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Abstract: The widespread applications of remote sensing image scene classification-based
Convolutional Neural Networks (CNNs) are severely affected by the lack of large-scale datasets
with clean annotations. Data crawled from the Internet or other sources allows for the most rapid
expansion of existing datasets at a low-cost. However, directly training on such an expanded
dataset can lead to network overfitting to noisy labels. Traditional methods typically divide
this noisy dataset into multiple parts. Each part fine-tunes the network separately to improve
performance further. These approaches are inefficient and sometimes even hurt performance.
To address these problems, this study proposes a novel noisy label distillation method (NLD)
based on the end-to-end teacher-student framework. First, unlike general knowledge distillation
methods, NLD does not require pre-training on clean or noisy data. Second, NLD effectively distills
knowledge from labels across a full range of noise levels for better performance. In addition, NLD can
benefit from a fully clean dataset as a model distillation method to improve the student classifier’s
performance. NLD is evaluated on three remote sensing image datasets, including UC Merced
Land-use, NWPU-RESISC45, AID, in which a variety of noise patterns and noise amounts are injected.
Experimental results show that NLD outperforms widely used directly fine-tuning methods and
remote sensing pseudo-labeling methods.

Keywords: scene classification; teacher-student; noisy labels; knowledge distillation; remote
sensing images

1. Introduction

The optical remote sensing image is a powerful source of geographical information since it
contains complex geometrical structures and spatial patterns. In recent decades, the remote sensing
community has tried to establish an accurate remote sensing image scene classifier. Recent advances in
Convolutional Neural Networks (CNNs) make it possible to identify remote sensing scenes with better
performance [1,2]. However, many real-world applications for earth observation require large-scale
datasets with clean annotations such as ImageNet [3]. It is costly and time-consuming to collect a
large-scale remote sensing dataset with high-quality manual annotations. Lack of annotated data
has become a bottleneck for the development of deep learning methods in remote sensing and Earth
observation. Moreover, the same bottleneck also exists in many other visual tasks.

To tackle the bottleneck, many studies [4] start with leveraging crowd-sourcing platforms,
image search engines, or other automatic labeling methods to collect labeled data for natural
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image scene classification. For example, the Open Images Dataset V4 [5] contains over 30.1 million
image-level labels automatically produced by a classifier and a small percentage of labels are verified
by crowd-sourcing platforms. These methods significantly reduce the cost of data labeling, which is
valuable for applying deep learning in remote sensing image scene classification. The volume of
unlabeled images collected by satellites or drones is growing by a few terabytes each day. Low-cost
annotations could facilitate the use of abundant image resources. Hence, some methods [6] generate
pseudo labels for unlabeled remote sensing images through semi-supervised learning. However,
these labels struggle to provide the same asymptotic properties as supervised learning does in
high-data regimes. The labels produced by these approaches contain varying degrees of error,
i.e., noise, and the performance of classifiers is highly sensitive to massive label noise. Since most of
the automatically generated labels are mismatched, it is challenging for traditional learning methods
to work on such datasets.

Training on noisy labeled datasets become essential and has attracted much attention in recent
years [7–9]. Furthermore, several approaches learning with noisy labels [10–12] have been explored
for remote sensing image analysis tasks. Existing methods based on RGB images with noisy labels
usually make a strong assumption that all labels are noisy. These studies mostly work on robust
algorithms against noisy labels [13], label cleansing methods finding label errors [14] , or combining
them together [15]. It was proven that these classifiers have achieved good accuracy on noisy
CIFAR10/100 datasets. However, it is difficult and impractical to apply these complex methods
to other areas. For remote sensing image scene classification, some of these methods sometimes do
not perform as well as direct training. In real-world applications, datasets usually contain a small
fraction of images with clean annotations and large amounts of images with noisy or missing labels.
In this case, some approaches [16–18] have produced better performance and practicality on large-scale
real-world noisy datasets, such as Clothing1M dataset [8] and Open Images V4 dataset [5]. To the best
of our knowledge, there is no existing work for remote sensing image scene classification with minimal
extra-human supervision.

