on u. and Equation (28) is not explicit, an iterative repeated
evaluation procedure is activated to obtain the friction velocity map over the area. The procedure
starts assuming neutral equilibrium conditions (i) = 0), and evaluates u. with Equation (30), for given
blending velocity and surface roughness z,;,. During iterations, adjusted values are computed also for
H,L, ¢ and ry,:

. ()= Yy + e
ah uk
where ¢y, ) and yy,(,,) are the stability corrections for heat transport at heights z; and z;. Empirical
formulae for 1(z) are given by Allen et al. [51], as Equations (41)-(45).
The variable dT (K) is the vertical air temperature difference between the heights z; and zp.
In SEBAL a linear relationship is assumed between the near-surface air temperature difference dT and
the surface temperature Ts:

(31)

dT = a + bT, (32)

where the coefficients a and b are determined empirically for a given satellite image through the
so-called anchor pixels, the cold and hot pixels with assumed values of H. The cold pixel selected in
well-irrigated fields is used to anchor dT = 0 which implies that LST equals air temperature canceling
sensible heat flux convected to the air, H = 0. The hot pixel found in dry, bare agricultural soil, where
evapotranspiration is assumed to be zero, is associated with a value of dT such that AE = 0 and H
=R, — G. By comparing the conditions (Equation (32)) for the two anchor points, 2 and b can be
easily obtained:

a = —bTey (33)

paircp Thot (Thot = Teola)

and hence the following maps are obtained:

(34)

e AT from T, and Equation (32);
e H from dT and Equation (27);
e finally, AE from H and the energy balance (Equation (18)).

This is repeated until convergence is reached.

In this study the cold and hot pixels were manually selected for each image in agricultural fields
near the study area satisfying the indicated extreme conditions.

Once the instantaneous latent heat flux AE is calculated, it is used, by dividing for the latent heat
of vaporization A (J kg™!), to evaluate the instantaneous evapotranspiration E; (mm s~!) at the satellite
overpass time.

In order to transform the instantaneous ET to daily average ET, that is the form that normally
farmers use, for the specific day of satellite passage, ETr is evaluated at overpass time providing E, ;,
as well as at several moments (every hour) from which, by integration over the day, E; 4ay is obtained.
ETr estimates were performed by using the Penman—-Monteith formula for alfalfa through the Ref-ET
Reference Evapotranspiration Calculator [58].

The actual daily ET (Eg,) is evaluated by the following proportion and is usually expressed in
mm d

Eday/Er,day = Ei/Er,i (35)

assuming that the ratio between instantaneous ET and ETr is constant throughout the day.
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3.3.2. Crop Water Stress Index (CWSI)

Crop water stress can be assessed from surface temperature in different ways (see [59,60],
for instance). We used the Crop Water Stress Index (CWSI) introduced by Veysi et al. [61], that is
defined so as to make use only of surface temperature data:

CWSI = (TV - Tcold) / (Thot = Teold ) (36)

where Ty is the crop temperature, Tj,; is crop temperature under dry conditions and T,y under wet
conditions, i.e., the two extreme temperatures used in the SEBAL model. By its definition CWSI is
not sensitive to any linear transformation of temperatures, since the additive term is cancelled in
Equation (36) differences, and the multiplicative factor in the quotient: it has for instance the same
value when temperatures are measured in the Kelvin, Celsius or Fahrenheit scale. Since Ty is not
observable from satellite, T; is used, but care should be paid when canopy cover is low because this
substitution could overestimate water stress.

4. Results

4.1. Tile and Pixel Data

Fractional vegetation cover (Fy) and average temperatures (Ts) over 30 m tiles, as the one
presented in Figure 6, are obtained from the UAV survey by the averaging procedure described in
Section 3.2. At the same time, almost contemporary surface temperature maps were obtained with
methods presented in the same section from Landsat-8 images, distributed at 30 m resolution after a
resampling of the 100 m TIRS bands by cubic convolution (L1T processing level).

Table 1 presents the environmental conditions at UAV survey and Landsat-8 passage
(i.e., air temperature Ta and vapor content in the atmosphere w), UAV derived temperatures over the
12 investigated tiles (T, Ts and T;g), the temperatures of the corresponding 12 Landsat pixels (Tsg,
Trre, and Tspy), the temperature correction term DT (which must be subtracted from UAV observed
temperatures to compensate for the time lag between UAV and satellite acquisitions), and NDVI
obtained from Landsat-8 level-1 data (top of atmosphere). For each survey (S01 to S09) the average
value among the 12 investigated tiles/pixels is presented in the upper line and standard deviation of
the population (not of averages) in the lower line.

