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Abstract: The vertical foliage profile (VFP) and leaf area index (LAI) are critical descriptors in
terrestrial ecosystem modeling. Although light detection and ranging (lidar) observations have been
proven to have potential for deriving the VFP and LAI, existing methods depend only on the received
waveform information and are sensitive to additional input parameters, such as the ratio of canopy
to ground reflectance. In this study, we proposed a new method for retrieving forest VFP and LAI
from Ice, Cloud and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS)
data over two sites similar in their biophysical parameters. Our method utilized the information
from not only the interaction between the laser and the forest but also the sensor configuration,
which brought the benefit that our method was free from an empirical input parameter. Specifically,
we first derived the transmitted energy profile (TEP) through the lidar 1-D radiative transfer model.
Then, the obtained TEP was utilized to calculate the vertical gap distribution. Finally, the vertical
gap distribution was taken as input to derive the VFP based on the Beer–Lambert law, and the LAI
was calculated by integrating the VFP. Extensive validations of our method were carried out based
on the discrete anisotropic radiative transfer (DART) simulation data, ground-based measurements,
and the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product. The validation
based on the DART simulation data showed that our method could effectively characterize the VFP
and LAI under various canopy architecture scenarios, including homogeneous turbid and discrete
individual-tree scenes. The ground-based validation also proved the feasibility of our method:
the VFP retrieved from the GLAS data showed a similar trend with the foliage distribution density
in the GLAS footprints; the GLAS LAI had a high correlation with the field measurements, with a
determination coefficient (R2) of 0.79, root mean square error (RMSE) of 0.49, and bias of 0.17. Once the
outliers caused by low data quality and large slope were identified and removed, the accuracy was
further improved, with R2 = 0.85, RMSE = 0.35, and bias = 0.10. However, the MODIS LAI product
did not present a good relationship with the GLAS LAI. Relative to the GLAS LAI, the MODIS LAI
showed an overestimation in the low and middle ranges of the LAI and a saturation at high values
of approximately LAI = 5.5. Overall, this method has the potential to produce continental- and
global-scale VFP and LAI datasets from the spaceborne lidar system.
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1. Introduction

Forest canopies play a vital role in determining the energy cycle, regulating the climate,
and providing habitats for various species; most of these functions are affected by foliage respiration
and photosynthesis [1–3]. Therefore, it is essential to quantitatively describe the foliage in the canopy.
The leaf area index (LAI) and vertical foliage profile (VFP) are two key canopy structure parameters
that quantify the distribution of foliage in the horizontal and vertical directions, respectively. Accurate
estimation of the LAI and VFP is essential for promoting understanding of the role of forest canopies
in terrestrial ecosystems [4–6].

Due to the importance of the LAI and VFP, various efforts have been made to estimate them
from a variety of data sources. Passive remote-sensing data are some of the broadest data sources for
LAI estimation because of their easy availability and global observation capabilities [7–11]. However,
the LAI from passive remote-sensing data suffers from some limitations. For example, the LAI tends
to saturate in dense forests because of the limited penetrability of sunlight [12–14]. In addition,
passive remote-sensing data do not include detailed vertical measurement information, which limits its
application areas, such as VFP inversion. In contrast, measurements from light detection and ranging
systems (lidar) have good penetration ability and can provide detailed vertical observations from the
top of the canopy to the ground. The above reasons promote the application of lidar observations
to forest structure parameters [15–17], especially the LAI and VFP estimations [18–28]. In general,
lidar systems can be classified into three types depending on the platform, including terrestrial,
airborne, and spaceborne lidar. Due to the limited spatial coverage, terrestrial and airborne lidar
are only suitable for small- or middle-scale research. The spaceborne lidar has global observation
capabilities, which supports its utility as a data source for global-scale research.

Existing spaceborne lidar systems include the Geoscience Laser Altimeter System (GLAS) on
board the Ice, Cloud and land Elevation Satellite (ICESat), ICESat-2, and Global Ecosystems Dynamics
Investigation (GEDI), of which the ICESat GLAS is the most widely used spaceborne lidar system
because it is the first spaceborne lidar for Earth observation. More importantly, the office of ICESat
GLAS can provide free and rich datasets corresponding to the lidar observation, which makes it an
ideal data source for estimating the LAI and VFP at the global scale [23–28]. Meanwhile, methods that
serve to estimate the LAI or VFP using GLAS data come into rescue. Currently, two types of method
have been developed in accordance with GLAS data to estimate the LAI or VFP: empirical methods and
physical methods. The empirical methods were developed based on a statistical regression relationship
between the GLAS-derived metrics and field-measured LAI [23,24]. Although these empirical methods
are easy to implement and understand, they cannot be free from the need for the associated field
data. Thus, this type of method is not adapted for application in large-scale LAI mapping because the
empirical relationships usually vary with locations, species, canopy structures, etc.

Physical methods, which are constructed around the gap fraction obtained based on radiative
transfer theory [25–28], open the door to large-scale LAI or VFP mapping using lidar data. For example,
the LAI and VFP have been successfully retrieved over the entire state of California based on a
geometric optical and radiative transfer (GORT) model [25]. By summarizing the current physical
methods [25–28], we find that all methods are constructed depending on the received waveform
information. However, this type of method has a limitation, that is, a ratio of canopy and ground
reflectance needs to be set; the usual practice is to set a constant value for all GLAS measurements,
such as 2.0 [27,28]. Although it is simple to operate, this strategy can introduce error because the ratio
value often varies for different sites or even within sites due to different environmental conditions.
In addition, a previous study concluded that the variation in this ratio impacts model performance [18].
At present, no one has tried to develop methods from other perspectives, such as using the transmitted
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energy profile (TEP). The TEP is an intuitive representation of the distribution density of forest canopy
components along the lidar observation direction, which may be a new perspective for estimating the
LAI and VFP.