This work focuses on augmenting existing human-verified labeled datasets with additional noisy
labeled data to improve the performance of remote sensing scene classifiers. A more efficient way
is explored to learn knowledge from massive noise, instead of simply mix all data or fine-tuning
with labeled images. Inspired by Deep Mutual Learning (DML) [19], this paper proposes a novel
noisy label distillation framework called NLD based on teacher-student methodology with a decision
network, as given in Figure 1. First, the student and teacher jointly learn from each other. Pre-training
is no longer a required process. Second, the teacher distills the knowledge learned from noisy data
to facilitate the student to learn from full dataset. NLD can even be applied to completely noise-free
datasets. This means that our method can be used in a wide range of remote sensing applications.
Third, a decision network derived from [20] is introduced, which is easier to optimize in practice
and replace the calculation of the mimicry loss. Considering the lack of public datasets with noisy
annotations for remote sensing image scene classification, experiments are conducted to evaluate
NLD by injecting a series of noises into well-annotated datasets(e.g., UC Merced Land-use [21],
NWPU-RESISC45 [22] and AID [23]).

Our contributions are as follows:

• Noise label is introduced for remote sensing image scene classification with minimal extra-human
supervision. In practical applications, it is possible to label millions of images with noisy labels at
a low-cost.

• A novel and effective end-to-end framework based on teacher-student model namely NLD is
proposed for noisy labels distillation. NLD can effectively boost the performance of remote
sensing scene classifiers with massive noisy annotations.

• NLD is effective on completely clean datasets. Thus, NLD can be further extended to model
distillation for network compression.
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• Pseudo-labeling methods can automatically generate nearly infinite noisy annotated images
at no additional cost. The network trained by NLD achieves a better performance than other
pseudo-labeling methods.

• Several new practical benchmarks are proposed for remote sensing image scene classification
with different types of noisy labels.
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loss

loss

total
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clean dataset sparse residential
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building
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Figure 1. A high-level illustration of NLD. The student and teacher mutually learn knowledge of clean
and noisy labels.

This paper is organized as follows: Section 2 introduces the research status and the challenges.
Section 3 describes the overall framework of NLD. Section 4 presents the implementation details of
experiments and analyzes the result. Finally, Section 5 concludes our paper and gives an outlook.

2. Related Works

In this section, we will briefly review existing related works on remote sensing image scene
classification and learning from noisy labels.

2.1. Remote Sensing Image Scene Classification

Remote sensing image scene classification aims to distinguish the semantic category of an image,
which is a fundamental problem for understanding high-level geospatial information. With the
development of deep learning methods, many CNN architectures (e.g., ResNet [24], VGG [25]) have
achieved remarkable performance on many remote sensing public datasets. However, there are
large intra-class variations and small inter-class dissimilarities between different remote sensing
scenes. These problems will decrease the recognition abilities of models for some categories.
To address these challenges, many studies focus on how to learn discriminative feature representations.
Nogueira et al. [2] analyzed the use of different networks in the field of remote sensing. Chaib et al. [1]
proposed an adequate method for feature fusion and introduced discriminant correlation analysis
to represent the fused features. Zhang et al. [26] proposed a newly designed CapsNet to deal with
the remote sensing image scene classification problem. Li et al. [27] proposed a unified feature fusion
framework based on attention mechanism to improve the classification performance.
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These algorithms are all data-driven algorithms, which means large-scale datasets are required in
practice. To facilitate the application of these methods to more fields that have little data with clean
annotations, NLD can be widely used with various models including the above research.

2.2. Learning from Noisy Labels

Most of methods learning from noisy datasets aim to directly learn without clean labels
available. These approaches usually focus on noise-robust algorithms and label cleansing methods.
Wang et al. [13] proposed symmetric cross entropy (SCE) loss to boost cross-entropy (CE) symmetrically
with a noise-robust counterpart reverse CE. Northcutt et al. [14] proposed confident learning for
characterizing, identifying, and learning with noisy labels. Kim et al. [15] proposed Selective Negative
Learning and Positive Learning (SelNLPL) to filter and learn with noisy data. These methods face the
problem of discriminating difficulty from mismatched labels.