Table 2 presents average differences and average correlation coefficients among the sets of 12
corresponding values.

Table 2. Relation among contemporary tile average temperatures obtained by different methods under
the same meteorological conditions.

Tis Tsp TRTE Tsw
Tys —015+062 -016+0.62  —0.17 +0.61
Tsg  59+16 +1.00 +0.78 + 0.09
TRTE 27+16 -33+0.1 +0.78 £ 0.13
Tsw  17+17 —-42+04  —-09+03

The upper triangle shows correlation coefficients among pairs. The lower triangle shows differences (column-row).

The single tile/pixel values for UAV measured and satellite derived LSTs with the three methods
are presented in Figure 7 (left), as well as the combined fractional vegetation cover derived from UAV
thermal images and top of atmosphere NDVI retrieved from the satellite.

Effects of comparing data derived with different aggregation/disaggregation procedures are:
(1) the variability of temperature among tiles/pixels is significantly lower in the Landsat pixels than
in UAV tile averaged data; compare in Table 1 standard deviations in the second line of each survey;
(2) contemporary tile temperatures derived from UAV and from Landsat-8 with any single method are
very poorly correlated (Table 2, first line), whereas correlation between pixel temperatures retrieved
from satellite with the different methods is at least moderate.
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Figure 7. Empirical correlation between Landsat and UAV derived temperatures (left), and between
Landsat derived NDVI and UAV derived vegetation cover (right). Different atmosphere corrections
are tested to relate top of atmosphere and land surface temperatures (left). NDVI is evaluated either
using top of atmosphere (TOA) data, or level-2 surface reflectance data (SR).

We interpret the absence of any correlation among UAV and satellite derived pixel temperature as
the effect of aggregating actual variations of surface temperature, on one hand, and on the other as the
effect of the convolution algorithm used to transform data from 100 to 30 m resolution; one responds to
actual variation in prototype, the other is a mathematical artifact with poor connection with processes
occurring at 30 m resolution.

The moderate correlation among SW temperatures (Table 2, last column) and those derived from
the other two methods is presumably due to the combination of small variability in pixel temperatures
and different methods of corrections. SB and RTE methods, which use either no correction or a constant
correction over the image related to environmental conditions of the moment, show unitary correlation
and almost constant difference.

Temperature derived from Landsat TIRS data with SB, RTE, and SW methods (Tsp, TRrrE,
and Tgw) are compared among each other and with LST derived from the UAV thermal camera (Tig),
after correction for non-synchronous observation with term DT in Table 1.

Since there is no correlation between contemporary temperatures derived at 30 m tile/pixel scale
from UAV and Landsat data, only temperatures averaged over the 12 tiles/pixels are considered
significant and compared.

Differences of several pairs remain significant (see Table 2, lower triangle). We can separate the
comparison of different methods to derive temperatures from Landsat-8 TIRS measurements from the
comparison with UAV measurement averages. SW method gives the highest temperatures, RTE the
central ones, and SB the lowest. UAV average measurements still exceed the highest satellite derived
temperatures by more than measurements uncertainty. We estimate that this is partly due to some
residual variance in the average among surveys, but a difference is also due to emissivity assumed
for the surface. In the analysis of UAV data, emissivity was 0.95 for soil and 0.98 for vegetation; in
Equation (14) the two parameters representing the same variables are 0.971 and 0.987, plus an additive
term and two variable bounds. In any case the difference is around 0.02, that according to Equation (4)
for a brightness temperature around 305 K (30 °C) causes a surface temperature variation of 1.4 °C,
systematically reducing the observed differences.

Therefore, the difference between UAV and SW can be interpreted, as mainly due to the systematic
difference of the assumed surface emissivities (1.4 °C of 1.6 °C).

The correlation coefficient of average values among tiles/pixels along the season (i.e., among
columns of Table 1) is high, never descending below 0.85, or below 0.94 if only Landsat derived data
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are considered, and this confirms that an average over 12 tiles/pixel can be considered significant and
used for further considerations.

Soil and vegetation temperatures result highly different, the average difference of peak
temperatures being around 12 °C and difference between class averages around 9 °C. This allows to
distinguish vegetation from soil and to evaluate Fy in all tiles and surveys.