The interaction between the laser and vegetation structure should be understood for better use of
lidar measurements in estimating forest structure parameters. This reason drives the development of
lidar modules in radiative transfer models (RTMs). Examples include FLIGHT [29], Digital Imaging
and Remote Sensing Image Generation (DIRSIG) [30], RAYTRAN [31], LIBRAT [32], Forest Light
Environmental Simulator (FLiES) [33], and the Discrete Anisotropic Radiative Transfer (DART) [34,35].
The lidar module in the DART model has now been extended to enable simulations of lidar sensitivity to
different scene elements (e.g., vegetation, urban, and atmosphere) and sensor configuration (e.g., GLAS).
Its performance in modeling lidar has been proven in the radiation transfer model intercomparison
(RAMI) project [36]. Therefore, the lidar module in the DART model is an ideal tool for evaluating the
constructed inversion methods based on the lidar data.

In this study, we proposed a new method for retrieving VFP and LAI free from the need for
the ratio of canopy and ground reflectance—a major limitation with the existing methods that had
not been addressed so far. First, we derived the TEP from the GLAS data based on the radiative
transfer theory, which in turn was used to calculate the vertical gap distribution. Then, the obtained
vertical gap distribution was utilized as an input to calculate the VFP based on the Beer–Lambert
law, and the LAI could be obtained by integrating the VFP information. Next, we comprehensively
validated the results with various realistic structure scenes (i.e., DART model) and field measurements
(i.e., Tracing Radiation and Architecture of Canopies (TRAC) measurements), and the accuracies
and sensitivities of our method were analyzed and discussed. Finally, we implemented our method
to create footprint-level LAI over Heilongjiang Province, and comparative analysis was conducted
between the GLAS LAI and Moderate Resolution Imaging Spectroradiometer (MODIS) LAI products.

2. Materials

2.1. Study Area

Our study was conducted in two study areas, that was sites A and B as shown in Figure 1. Site A
is Heilongjiang Province (43◦25′−53◦33′N, 121◦11′−135◦05′E), which is located in northern China
(Figure 1a). Heilongjiang is a land of varied topography, with the average elevation varying from
200 m to 350 m. The forest survey in 2005 reported that Heilongjiang Province with forestry land area
was 23.86 million hm2, and the forest volume was 1.432 billion m3, the province’s forest coverage was
as high as 41%; more than 60.4% of the forests were middle and young forests with an average diameter
at breast height (DBH) of 12.8 cm [37]. The dominant forest types include larch (Larix gmelinii (Rupr.)
Rupr.), birch (Betula platyphylla Suk), and scotch pine (Pinus sylvestris var. mongolica); the proportion of
these three forest types is about 50% [38]. GLAS campaigns of forest over this study area were used to
conduct LAI inversion; here, we termed it province-level LAI inversion.

Site B is the Saihanba National Forest Park (42◦24′N, 117◦15′E) located in Heibei Province,
China (Figure 1b), which is state-owned and managed by the government. This park is the largest
artificial forest in the world and serves as an important forest service research site in China. The climate
is a temperate continental climate, with an average annual temperature of –1.2 °C and an average
annual rainfall of 452 mm. The terrain is complicated, with an elevation varying from 1500 m to 2067 m.
Forest types are mainly composed of larch (artificial forest) and birch (natural forest), among which
larch has an absolute advantage; larch area accounts for more than half of the total forest area [39].
At present, the forests are dominated by middle-aged and near-mature forests: the average age of larch
is 29 with an average DBH of 19.04 cm and an average height of 12.71 m; the average age of birch is 30
with an average DBH of 16.84 cm and an average height of 11.61 m [40]. Validation work based on
ground-based measurements was implemented in this area.
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Figure 1. Land cover distribution and locations of Geoscience Laser Altimeter System (GLAS) 
footprints over study areas A and B. (a) A is Heilongjiang Province, China. We conducted province-
level leaf area index (LAI) inversion in this study area. (b) B is Saihanba National Forest Park in Heibei 
Province, China, which is our ground investigation area. 
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2.2.1. Ice, Cloud and land Elevation Satellite (ICESat) GLAS Data 

GLAS data products GLA01, GLA05, and GLA14 were used in our method; the used data were 
acquired from the laser campaigns L2c (2004/05/18–2004/06/21), L3c (2005/05/20–2005/06/23), and L3f 
(2006/05/24–2006/06/26). GLA01 is a Level-1A product and provides waveform information [i.e., 
received echo waveform (r_rng_wf) and emitted transmitted waveform (r_tx_wf)] and time 
information [i.e., starting address of the transmit pulse sample (i_TxWfStart) and ending address of 
the range response (i_RespEndTime)]. GLA05 is a Level-1B product and provides the gain values of 
the received waveform and transmitted waveform (i_gval_rcv and i_gval_tx). GLA14 is a Level-2 
product that contains information about the properties of the GLAS measurements, including the 
footprint centroid coordinate (i_lat and i_lon), max amplitude of the received echoes 
(i_maxRecAmp), standard deviation of the background noise (i_sDevNsObl), reflectivity 
(d_reflctUC), and reflectivity correction factor for atmospheric effects (d_reflCor_atm). 

2.2.2. GlobeLand30 Landcover Data 

The GlobeLand30 landcover images from paths 112–123 rows 23–30 were used to mask out the 
non forest-covered GLAS data in Heilongjiang Province so that we could focus on the forest. This 
product was produced by using multisource high-resolution remote sensing data, which include 
Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) multispectral images 
and Chinese Environmental Disaster Alleviation Satellite (HJ-1) multispectral images [41]. Ten land 
cover types were classified in GlobeLand30, as shown in Figure 1, and the accuracy of GlobeLand30 
was approximately 83% at the global scale [42]. 

2.2.3. Shuttle Radar Topography Mission (SRTM) Data 

The version 4 Shuttle Radar Topography Mission (SRTM) digital elevation dataset was used to 
produce the slope maps of the study areas with a resolution of 90 m. 5° × 5° SRTM tiles in GeoTIFF 
format corresponding to our study areas were downloaded from http://srtm.csi.cgiar.org/srtmdata/, 
and the downloaded data have been processed to fill data voids. 

Figure 1. Land cover distribution and locations of Geoscience Laser Altimeter System (GLAS) footprints
over study areas A and B. (a) A is Heilongjiang Province, China. We conducted province-level leaf area
index (LAI) inversion in this study area. (b) B is Saihanba National Forest Park in Heibei Province,
China, which is our ground investigation area.