Our approach belongs to a practical stream, assuming that both clean and noisy labels of the
dataset are known [8,28]. This is a more practical scenario, allowing researchers to focus on leveraging
noisy labeled data to enhance existing fully supervised algorithms. Veit et al. [16] proposed a learning
approach for multi-label image classification using clean labeling combined with massive noise labeling.
Hu et al. [18] proposed a method to automatically identify credible annotations in the massive noisy
labels under weakly supervised learning. Many semi-supervised learning algorithms, especially
pseudo-labeling algorithms, can also be categorized into such scenarios [29]. Han et al. [6] proposed
a framework based on deep learning features, self-labeling techniques and decision evaluation
methods under semi-supervision for remote sensing image scene classification and annotating datasets.
The works closer to ours comes from Li et al. [17] and Li et al. [30].To achieve noisy label learning, they
proposed a teacher-student framework, which comes from knowledge distillation [31]. To take full
use of the whole data space, traditional knowledge distillation and many other similar noise-robust
methods use the student model to mimic the large pre-trained teacher model by providing training
experiences. These experiences are called “dark knowledge”.

In practice, a smaller network with the same precision is needed because of the cost, i.e., a student
network. However, due to the existence of noisy labels, even under the guidance or regularization of a
powerful network pre-trained with clean data, small networks are still prone to overfit to noisy labels.
This may even lose the knowledge of the original clean data.

3. Method

3.1. Problem Formulation

Our goal is to train a remote sensing scenes classifier using a dataset with automatically collected
noise labels and a part of human-verified clean labels available. The source of noisy labels may
come from collects from the web or predictions from models trained on clean data or other ways.
Furthermore, the framework can be used for large-scale datasets with fully clean annotations to
improve the performance of networks under traditional supervised learning.

Formally, we define the notations for our study. Let D = Dc
⋃Dn donates the entire large training

dataset, whereDc is the clean subset andDn is the remaining noisy subset. In a single label classification
problem, Dc = {(~xi, yi)| i = 1, 2, · · ·, Nc} and Dn =

{(
~xj, yj

)∣∣ j = 1, 2, · · ·, Nn
}

, which contains Nc and
Nn samples from M classes, respectively; yi ∈ {1, 2, . . . , M} and yj ∈ {1, 2, . . . , M} donate the label
corresponding to image ~xi and ~xj. In this work, the ratio of Dn to Dc is not limited, because NLD can
improve the performance of classifiers in different practical applications.

As shown in Figure 2, NLD is formulated with a cohort of two classifiers g and h. The classifier
g is the large teacher model that is used to distill and transfer the knowledge of noise. In addition,
its backbone is a powerful network such as a ResNet-50 [24]. The student model h is designed to learn
from the clean labels and guided the learning process by the knowledge of noise which is distilled
from the teacher network T. The network S is a network that is same as or shallower than network
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T (e.g., ResNet-34 [24] and VGG-16 [25]). The logits ~r1 for ~xj given by the teacher network T can be
represented as

~r1 = Fn
(
~xj
)

, (1)

where the Fn is a nonlinear transformation in teacher network T. Similarly, the logits ~r2 and ~c1 can be
represented as

~r2 = Fc
(
~xj
)

, (2)

~c1 = Fc (~xi) , (3)

where the Fc is a nonlinear transformation in student network S.
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Figure 2. The overview of the proposed framework to train a remote sensing scenes classifier
from a large dataset Dn with noisy labels and a small dataset Dc with manually verified labels.
The framework consists of teacher network T, student network S, decision network, fully connected
layers, and predictor of softmax. In the training phase, two loss terms Lg and Lh (a CE loss with noisy
labels and a CE loss with clean labels) are minimized jointly. The teacher model T transfers the “dark
knowledge” distilled from noisy subset to the student model S through the decision network. In the
inference phase, a classifier containing the student network S, fully connected layers and softmax can
give the correct predictions.

For classifier g and h, the supervision depends on the source of the training sample. For image ~xj
from the noisy dataset Dn , the classifier g is supervised by the noisy label yj. For sample ~xi from the
clean dataset Dc, supervision comes directly from the verified label yi.

3.2. Noisy Distillation

In contrast to the previous work on teacher-student models including [17,30], we need to pre-train
a teacher model with a small part of or the entire dataset: the teacher model and student model are
trained together to learn latent noisy label distributions to improve the performance of student network
supervised with the clean subset. NLD is motivated by DML which leverages a teacher-student
framework to improve the representation of the network. The details will be analyzed in the later part
of this section.