The good correlation between NDVI, derived from Landsat-8 OLI sensors at 30 m resolution,
and Fy evaluated from UAV survey over corresponding tiles is remarkable (see Figure 7, right) and
supports the argument that the poor correlation of temperature is due to the difference in acquisition
and distributed image pixel.

The highest temperatures were measured by UAV; temperatures estimated by the SW, RTE, and
SB methods are progressively lower, as shown in Table 2. The greatest differences occur in May and
June, whereas at the end of the season difference are lower.

If we restrict comparison to UAV, RTE, and SW the differences can be however interpreted as due
to systematic and random errors, separately of the order of 1 °C. Discrepancies between RTE and SW,
based on the same information source, are normally lower than 1 °C.

Contemporary temperature has been measured also in the water bodies mentioned in Section 2.5.
Since all these temperatures are measured in channels narrower than TIRS pixel, Landsat derived
values are quantified for a wide upstream water body and compared with measured spilled water
temperatures. Eleven reliable comparisons are obtained, and their statistics presented in Table 3.

Table 3. Relation among contemporary water bodies temperatures Ty obtained on various dates by
different methods. The upper triangle shows correlation coefficients among pairs. The lower triangle
shows differences (column-row, °C).

Tw Tsg TRTE Tsw
Tw +0.90 +0.91 +0.94
Tsg  +1.0+16 +0.92 +0.96
TrTE -1.7+16 -27+19 +0.98
Tsw -23+15 -33+13 -0.6+1.0

For these conditions only SB (uncorrected) estimates are lower than observed temperatures;
RTE and SW corrected temperatures result around 2 °C higher than observed, but it must be remarked
that, in summertime late morning, breeze and induced mixing are low, and some thermal stratification
of the water body must be expected. Water is spilled from the water body almost uniformly along
the vertical; average water body temperature 2 °C lower than surface temperature observed by the
satellite might be real. Differences induced by the atmosphere correction methods are in this case
weaker, ranking among methods remaining however the same: SB gives the lowest values, RTE the
median, and SW the highest. Since satellite temperatures are evaluated over wide uniform surfaces all
temperatures are mutually well correlated.

4.2. Surface Temperature Maps

Figure 8 shows the temperature distribution derived from SB method (the simplest one) at the
experimental field and two dates. This image is for the end-user, who is presumably more interested in
retrieving some information about his field than discussing precision of measurements. It represents
also visually the resolution and the features that can be monitored from Landsat images. The S and
W parts of the area are characterized by more permeable sandy soils that dry up in shorter time and
become rapidly hot in dry conditions (3 July). After an irrigation event (4 August) the same area is
uniformly cool. Based on these images and other considerations the farmer may decide to irrigate with
variable intensity the portions of the field. This was not done in 2019. The farmer should, however,
be informed that presented values should be incremented around 5 °C to represent the true surface
temperature at noon.
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July 3, 2019 August 4, 2019
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Figure 8. Temperature distribution over the experimental field derived with SB method for a dry (left)
and wet (right) condition.

The correction methods represent radiative transfer of the atmosphere in different ways, but on a
clear sky day the effect is almost constant over distances of dozens of kilometers, so that the correlation
of the different satellite derived LST maps is very high and, for most uses, as for instance water stress
identification, they result almost equivalent.

Figure 9 shows temperature maps on 3 July derived with RTE and SW methods over a
10.86 x 10.38 km wide area. The relation between temperatures in any two maps of this area,
including the not presented SB derived map, is described in Table 4. Average differences do not deviate
substantially from what is observed for dozens of tiles or water bodies; correlation is higher because
results are derived by different analytical models based on the same image and no measurement
uncertainty is introduced.

Table 4. Statistical relation among temperature maps obtained by different methods from a single
Landsat-8 image (3 July). The upper triangle of the represented table shows the correlation coefficients
between map pairs; the lower triangle presents average and standard deviation of pair difference

(column-row, °C).

Tsp TRrTE Tsw
Tsp +0991  +0.984
TrTE 47+16 +0.994

Tsw  —54+16 -07+05

In synthesis Landsat-8 derived temperatures uncorrected for atmosphere effects (5B method)
underestimate UAV thermal camera measurements, whereas (see Tables 2—4), even if some differences
remain for temperatures corrected according to methods RTE and SW, they do not differ between
each other by more than 1 °C, RTE providing 0.6-1.0 °C lower average temperatures, and the major
systematic recognized difference between our UAV measurements and SW derived estimates is the
difference of surface emissivity assumed in the conversion radiance-to-temperature.