2.2. Data used for Geoscience Laser Altimeter System (GLAS) Leaf Area Index (LAI) Inversion

2.2.1. Ice, Cloud and land Elevation Satellite (ICESat) GLAS Data

GLAS data products GLA01, GLA05, and GLA14 were used in our method; the used data
were acquired from the laser campaigns L2c (2004/05/18–2004/06/21), L3c (2005/05/20–2005/06/23),
and L3f (2006/05/24–2006/06/26). GLA01 is a Level-1A product and provides waveform information
[i.e., received echo waveform (r_rng_wf) and emitted transmitted waveform (r_tx_wf)] and time
information [i.e., starting address of the transmit pulse sample (i_TxWfStart) and ending address of the
range response (i_RespEndTime)]. GLA05 is a Level-1B product and provides the gain values of the
received waveform and transmitted waveform (i_gval_rcv and i_gval_tx). GLA14 is a Level-2 product
that contains information about the properties of the GLAS measurements, including the footprint
centroid coordinate (i_lat and i_lon), max amplitude of the received echoes (i_maxRecAmp), standard
deviation of the background noise (i_sDevNsObl), reflectivity (d_reflctUC), and reflectivity correction
factor for atmospheric effects (d_reflCor_atm).

2.2.2. GlobeLand30 Landcover Data

The GlobeLand30 landcover images from paths 112–123 rows 23–30 were used to mask out
the non forest-covered GLAS data in Heilongjiang Province so that we could focus on the forest.
This product was produced by using multisource high-resolution remote sensing data, which include
Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) multispectral images
and Chinese Environmental Disaster Alleviation Satellite (HJ-1) multispectral images [41]. Ten land
cover types were classified in GlobeLand30, as shown in Figure 1, and the accuracy of GlobeLand30
was approximately 83% at the global scale [42].

2.2.3. Shuttle Radar Topography Mission (SRTM) Data

The version 4 Shuttle Radar Topography Mission (SRTM) digital elevation dataset was used to
produce the slope maps of the study areas with a resolution of 90 m. 5◦ × 5◦ SRTM tiles in GeoTIFF
format corresponding to our study areas were downloaded from http://srtm.csi.cgiar.org/srtmdata/,
and the downloaded data have been processed to fill data voids.

http://srtm.csi.cgiar.org/srtmdata/
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2.3. Moderate Resolution Imaging Spectroradiometer (MODIS) LAI Product

We used the latest eight-day version of the MODIS LAI product (MCD15A2H Collection 6),
which temporal phase is consistent with GLAS product, as the comparative dataset. Here, five MODIS
tiles (i.e., H25V03, H25V04, H26V03, H26V04, H27V04) were used to mosaic the LAI map for
Heilongjiang Province. Compared with the previous version (MCD15A2H Collection 5), the Collection
6 product was generated by using the improved reflectance and land cover product, which made it
more accurate than the Collection 5 product [43]. Moreover, the Collection 6 product was generated at
a native resolution of 500 m rather than the 1000 m resolution of Collection 5.

2.4. Ground-Based Data from Tracing Radiation and Architecture of Canopies (TRAC)

We collected 50 field-measured LAIs corresponding to nearly mature forest and mature forest across
the Saihanba National Forest Park in August 2018 to validate our method (Figure 1b). Field measurement
work was carried out with TRAC equipment, which could measure sunflecks for a whole canopy
by walking along a transect that was in the range of tens of meters. Since the GLAS sensor emits
energy from the zenith direction, therefore, we chose a time window with a small solar zenith angle
(i.e., 10:00 a.m. to 3:00 p.m.) to conduct field work, to ensure the consistency of GLAS and TRAC
observations. For each sampling, the Trimble GEO7X handheld GPS was first used to determine the
position of GLAS footprint. Then the sunflecks within the GLAS footprint was measured by using
the TRAC through walking along a transect with 30 m, which in turn was used to convert to LAI by
TRACWin software installed on Microsoft Windows [44]. Here, the LAI from TRAC was an effective
LAI because we did not consider the clumpiness effect. The absence of the clumpiness information
did not affect the validation results because the clumpiness effect has the same contribution to both
GLAS retrieval and TRAC measurement. In addition, photos of the field investigation footprints were
obtained as evidence to describe the vertical foliage profile within footprints, which were used to
evaluate the accuracy of the retrieved VFP.

3. Models and Methods

Our proposed method is a physically-based method based on the 1-D radiative transfer modeling
of GLAS waveforms, which can fully utilize the forest canopy structure information contained in
GLAS lidar data compared with commonly used empirical models. To assess how the new method
can potentially improve on existing VFP and LAI products, we apply three strategies for algorithm
assessments. The workflow of our method is shown in Figure 2. The details of the used model and
method are introduced in Sections 3.1 and 3.2.

3.1. Models

3.1.1. Physical Model of Light Detection and Ranging (Lidar) Echoes for Forest

We developed a physical model to derive the TEP for forest canopies, which linked lidar echoes to
forest scenes based on the 1-D radiative transfer theory. In this model, foliage was thought to be the
main cover to intercept solar radiation, and only the first collision between the laser and canopy was
considered. The mathematical expression of this model is shown as follows:

Rn = In[1− exp(−k · LAIn)]ρ (1)

where Rn is the echo energy of the recorded layer n, k is the extinction coefficient, LAIn describes
the foliage between two successive recorded layers, ρ is the reflectance of the observed materials
(e.g., forest canopy), and In is the lidar transmitted energy received by recorded layer n and is defined
as follows:

In = exp(−k · LAIn−1)In−1 (2)
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3.1.2. Discrete Anisotropic Radiative Transfer (DART) Model

The DART model is a 3-D physically-based RTM that has been under development since 1992 [45].
After years of development, it is now a comprehensive model with multiple functions that can simulate
not only radiative budgets but also remote-sensing images from different sensors (e.g., passive and
active sensors), different platforms (e.g., airborne and spaceborne), and different bands for any Earth
scene (e.g., vegetation and urban landscapes). The lidar module in the DART model was implemented
based on the so-called “box method” and “Ray Carlo method” [35], which can provide accurate lidar
simulations for any landscape and lidar sensor configuration (e.g., view direction, footprint size,
and pulse characteristics). In this study, the lidar module of the DART model was used to validate
our method because the simulated data usually had corresponding ground truth values that have
an absolute consistent temporal phase with lidar observation. These so-called ground truth values
were an ideal dataset for verifying the method. To ensure that the lidar data were simulated more
realistically, we used the same parameter configuration as the GLAS device as the input parameters of
the DART model (Table 1). In addition, the forest structure parameters set in the model were directly
based on the forest structure characteristics in our study areas.
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Table 1. Values for the discrete anisotropic radiative transfer (DART) model used in this study are
consistent with the GLAS device configuration, as mentioned in the text.