The student network learns the knowledge of clean data and acquires the distilled knowledge
of the noisy dataset. The teacher takes advantage of powerful deep network architectures to
learn features of noisy labels at various levels of abstraction rather than simply memorizing
these. Besides, noise knowledge is distilled by comparing the outputs of the student and teacher
simultaneously. To that end, the student and teacher model are trained by a mutual learning approach
which originates from knowledge distillation. Noted that NLD is different from DML and other similar
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approaches. To match noisy label distributions, a metric between two branch’s representation vectors
~r1 and ~r2 needs to be defined. As a loss function, Kullback Leibler (KL) Divergence is the most widely
used. The KL distance from ~r1 and ~r2 is computed as

DKL (~r2 ‖ ~r1) =
Nn

∑
i=1

M

∑
m

rm
2
(
~xj
)

log
rm

2
(
~xj
)

rm
1
(
~xj
) , (4)

where the rm
1 is the score of class m in logits ~r1 and the rm

2 is the score of class m in logits ~r2.
According to the formula, KL divergence is asymmetric. Hence, the KL distance between the two

networks is different. One can instead use a symmetric KL-divergence such as

DSKL = DKL (~r2 ‖ ~r1) + DKL (~r1 ‖ ~r2) . (5)

Compared to teacher network T, student network S has similar representation capacities, but it is
harder to learn appropriate parameters. In DML and other similar knowledge distillation algorithms,
both teacher network and student network are trained on clean datasets. These studies expect the
student network to mimic the classification probabilities and feature representations of the teacher
network. The objective functions of the two networks are the same. Therefore, a simple combination
of CE loss and KL divergence can facilitate a better student network from the entire clean dataset.
However, how to combine and optimize these two different kinds of losses will be a difficult problem
in our tasks. Our teacher network T is supervised by noise labels and our student network S is
supervised by clean labels. The student network S should not totally mimic outputs of the teacher
network T. By imitating and comparing, the purpose is to distill the knowledge from the noisy dataset,
which is the intersection of clean student’s features and noisy teacher’s features. In the meanwhile,
as mentioned above, a simple combination of CE loss and KL divergence would work on two networks
identical to each other. Although this can be changed by adding some weights before the combination,
there are too many options for hyper-parameters.

To address these problems, NLD feeds outputs of the two networks simultaneously into a
decision network derived from [20]. The decision network simply consists of fully connected layers
with a single output. In [20], this network is used to measure the similarity between two different
images with siamese network. As discussed above, NLD has different settings from images similarity
measurement methods. Different logits of two same image patches are mapping from different
networks. Furthermore, the similarity of two networks is measured through the decision network.
In addition, the decision network has learnable parameters. Instead of relying on the combination of
different loss functions with hyper-parameters, this can automatically learn weights that fit the noisy
label knowledge distillation. Because the original logits are mapping from the same image, the output
r of decision network is still the original image feature mapping. The probability of class m for sample
~xj given by decision network is computed as

pm
1
(
~xj
)
=

exp (rm)

∑M
m=1 exp (rm)

. (6)

Subsequently, the classifier g is supervised by noisy labels and the classifier h is supervised by
clean labels. In this way, the student network can learn clean knowledge and similar knowledge
between clean labels and noise labels, i.e., noise distillation. At the same time, NLD does not need
a mimicry loss, so training is faster and more flexible than traditional distillation methods. In the
meanwhile, the decision network also increases inference time as it requires combinations of two
vectors. However, our goal is to train a student network guided by the teacher network. Therefore,
only the student network is used for testing, while the decision network is not used.
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3.3. Model Training

In original knowledge distillation and DML, the whole objective function consists of a supervised
loss (e.g., CE loss) and a mimicry loss(e.g., KL divergence). In contrast, CE loss is used as the supervised
loss for classifier g and h, respectively. In addition, they can be rewritten as:

Lg = −
Nn

∑
j=1

yj log (p1), (7)

Lh = −
Nc

∑
i=1

yi log (p2), (8)

where Lg and Lh are the losses for the corresponding classifier g and h, respectively. Given the above
definitions, the overall loss for the proposed model is constructed by two losses as follows:

Ltotal = αLh + βLg, (9)

where α and β denote weight factors that need to be set based on student network, teacher network
and noisy dataset.