Figure 9 shows that Landsat-8 derived maps are, however, highly correlated; they identify the
same hot or cool areas at the patterns might be judged equal; the effects of these differences on most
indicators used for detection of water stress conditions might be disregarded, as explained in the
next section.

Paying attention to small-scale effects, RTE images are more regular whereas some noise in the
form of stripes is evident in SW images, that derives from the utilization of both TIRS bands; this
evident feature balances the lower SW average discrepancy from UAV measurements.
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Figure 9. Land surface temperature (LST) maps derived with RTE and SW methods from the 3 July
Landsat-8 images.
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4.3. Evapotranspiration and Water Stress Maps

Uncorrected SB temperatures are obviously the most simple to retrieve since the parameters
obtained from Landsat-8 data are sufficient, whereas RTE and SW methods require more information
(atmospheric transmittance, atmosphere upwelling and downwelling radiance; total atmospheric
water content and surface emissivity difference between bands 10 and 11), so that, if the temperature
pattern is the objective of the analysis, this method can be preferred. If ETa values are requested one
should pay attention to the systematic underestimation of temperatures of this method and to the
associated overestimation of ETa.

Daily ETa estimates obtained from SEBAL using SB temperatures are presented in the left column
of Figure 10 for dates 3 July, 4 August, and 20 August 2019.
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Figure 10. Evapotranspiration and water stress maps at and around the survey field on date 3 July,
4 August, and 20 August obtained from Surface Energy Balance Algorithm for Land (SEBAL) using
temperatures derived from SB method.
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The first date, 3 July 2019, is short before an irrigation event and represents a dry condition of
the experimental field when the estimated maize root depth was 0.76 m; the second date is short
after an irrigation event and represents a wet condition; the last date represents conditions just before
harvesting of maize at dough stage, when root depth exceeded 1 m, the field was not irrigated since
20 days and soil humidity was not far from the lower readily available water (RAW) limit. The right
column of Figure 10 presents temperature maps at the same dates in the form of the Crop Water Stress
Index that is defined so to make use only of surface temperature data. The hot and cold points are the
same for both columns.

The round field on the left of the maize field is an irrigated soybean field, that remains transpiring
and cool all along the growing season. The other cool areas are cane thickets, water bodies or
woodland areas.

Figure 11 shows the maps of ETa estimated with SEBAL and RTE (left) and SW (right) corrected
temperatures. For comparison the correspondent map obtained from SB method is the top-left one
in Figure 10. Patterns are quite similar, and correlation is very high, but a careful comparison will
show that evapotranspiration amount is decreasing from SB down to SW, in the reverse order of
temperatures. In fact, the higher is the temperature, the higher is the sensible heat flux from land
surface to the atmosphere and the lower is latent heat flux necessary to balance net radiation minus
ground heat flux. The daily ETa on 3 July 2019, averaged over the area presented in Figures 10 and 11,
ranges from 5.68 mm/d (SW) to 6.09 mm/d (SB) and detailed comparison is presented in Table 5.
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Figure 11. Evapotranspiration around the survey field on date 3 July obtained from SEBAL with RTE
(left) and SW (right) correction methods of atmosphere effects on LST.

Table 5. Comparison of actual evapotranspiration (ETa) estimated over the area presented in Figures 10
and 11 with SB, RTE, and SW methods based on 3 July 2019 Landsat scene. Correlation coefficient is
presented above the diagonal and mean differences below it (mm/d, column minus row entries).

Esp ERTE Esw
Esp 0.999 0.991
ERTE 0.260 0.992

Esw 0409  0.149

CWf6l is a linear transformation of temperature, it is therefore perfectly correlated with temperature,
whichever is its distribution. The methods used to correct top of atmosphere temperature to account
for atmosphere effects produce an almost linear transformation of the uncorrected temperatures.
Therefore, CWSI or temperature pattern for different correction methods are practically identical and
are not presented.

The relation between temperature and evapotranspiration is more complex, even if evident from
Figure 10. Over a small and homogenous area, the correlation is strict, whereas, extending the area
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over which correlation is calculated or when the vegetation status/cover is variable, the correlation
coefficient declines toward zero (Table 6).