Parameter Unit Values

Pulse energy mJ 73
Half pulse duration dimensionless 6

Lidar acquisition rate ns 1
Wavelength nm 1064
Bandwidth ns 0.08

Area of lidar sensor m2 0.785
Effective telescope diameter m 0.95

Sensor altitude km 600
Footprint radius m 35

Field of view (FOV) radius m 48

The two following realistic canopy architecture scenarios were constructed in the DART model
to validate our method: (1) homogeneous turbid scene (Figure 3a): the scene only included the gap
within the canopy; this scene was composed of a horizontal ground and a cube plant canopy with
randomly distributed foliage. The thickness of the canopy was 9 m, and its bottom was 4 m above the
ground. In addition, to verify the performance of our method under different vegetation abundance,
we set the LAI values to three levels in this scene: high (i.e., LAI = 8), medium (i.e., LAI = 6), and low
(i.e., LAI = 4). (2) Discrete individual-tree scene (Figure 3b): the scene included large gaps between
tree crowns; this scene consisted of trees with a canopy height of 9 m. The 3-D tree model is shown in
Figure 3c. In this scene, the LAI of the GLAS footprint was 0.98 [i.e., the area covered by the red circle,
as shown in Figure 3b].Remote Sens. 2020, 07, x FOR PEER REVIEW  8 of 23 
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Figure 3. Overview of the realistic structure scenes constructed in the DART model. (a) is a homogeneous
turbid scene that is composed of a cube plant canopy and a horizontal ground; (b) is a discrete individual
tree scene that comprises a 3-D tree model; (c) is the 3-D tree model used in the discrete scene.

3.2. Methods

3.2.1. Vertical Foliage Profile (VFP) and LAI Calculation

The basic principle for calculating the VFP and LAI from GLAS lidar data is based on the
Beer–Lambert law. According to the Beer–Lambert law, we can establish a relationship between the
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leaf area density (LAD) and the degree of penetration of light within unit space, which is the space
between two successive recorded layers as follows:

T(α) = e−G(α)LAD∆l(α) (3)

where T(α) is the gap fraction of the unit space when the observation zenith angle is α; ∆l(α) is the
distance of the light traveling through the unit space along the zenith angle α; and G(α) is the leaf
projection coefficient. For GLAS lidar, the vertical resolution is equal to 0.15 m; this means the thickness
of the unit space is 0.15 m (i.e., ∆l(α) = 0.15). Therefore, we only needed the data on the leaf projection
coefficient and gap fraction to obtain the LAD.

The leaf projection coefficient G(α) is defined as the mean projection of a unit foliage area in the
direction of the solar beam. For a canopy with a spherical leaf distribution, that is, the leaf inclination
angle is 57.3◦, G is equal to 0.5 and independent of the solar zenith angle [46]. Due to the difficulty
of estimating real leaf inclination angles, a spherical leaf inclination angle distribution is commonly
assumed for a vegetative canopy. This assumption has been followed in studies on the inversion of
LAI based on the GLAS data and performs well [25,27]. Therefore, the projection coefficient G(α) in
this study was set to 0.5. The gap fraction T(α) of the unit space can be calculated by the TEP (i.e., I0, I1,
. . . , In), and the calculation equation is shown as follows:

Tn(α) =
In+1

In
(4)

where In is the incident energy of the unit space of layer n and In+1 is the energy passing through this
space. The calculation of the TEP was introduced in Section 3.2.2.

When the LAD is obtained, the corresponding LAI can be calculated by the relationship between
the LAD and LAI as follows:

LAI(h) =
∫ n

m
LAD(h)dh (5)

where m and n are the layers of the LAD. The total LAI requires the integration of the LAD from the
canopy top to ground. In addition, the cumulative LAI profiles can be obtained based on Equation (5)
by calculating the increment in LAD at each height interval. In this study, we took the LAD profile and
cumulative LAI profile as the VFP.

3.2.2. Transmitted Energy Profile (TEP) Calculation

The TEP was derived based on material reflectance characteristics. For lidar observation,
the observed material reflectance characteristics usually depend on the sensor configuration and the
relationship between the detected object and the laser. The sensor configuration can be expressed by
the lidar equation [47], which is shown as follows:

Rreturn = Itransτopt
Ascope

D2 ·
ρ

Ω
τatm (6)

where Rreturn is the received return energy, Itrans is the emitted energy, τopt is the optics transmission,
Ascope is the telescope area, D is the range between lidar sensor and ground, ρ is the reflectance
of the target, τatm is the roundtrip atmosphere transmission, and Ω is the scattering solid angle.
The relationship between the observed object and laser can be given by the physical model of lidar
echoes for forest (i.e., Equation (1)).

By combining the lidar equation [i.e., Equation (6)] and the physical model of lidar echoes
for a forest [Equation (1)], we can obtain an equation to express the observed material reflectance
characteristics, which is shown as follows:

Rn = In[1− exp(−k · LAIn)] · τopt
Ascope

D2

ρ

π
τatm (7)
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Here, we assumed that the observed surfaces were Lambertian surfaces, so the Ω was equal
to π. According to the relationship of the transmitted energy of two successive recorded layers
(i.e., Equation (2)), we rewrote Equation (7); the result is shown as follows:

In =
Rn

ρ
·

D2π
τoptAscopeτatm

+ In+1 (8)

In our application scene, two types of materials were involved: ground and vegetation. Based on
Equation (8), the corresponding mathematical expression including these two materials can be given
as follows:

I0 =


n−1∑
i=1

Rn−1

ρvegetation
+

Rn

ρground

 ·
D2π

τoptAscopeτatm
(9)

where I0 is the total energy emitted by the lidar,
n−1∑
i=1

Rn−1 is the lidar received energy reflected from the

vegetation, ρvegetation is the vegetation reflectance, Rn is the lidar received energy reflected from the
ground surface, and ρground is the ground reflectance.