Training a network with a noisy dataset can lead the network to memorize these
noises. To avoid the teacher network overfitting on noisy data, which will deteriorate the
performance of noise distillation and may even mislead the student to have exploding gradients,
batch normalization(BN) [32] and dropout layer [33] with a constant probability of 0.6 are applied
between the teacher network and the decision network.

3.4. Extension to Pseudo-Labeling

Semi-supervised learning requires a small amount of manually labeled clean data, which is
consistent with NLD. However, semi-supervised learning datasets usually contain a small amount of
labeled data and a large amount of unlabeled data. Because NLD does not use additional mimicry loss,
unlabeled data cannot be used directly. Pseudo-labeling belongs to the self-learning scenario which is
often used in semi-supervised learning. Under the self-training settings, pseudo-labels are obtained by
predicting unlabeled data through the models trained on labeled data. Some of the pseudo-labels will
be mislabeled. These data with the pseudo-labels can be treated as a large noisy dataset and NLD can
extend to semi-supervised learning.

Following [6], the pseudo-labeling method used is illustrated in Figure 3, which is close to
traditional co-training. Denote the labelled and unlabeled subsets as Dl and Du, where the entire
training dataset is Ds = Dl

⋃Du. First, there are two different classifiers f1 and f2 trained on the small
labeled dataset Dl , respectively. Given a batch of unlabeled images ~x′ ∈ Du, two predictions ỹ1 and ỹ2

are provided by the classifiers f1 and f2. Then, ỹ1 and ỹ2 can be represented as

ỹ1 = f1
(
~x′
)

, (10)

ỹ2 = f2
(
~x′
)

. (11)

Only when ỹ1 = ỹ2, the predictions of the classifiers f1 and f2 will be regarded as the pseudo-label
y′ corresponding to ~x′, and other different results will be discarded. Apparently, this process will
reduce the dataset size from Du, which typically affects the final performance. In fact, it removes low
confidence predictions from pseudo-labels and reduces the noise level of the labels. High-quality
pseudo-labels can improve performance and the robustness of the model. Furthermore, it does not need
to choose a confidence threshold or manual selection. This is a more efficient pseudo-labeling method.
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Figure 3. Illustration of the pseudo-labeling method, which includes two phases: training two classifiers
and pseudo-labeling. (a) Two different classifiers f1 and f2 trained on the small manually labeled
subset Dl , respectively. They provide two views of the data. (b) The trained models can predict labels
on a batch of unlabeled data. When the inferences are the same, the predicted labels will remain as
pseudo-labels for the corresponding images, and the rest will be discarded. LCE donate CE loss. ỹ1 and
ỹ2 represent the predictions of two classifiers, respectively. ~y′ indicates pseudo-labels of the batch of
images ~x′.

4. Experiments

In this section, we explain how to construct the mimic noisy datasets and describe the experimental
details of our comparison with other methods on these datasets and evaluate NLD.

4.1. Datasets and Settings

4.1.1. Datasets

UC Merced Land-use dataset is a classical land-use dataset, which contains 21 different scenes
and 2100 images. Each image has 256× 256 pixels and high-resolution in RGB color space with a
spatial resolution of 0.3 m. They were all manually extracted from the USGS National Map Urban
Area Imagery Collection.

NWPU-RESISC45 dataset has a total number of 45 scene classes and 700 images with a size of
256× 256 for each class. Most of the images are middle to high spatial resolution, which varies from
30 m to 0.2 m. They are all cropped from Google Earth. The dataset takes eight popular classes from
UC Merced Land-use dataset and some widely used scene categories from other datasets and research.

AID is a large-scale aerial image dataset with 30 aerial scene types. The dataset is composed
of 10,000 images which are multi-resolution and multi-source. The size of each image is fixed to be
600× 600. The number of images in each class is imbalanced. This dataset is challenging because of
the large intra-class diversities.

These datasets have many overlapped classes (e.g., sparse residential, medium residential and
dense residential) that can easily confuse non-expert. It is particularly challenging for computer vision
researchers with little geography knowledge to label such a dataset manually. As for crowd-sourcing or
automatic labeling, it will be more prone to make errors. Actually, based on the existing public datasets,
when we need to use them in real-world applications, additional data will be used. Only experts can
avoid label noise, which is expensive.