Table 6. Correlation coefficients between SB temperature and ETa over the experimental field and areas
represented in Figures 9 and 10.

Date Northern Parcel ~ Southern Parcel  Entire Figure 10 Entire Figure 9
03/07/19 —-0.94 -0.60 -0.61 -0.37
04/08/19 -0.84 -0.79 -0.63

Negative correlation (intrinsically dry areas are hot and wet areas cold) is very high only in the
case of uniform conditions, as obtained with single crop under uniform growth conditions (i.e., in the
northern parcel). The southern parcel suffered during the end of June heat wave, crop development
was very irregular at the beginning of July and recovered partially in the two following months.
Under different surface conditions, high temperature alone is not a good quantitative indicator of
low evapotranspiration.

5. Discussion and Perspectives

Having verified that temperatures can be retrieved from satellite images with sufficient reliability,
the scheduled goal of the experiment is achieved; moreover, derived actual evapotranspiration seems
reliable; we can therefore forecast a non-academic implementation of the technique. Regarding the
perspectives we would like to discuss briefly how the results can help the end-users (i.e., the farmers).

According to the principles of precision agriculture, a farmer may use any water stress indicator,
as high CWSI value and/or low ETa, to plan irrigation according to crop need within the limit of soil
storage capacity, and/or accounting for the excess water flow. Two problems are evident:

e the long revisit interval of Landsat-8 (see Figure 3) and the frequent presence of cloud cover
or atmospheric haze, which reduce dramatically the quality of satellite observations, limit the
temporal resolution of useful images (around two useful passages per month) compared to
irrigation frequency (one to three events per month); as a consequence the probability of not
having the necessary information, when one needs it, is relevant so that the present technique,
when used for irrigation management, may lead to disappointment;

e the fact that soil storage capacity, groundwater conditions and groundwater dynamics should be
known with a balanced reliability; soil in particular is not changing quickly so that information
about its properties can be cumulated from a sequence of maps under several hydrologic conditions.

The relevance of the first problem can be significantly reduced when Sentinel-2 images can be
used. In fact, as a consequence of shorter revisit interval (10 days), the presence of two satellites
moving along the same orbit in phase opposition and of some sidelap between tracks, the time interval
between passages is 2-3 days and the number of useful images is 7-8 per month during dry periods.

A useful index is the Normalized Difference Moisture Index (NDMI) [62], which is based on the
effect of water content in canopy tissues on reflectance in bands near-infrared (NIR) and shortwave
infrared (SWIR1) and is evaluated similarly to NDVI but with bands 5 and 6 for Landsat-8 and bands 8
and 11 for Sentinel-2. Figure 12 presents the distribution derived from almost contemporary passage
of the two satellites on 3 July 2019. Landsat-8 map is obtained on demand from USGS. Sentinel-2
SWIR image with 10 m resolution was obtained after applying the super-resolution method described
in [63] and integrated into the Sentinel Application Platform (SNAP) developed by the European Space
Agency to increase the 20 m resolution of band 11 (SWIR1) to the highest resolution of 10 m.
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Figure 12. Normalized Difference Moisture Index (NDMI) maps derived from Landsat-8 with 30 m
resolution (left) and from Sentinel-2 with 10 m resolution from 3 July 2019 near-infrared (NIR) and
shortwave infrared (SWIR1) images.

NDMI interpretation requires some experience, since it is a significant moisture index only when
vegetation is dominant, whereas it provides negative values for bare soil and water bodies so that when
canopy cover is low the result is a weighted combination of soil and vegetation proper values. The
effect of different resolution is evident. The correlation coefficient of the two images in Figure 12 is 0.8,
because of the resolution difference and of a different evaluation of the index in the river Reno, that does
not depend on the different central wavelength and bandwidth of Landsat band 5 and Sentinel band
8 (having 10 m resolution), because it remains unaltered if Sentinel band 8a is used (having 20 m
resolution), which is practically coincident with Landsat band 5. The correlation coefficient between
USGS NDMI and Egyy is high (0.90 in the northern parcel) and similar to the correlation between CWSI
and Egy.

The two water stress indexes, based on totally different physical bases and information, provide
for crop water stress the same information (compare the upper right image in Figure 10 and the left
image of Figure 12).