The values of τopt, Ascope, τatm, D, I0, and Ri (I = 1,2, . . . ,n) are known, as shown in Table 2.
Therefore, if we know the ground position in the recorded received waveform and the reflectance of
the observed materials (i.e., ρvegetation and ρground), the TEP can be derived from Equation (8).

Table 2. The instrument parameters of the GLAS lidar.

Parameter Symbol Unit Values

Optics transmission τopt dimensionless 0.67
Telescope area Ascope m2 0.709

Roundtrip atmosphere
transmission τatm dimensionless τatm is equal to the value of

“d_reflCor_atm”.
Range between GLAS

sensor and ground D m D = (i_RespEndTime− i_TxW f Start) ·C/2
where C is the light transmission speed.

GLAS sensor emitted
total pulse energy I0 J

I0 is calculated from the GLAS transmitted
waveform recorded in the GLAS product
(i.e., r_tx_wf), and the calculation details

are shown in the Appendix A.

GLAS sensor received
echo energy at each

recorded layer
Ri J

Ri is calculated from the GLAS received
waveform recorded in the GLAS product
(i.e., r_rng_wf), and the calculation details

are shown in the Appendix A.

The ground position can be identified from the GLAS received waveform through the
Gaussian decomposition method (Figure 2); the process includes filtering, Gaussian decomposition,
and determining the ground position. First, the raw GLAS echo waveform was denoised by Gaussian
filtering. Then, the denoised GLAS echo waveform was decomposed into multiple Gaussian waveforms
using the Gaussian decomposition method. Finally, the peak position of the last decomposed Gaussian
waveform was assumed to correspond to the ground surface.

Equation (9) shows that if the ground reflectance is known, the canopy reflectance can be derived.
Here, we used the average reflectance results (i.e., GLAS reflectance = d_reflctUC * d_reflCor_atm)
from 12 non forest-covered GLAS footprints in Saihanba National Forest Park as ρground. The location of
non forest-covered GLAS footprints is shown in Figure 2, the reflectance corresponding to these GLAS
footprints is shown in Figure 4, which has an average result of 0.21 (i.e., ρground = 0.21). This strategy
can be close to the actual reflectance of the GLAS laser for the ground.
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Figure 4. Reflectance values of twelve non forest-covered GLAS footprints which are mentioned in the
text with an average value of 0.21.

4. Results and Analysis

4.1. LAI Retrieval in Virtual Scenes

The VFP and LAI were first retrieved in the homogeneous turbid scene (Figure 3a), which had
LAI values of 4, 6, and 8, respectively. Here, we used the cumulative LAI profile to represent the VFP.
The vertical resolution of the cumulative LAI profile from the waveform data simulated by DART
model was 0.9 m, matching that of the canopy in the virtual scene. Cumulative LAI profiles from
our method showed the same trend as true values given from the DART model for all levels of LAI
distributions [i.e., in Figure 5a–c: LAI ≈ 4, LAI ≈ 6, LAI ≈ 8]. Then, we applied our method in the
discrete individual-tree scene (Figure 3b), and the result is shown in Figure 5d The cumulative LAI
profile derived from our method still had strong consistency with the true value given by the DART
model (i.e., LAI ≈ 0.98).
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Figure 5. Comparisons between true reference cumulative LAI and predicted cumulative LAI derived
from the DART model simulated waveform data.

The above validation theoretically proves the reliability of our method because the scene
constructed in the DART model was generated for an ideal situation, such as randomly distributed
leaves and a spherical leaf inclination angle distribution. However, there are many uncertainties in
the real environment. For example, the forest canopy is usually a mixture of branches and leaves,
and it is difficult to separate them. Furthermore, the leaf inclination angle is sometimes not spherically
distributed in an actual environment. Therefore, in addition to using virtual scenes for validation,
ground-based measurements and other LAI products were used for cross-validation.
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4.2. LAI Retrieval in Saihanba National Forest Park

4.2.1. GLAS LAI vs. TRAC LAI

Figure 6a presents the comparison between the GLAS LAI (i.e., the result of LAD integration from
the canopy top to the ground) and the TRAC LAI. There was moderate consistency between them,
with a determination coefficient (R2) = 0.79 and root mean square error (RMSE) = 0.83. However,
the GLAS LAI was higher than the TRAC LAI (bias = 0.68), which may be because TRAC works. In the
measurement process, the TRAC is on a transect approximately 1 m above the ground, and the sensor
on the TRAC is upward; therefore, the vegetation near the ground (i.e., understory vegetation) may be
ignored. To prove our conjecture, we chose a set of comparative data, and the corresponding plot photos
are shown in Figure 6a. Compared to the LAI derived from the footprint with almost no understory
vegetation, the LAI from the footprint with dense understory vegetation has a considerable bias with
the TRAC LAI. Therefore, the difference between ground observations and satellite observations was
the main reason for inconsistencies in the comparison. To ensure consistency between the observations,
we recalculated the GLAS LAI by integrating the LAD from the canopy top to the layer 1 m above
the ground. We then obtained improved validation results (Figure 6b), with R2 = 0.79, RMSE = 0.49,
and bias = 0.17.
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Figure 6. (a) Scatter plot of the GLAS LAI and tracing radiation and architecture of canopies
(TRAC)-measured effective LAI. The red circles are different typical examples that were used to
compare and describe the difference in affecting the inconsistency between satellite retrievals and
ground observations, most likely caused by the understory. The photos pointed by the arrows show
the situation of vegetation within the GLAS footprints. (b) Scatter plot of the recalculated GLAS LAI
(i.e., an integration of leaf area density (LAD) from the canopy top to the layer 1 m above the ground)
and TRAC-measured effective LAI.

From Figure 6b, we can find that there were some visually obvious outliers in the validation
results. It has been well documented by previous studies that slope and SNR (signal-to-noise
ratio = i_maxRecAmp/i_sDevNsObl) have a great influence on the accuracy of lidar measurements [48–53].
Some studies concluded that GLAS observations with slopes of less than 15 and SNR values greater than
60 could accurately represent the vegetation structure [27,54]. Therefore, we analyzed the role of slope
and SNR in our method to determine whether they caused these outliers. The distribution of the slope
and SNR values of the GLAS footprints in Saihanba National Forest Park, which provide by SRTM data
and GLAS product, are shown in Figure 7a,b. We found four footprints with slopes greater than 15 and
five footprints with SNR values less than 60. Among these potentially problematic GLAS observations,
three observations not only had large slopes (i.e., slope > 15) but also low SNR values (i.e., SNR < 60);
that is, six of 50 GLAS observations might have been problematic. After removing these six potentially
problematic GLAS observations, the validation accuracy was improved, with R2 = 0.85, RMSE = 0.35,
and bias = 0.10 (Figure 7c). The above result indicated that the uncertainty caused by the slope and
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SNR were probably two primary error sources in the LAI estimation using the method proposed in
this study.
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Figure 7. (a) The slope distribution of GLAS footprints over Saihanba National Forest Park. (b) The SNR
(i.e., signal-to-noise ratio = i_maxRecAmp/i_sDevNsObl) distribution of the GLAS data over Saihanba
National Forest Park. (c) Comparison between the recalculated GLAS LAI (i.e., an integration of
LAD from the canopy top to the layer 1 m above the ground) and TRAC-measured effective LAI after
removing the outliers caused by a large slope and low SNR.

We further explored how these two factors affected our method. Here, we selected typical GLAS
observations with large slopes and low SNRs for further analysis. Figure 8 presents an example of
GLAS observations with complex terrain (i.e., slope = 21◦). Notably, the echo energy from the canopy
was mixed with the echo energy from the bare ground on the top of the mountain, which resulted in
considerable canopy echo energy (Figure 8b). In addition, the obvious scattering phenomenon on the
slope area led to the echo energy of the last Gaussian component being very small (Figure 8b). The above
two reasons caused the illusion that the observation footprint had dense canopy (i.e., large LAI);
however, the reality was that the observation footprint had a sparse forest (i.e., small LAI), as shown in
Figure 8a. The ground validation in this footprint was very poor; the difference between the GLAS LAI
and the TRAC LAI was equal to 1.84, which was the largest of all validation footprints.

Figure 9 shows an example of a comparison of GLAS observations with low and high SNR,
respectively (i.e., SNR = 21 vs. 119). Low SNR means poor data quality, and it usually increases the
difficulty in preprocessing. From Figure 9, we can note that the GLAS observation with low SNR
has difficulty recognizing useful information from the received waveform compared to the GLAS
observation with a high SNR value. Therefore, uncertainty may be introduced during the preprocessing
process, such as determining the ground position, thereby affecting the accuracy of LAI derived from
our method. The validation based on the TRAC measurement also proves the impact of SNR on our
method, that is, the GLAS observation with high SNR value performed much better than the one with
low SNR value; the difference between the GLAS LAI and TRAC LAI was 0.17 vs. 1.26.
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Figure 8. An example of GLAS observations with complex terrain. (a) High-resolution remote-sensing
image for the GLAS observation area. The yellow circle is the footprint of the GLAS observation, with a
diameter of 65 m. (b) Schematic diagram of the cross-section along the line segment “AB” shown in (a).
It can be noted that the ground echo signal (Rg) was mixed with the canopy echo signal (Rv) because of
the complex terrain. In addition, the obvious scattering phenomenon (S) on the slope area caused the
echo energy of the last Gaussian component to be very small.
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Figure 9. Two typical GLAS received waveforms with different SNR values. (a) is a received waveform
with a high SNR value. Gaussian component 1 is the canopy return signal, Gaussian component 2 is
the ground signal, and the red line marks the position of the ground. (b) is the received waveform with
a low SNR value. It can be noted that it is hard to recognize useful information from the decomposed
Gaussian components.

4.2.2. GLAS VFP Inversion

We selected two typical inversion results of the VFP for display and analysis to verify our method,
and the results are shown in Figure 10, including those for site A and site B. Site A corresponds to a birch
forest, in which the foliage is sparse, and there is almost no understory vegetation (Figure 10). Site B
corresponds to a dense larch forest with lush understory vegetation (Figure 10). Here, we used the
LAD profile to represent the VFP. The vertical resolution of the VFP was 0.15 m, which was consistent
with the resolution of the echoes recorded by GLAS lidar.

At site A, the LAD gradually increases as the canopy height decreased and exhibited peak leaf
density at a height of approximately 7 m; then, the LAD shows a downward trend and gradually
increases when approaching the ground. The LAD distribution in the vertical direction was nearly
consistent with the foliage distribution density shown in the photo. From the ground measurement
side, the integration of LAD from the canopy top to the ground is almost consistent with TRAC
measurement, which is 3.36 vs. 3.09.