In the preliminary application the maps of water stress indicators (at least a dozen per year) will
be easily used to recognize recurrent water stress patterns and under which meteorological conditions
they appear, so that the farmer can analyze which are the most plausible causes of water stress,
and which is the best solution for the specific case. In this preliminary phase the water stress spatial
and temporal pattern is the most relevant information, whereas the exact intensity is related to the
specific meteorological history and not easily utilized in the near future. The simplest solution will be
probably the best one in this phase.

In order to upgrade the utilization of the thermal and water stress data they have to be related
to properties that can be derived from OLI bands data, optical and infrared, that are obtained with
greater spatial and temporal resolution. Sharpening of thermal data by fusion with short wave data
has excellent perspectives. Improved observation capabilities can be provided also by recent and
upcoming mini- and nano-satellite constellations, which are able to provide more frequent overpasses.
In particular, the ConstellR technology seems promising for the monitoring of land surface temperature
(http://www.constellr.space).

Higher spatial resolution will help the characterization of soils, and one map per week
combined with pointwise monitoring of weather and soil conditions will be optimal for irrigation
decisions. For operational irrigation scheduling purposes, satellite derived distributed estimates can
be used in conjunction with point-wise monitoring of soil and meteorological conditions and with
agro-hydrological model, through data assimilation aiming to improve prediction of distributed soil
water content.
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6. Conclusions

The UAV thermal images were calibrated by comparison with temperature measured at TRPs and
validated by comparison of a) temperature extrapolated at soil surface from measurement in the soil
and b) temperature measured at near water bodies. Resulting temperatures are affected by a measured
rm.s. error around 1.5 °C; maps with very high resolution (5 cm) can be obtained.

Soil and vegetation temperatures result highly different, with the average difference being around
9 °C and the soil being warmer; this allows to distinguish vegetation from soil and to evaluate
vegetation cover. The vegetation-air temperature difference is also high in the late mornings of late
spring or early summer (up to 9 °C), making uncertain which is the average land surface temperature
satellites do observe.

Temperatures derived from Landsat TIRS data, provided with resolution 30 m, according to SB,
RTE, and SW methods were compared among each other and with LST derived from the thermal
camera data averaged over tiles corresponding to Landsat pixels. Some differences are significant.
In particular, neglecting atmosphere scattering of surface thermal radiation, SB method underestimates
systematically the real LST.

There is no correlation between contemporary temperatures derived at 30 m tile/pixel scale from
thermal camera and Landsat derived temperature, since the real resolution of TIRS images is 100 m.
Therefore, only the comparison of temperatures averaged over several corresponding tiles and pixels
is significant.

The good correlation between NDVI, derived from OLI sensors at 30 m resolution, and Fy assessed
over corresponding tiles is remarkable, and proves that averages over ground tiles corresponding
to satellite acquisition pixels are significant and that the correspondence NDVI-Fy is good and
almost linear.

Over the summer season the highest temperatures were measured at land surface level by the UAV
mounted thermal camera; temperatures estimated by the SW method were 1.7 °C below measurements
on average; those estimated by the RTE method were 2.7 °C below measurements, and those estimated
by SB method (without atmosphere correction) are 5-6 °C below measurements.

Different surface emissivity values assumed in UAV and Landsat-8 radiance to temperature
transformation explain an average difference of 1.4 °C (i.e., most part of the observed difference
between UAV and SW derived temperatures).

SW temperatures show some noise in the form of stripes, which is not accounted in averages.
RTE estimate may be considered within measurement error range and finally the two correction
methods produce reliable results.

Differences are essentially due to different corrections of the atmosphere effects that are not
significantly variable at scale of 10 km. Correlation among satellite derived temperature estimates over
such areas are evaluated and are variable between 0.984 and 0.994, showing that almost exact linear
relations hold among them; the relations are not far from a pure translation.

The pattern of CWSI is practically independent from the correction method. LST pattern as well
as the related evapotranspiration are therefore affected by minor errors and are reliable and useful for
irrigation management. In order to obtain quantitatively correct temperatures and evapotranspiration,
methods correcting for atmosphere effects, as RTE or SW, should be used.

Similar information regarding crop water stress can be obtained from NDMI, based on bands that
are provided by both Landsat-8 and Sentinel-2, which can be retrieved usually every 4-5 days, and can
be used either directly or combined with thermal indicators to suggest irrigation practice.

Combination and assimilation of point-wise monitoring and agro-hydrological modeling with
extensive satellite monitoring provide excellent perspectives for the near future.
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