At site B, the LAD distribution exhibited the same trend as site A except for the part close to the
ground; this is because site B had denser understory vegetation than site A (Figure 10), which caused
the LAD for site B to be larger than that for site A when approaching the ground. In addition, we
can note that the LAD value of site B performed larger than that of site A in the middle parts of the
canopy (e.g., at canopy heights equal to 8 m); this result was roughly consistent with the density
of foliage shown in the photos. The LAI from the TRAC measurement for site B shows a bias with
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the integration of LAD from the canopy top to the ground (i.e., 3.28 vs. 4.50). Recalling the ground
validation analysis in Section 4.2.1, the analysis result explains the understory vegetation caused
the positive bias between the integration of LAD from the canopy top to the ground and ground
measurement. Here, our validation result fits this reason, which also indirectly proves the rationality
of LAD inversed based on our method.
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4.2.3. Uncertainty Analysis for Ground Validation

In the ground validation, there is a 10-year temporal difference between the ground measurement
and the GLAS data, which will introduce uncertainties in the validation process. Despite this weakness,
our validation results are still useful and informative for two major reasons. First, the main purpose of
our ground-based validation is to assess how well GLAS can capture spatial patterns and heterogeneity
in LAI. This spatial variability contributed to the majority of the variation in both the in situ and GLAS
LAI data—a signature that should be independent of time. In other words, our validation should
provide valid quantification of the GLAS accuracies over space. Second, to overcome the limitation
associated with the temporal discrepancy, we used the MODIS LAI product (i.e., MCD15A2H.A2018169
vs. MCD15A2H.A2006169) as an intermediary to evaluate the variation of LAI in 10 years for GLAS
footprints located in Saihanba National Forest Park. The result shows that the LAI of 2018 has increased
compared with the LAI of 2006, but the overall change is not very large (Figure 11a). Besides, it can be
noted that the LAI of 2018 has a moderate correlation with the LAI of 2006 (i.e., R2 = 0.41) (Figure 11b);
thus, the error caused by the time discrepancy in the validation could be taken as a systematic error.
Therefore, we can reasonably consider the impact of this error on all results is almost the same.
This does not necessarily affect the overall validity of the correlation between in situ and GLAS data.

4.3. LAI Retrieval in Heilongjiang Province

We derived a total of 4071 GLAS LAI over Heilongjiang Province. Among these GLAS LAI values,
approximately 35% were derived from the GLAS observations with large slope (i.e., slope > 15◦) or
low SNR (e.g., SNR < 60). According to the analysis results in Section 4.2.1, we thought that 35% of the
inversion results might have uncertainty. To ensure the accuracy of the analysis, we only used the
remaining 65% of inversion results for analysis. Figure 12 shows the distribution of GLAS LAI after
removing these the 35% of values that were potentially problematic results, which totaled 2628 GLAS
LAI values, with a mean value of 2.64 and a mean square error of 1.15.

The vertical LAI integrations from 0–4 m, 4–8 m, and 8–18 m were also mapped at the scale of
GLAS footprints (~65 m) (Figure 13). We noted that the LAIs at different height levels performed
differently; in particular, the LAI integrated from 0–4 m was relatively large, which indicated that there
was understory vegetation in the forest of Heilongjiang Province. In addition, we also found that in
some cases, although the total LAI (e.g., LAI ≈ 4) was the same, the LAIs at different height levels had
different contributions to the total, as seen in Figure 14.
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GLAS LAI vs. MODIS LAI

The GLAS and MODIS LAIs were found to correlate poorly (Figure 15). The overall correlation
coefficient was only sqrt (0.003), although the comparison of the two gave relatively low RMSE (1.69)
and bias (0.89). The differences between the GLAS and MODIS LAI values were highly skewed
because of large positive differences at low and middle LAIs (Figure 15b). The main reason for the poor
correlation was likely attributed to the differing characteristics of the two LAI products. In particular,
the MODIS LAI retrieval algorithm accounted for vegetation clumping through 3-D radiative transfer
modeling [55,56] and was supposed to provide the true LAI. In contrast, our GLAS method did not
consider the clumping effect and derives only the effective LAI. Therefore, the MODIS LAI tended
to be higher than the GLAS LAI. Interestingly, for the LAIs higher than 4, the pattern was reversed
with higher values for GLAS (Figure 15a). This reversal was due to the saturation of MODIS LAI at
approximately 5.5 (Figure 15a). However, the GLAS LAI estimates showed no signs of saturation,
even up to 8 (Figure 15a). Overall, the comparison clearly highlighted the unique value or even
potential superiority of lidar data for measuring LAI for dense forests—an expected finding consistent
with the majority of lidar studies over forests of medium to high biomass [57].Remote Sens. 2020, 07, x FOR PEER REVIEW  17 of 23 
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explains the number of data points that fell into certain square areas. (b) Histogram of LAI difference
between GLAS and MODIS; the red line indicates the bias (0.89).

4.4. Model Uncertainty Analysis

The ground reflectance (ρg) is a necessary input parameter in our method; therefore, incorrect
input value may lead to errors in LAI estimation. Ground reflectance often varies among different sites
or even within sites due to different environmental conditions, such as water content and ground cover.
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We used a mean value from the non forest-covered GLAS footprints as the input for the whole study
area, which may have introduced errors to the results. To see what role the ground reflectance played
in our method, we analyzed the sensitivity of our method to variations in input ground reflectance.
We varied the ground reflectance from 1.5 to 2.9 to evaluate its effect on LAI and found that its effect on
the inversion results was minimal and nearly negligible (Figure 16).
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5. Discussion

Our proposed method for retrieving forest VFP and LAI is based on physical principle, rather than
based on a statistical regression, which is currently a preferential method by modelers. In addition,
our method used more information provided by GLAS products compared with the previous methods
only using received waveform information and solved a problem of existing methods, which will
likely improve the accuracy of VFP and LAI estimation. Although there is a limitation that we cannot
provide accurate ground reflectance as input, the analysis in Section 4.4 has shown that it has a small
effect on the result. Overall, our research provided a new perspective for retrieving the VFP and LAI.

To test the performance of our method, we used ground-based data to validate our method.
However, there were some limitations in our validation process. First, the different times of GLAS data
acquisition and TRAC measurements will introduce errors. As shown in the comparison scattering plot
(Figure 7c), the comparison points were roughly distributed on both sides of the 1:1 line, which may
have been caused by the above reason. Second, due to the limitations of the field measurement
equipment, we were unable to obtain the LAD profile data through measurement; therefore, we used
photos of the sites along the observation footprints as a reference to evaluate the rationality and
accuracy of the VFP but did not conduct a quantitative evaluation. Regardless, the quantitative
evaluation of the VFP has been addressed by a variety of virtual scenes. In view of the limitation in the
validation of this work, future studies should place an emphasis on field data collection to ensure that
the measurement time is consistent with the satellite LiDAR data.

We also extended our method to Heilongjiang Province. For this province-level LAI inversion,
there was an error source, which may come from landcover information provided by the GlobeLand30
landcover product. Our research focused on forests, so the non forest-covered GLAS data had to
be filtered out. In Saihanba National Forest Park, we selected forest-covered GLAS data by visual
interpretation of high-resolution images and on site investigation. However, this strategy is challenging
to conduct in large study areas, such as those at the province level, because of time and labor costs. Here,
we adopted an effective strategy to select the forest-cover GLAS data that used the high-resolution
land-cover product to filter out the non forest cover GLAS data. The GlobeLand30 product has
an accuracy of 83% at a global scale [42]; therefore, the misclassification of landcover types in the
GlobeLand30 product may lead to errors in the LAI inversion in Heilongjiang Province. For example,
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the low LAI values (e.g., LAI < 1) shown in Figure 11 may not have resulted from the GLAS observations
of the forest because of the misclassification of land-cover types.

Due to the lack of available validation datasets at the province level, we therefore limited the
assessment of the GLAS LAI differences in Heilongjiang Province by using the MODIS LAI product.
The result showed a weak correlation between the two; the reason is that our method did not consider
canopy clumpiness. For any given effective LAI value, the error in the true LAI varied linearly with
the clumping index. Previous studies have used a strategy that builds a clumping index look-up table
by assigning each land cover class an average clumping index from coarse resolution clumping index
products such as MODIS or Polarization and Directionality of the Earth’s Reflectance (POLDER) to
revise this error. However, this simple and crude method does not take into account the difference in
the level of clumping of the same landcover type, so it may introduce error. In addition, the scale effect,
which is caused by the direct application of coarse-resolution products to high-resolution products,
needs to be considered [58]. Currently, a major challenge is that no high-resolution clumping index
products are available, especially those products that match the GLAS footprint level, although several
moderate-resolution clumping index products have been generated and released to users [59,60],
based on the hotspot-corrected bidirectional reflectance distribution function (BRDF) model [61,62]
and a linear model [63]. Considering the potential problems of using coarse resolution data, we focus
on the effective LAI at present. The problem of the clumpiness effect will be solved in the future, for
example, to develop a method that can estimate the clumping index with GLAS data.

One of the major limitations of our method was that assuming all the reflecting components within
the GLAS footprint behaved as Lambertian scatterers because of the lack of knowledge of the directional
reflectance properties of various components at the GLAS resolution. This assumption has been widely
used in the calculation of surface albedo [64,65]. Regardless of this, the assumption of Lambertian
scattering is a practical approximation of the potentially complex character of land footprints.

The advantage of our work is that we can obtain the vertical foliage profiles at the landscape
scale, which allows us to better understand vertical structural parameters in the forest. For example,
our method can describe the understory vegetation very well, as shown in Figure 12 (i.e., LAI integration
from 0–4 m). Understory vegetation is usually a forest ecosystem driver, and its productivity is probably
comparable to that of trees [66]. Previous studies have suggested that the lack of vertical foliage
distribution information caused approximately 50% underestimation of GPP [67,68]. Our method
provides an opportunity to obtain foliage profile information on the global scale, which should be
helpful for improving the accuracy of ecological process simulations.

Recently two new lidar observation platforms GEDI and ICESat-2 were successfully launched and
operated. They have improved instrument technologies and spatial coverage compared with ICESat
GLAS. In the next step, our method will combine with these two new platforms, which will allow for
enhanced coverage and improved accuracy by leveraging the advantages of the individual instrument
technologies and spatial coverage.

6. Conclusions

The advances in complexity and resolution in land-surface modeling lead to increasing demand for
more detailed descriptions of canopy architecture, such as the VFP. Traditional methods for estimating
LAI only focus on horizon information and do not provide vertical structure information throughout
the canopy. In this work, we developed a new method to retrieve the VFP and LAI using the transmitted
energy information derived from the ICESat GLAS data. The advantage of our method is that it is
physically based rather than an empirical method; it follows the radiative transfer theory. We have also
listed the limitations with our method, namely, the terrain factor and signal noise greatly affected our
results. How these two factors affect the inversion results has been analyzed and discussed; the results
can guide future efforts in this research direction. Comprehensive validations are conducted for our
method from virtual and real scenes, and the results indicate that our method can be successfully used
to retrieve VFP and total LAI. Our method can be used as the basis for obtaining continental- and
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global-scale VFP and total LAI datasets from ICESat GLAS observations, or can even be extended to
new satellite lidar platforms such as GEDI and ICESat-2.
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Appendix A

The GLAS emitted and received pulse energy can be computed from the digitized pulse waveforms
recorded in the GLAS product, and the mathematical formula is as follows:

E =
α

ηeηTDetG

N∑
i=1

W(i)∆t (A1)

where E is the pulse energy, α is the GLAS receiver calibration constant, ηe is the electronic throughput,
η is the optical throughput, TDet is the detector responsibility, G is the variable gain amplifier (VGA)
gain, W(i) is the pulse waveform recorded in volts, N is the waveform sampling number, and ∆t is the
sampling time of the GLAS receiver. The above parameters are different for transmitted and received
pulse energy; The corresponding parameters are given in Table A1.

Table A1. GLAS receiver corresponding equipment parameters for calculating transmitted and return
pulse energies.

Parameter Symbol Unit Values

GLAS receiver calibration constant α dimensionless Transmitted pulse: 1.21
Return pulse: 1.00

Electronic throughput ηe dimensionless 92.3%

Optical throughput η dimensionless

Transmitted pulse: 2.97 × 10−14 for Laser 1,
2.79 × 10−14 for Laser 2, and 2.79 × 10−14 for

Laser 3
Return pulse: 0.67

Detector responsibility TDet V/W 2.28 × 107

Variable gain amplifier (VGA) gain G dimensionless Gtel/255, Gtel is an 8-b integer recorded in
GLA05 product

Pulse waveform W(i) V

Transmitted pulse: r_tx_wf, which recorded
in GLA01 product

Return pulse: r_rng_wf, which recorded in
GLA01 product.

Waveform sample numbers N dimensionless Transmitted pulse: 48
Return pulse: 544.

Sample time of the receiver 4t ns 1
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