Experiments are conducted on these three datasets. In addition, as shown in Table 1, each dataset
is randomly split into 60% training subset, 20% validation subset and 20% test subset. Because the
existing datasets lack noisy labels, simulated approaches are taken to evaluate NLD. Three different
types of noise are injected into the split training set of all the three datasets separately.
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Table 1. Sample sizes for different datasets.

Datasets Entire Dataset Training Subset Validation Subset Test Subset

UC Merced Land-use 2100 1260 420 420
NWPU-RESISC45 31,500 18,900 6300 6300

AID 10,000 6000 2000 2000

Symmetric noise: The symmetric noise is a type of uniform noise, which is generated by a
random label among the classes to replace the ground-truth label with equal probabilities. This type of
noisy subset represents an almost zero-cost annotation method, which means there are many unlabeled
images, and labels are labeled in a completely random way. Experiments on this noise can prove that,
through NLD, this labeling method is also feasible in some extremely low-cost scenarios.

Asymmetric noise: This type of noise is class dependent noise and it mimics some of the
real-world noise for visually similar and semantically similar categories.

For UC Merced Land-use, to the best of our knowledge, there is no related noise label
mapping method before. After observing the features of images and division of scene classes,
asymmetric noise was generated by mapping chaparral → agricultural, runway ↔ airplane,
tennis court→ baseball diamond, river → beach, mobile home park→ parking lot, f reeway↔ overpass,
sparse residential → buildings, harbor → mobile home park, medium residential ↔ dense residential as
shown in Figure 4.

chaparral agricultural runway airplane tennis court baseball
diamond

river beach mobile
home park

parking lot overpass freeway

sparse 
residential buildings harbor mobile

home park
medium 

residential
dense

residential

Figure 4. Examples of asymmetric noise mapping scenes in the UC Merced Land-use dataset.

For NWPU-RESISC45, baseball diamond → medium residential, beach → river,
dense residential ↔ medium residential, intersection → f reeway, mobile home park ↔
dense residential, overpass ↔ intersection, tennis court → medium residential, runway → f reeway,
thermal power station → cloud, wetland → lake, rectangular f arm land → meadow, church → palace,
commercial area→ dense residential are mapped, following [12]. Figure 5 shows representative images
in this dataset.

For AID, the classes are flipped by mapping bareland↔ desert; center → storage tank; church→
center, storage tank; dense residential ↔ medium residential; industrial → medium residential;
meadow → f arm land; play ground → meadow, school; resort → medium residential; school →
medium residential, play ground; stadium → play ground, following [12]. Figure 6 shows examples
from this dataset.
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medium
residential

intersection freeway mobile 
home park

dense
residential

overpass intersection

tennis 
court

medium
residential runway freeway thermal 
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cloud
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Figure 5. Examples of asymmetric noise mapping scenes in the NWPU-RESISC45 dataset.

bareland desert center storage tank church center

church storage tank dense
residential

medium
residential

industrial medium
residential

meadow farm land play ground meadow play ground school

school
medium 

residential
stadium play ground

Figure 6. Examples of asymmetric noise mapping scenes in the AID dataset.

Pseudo-Labeling noise: Pseudo-labeling methods can assign labels to unlabeled images
automatically, which can reduce costs. However, there are not completely correct pseudo-labels.
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To ensure a fair comparison, following the idea of SSGA-E [6], the full training set is randomly divided
into six parts and randomly select one of them as a small clean subset. Then, two different classifiers
are trained on the small clean subset and make pseudo labels for the rest of the train set. In SSGA-E [6],
two networks are ResNet-50 and VGG-S [34], respectively. However, VGG-S is rarely used in practice,
which can cause many problems in deployment. As a result, VGG-S is replaced with the VGG-19 [25],
which has lower accuracy but is more widely used. These unlabeled subsets with automatically
generated labels can be viewed as the noisy subset. In addition, since this method does not label
all images, some of the uncertain images are removed from the subset and the noise subset will be
smaller than the original subset. The number of annotations obtained for unlabeled images of different
datasets is listed in Table 2.

Table 2. Number of samples contained in different subsets. The unlabeled subset is 5
6 of the entire

training set. Pseudo-labeled subset is generated in unlabeled subset by the automatic labeling method
trained with the clean labeled subset (i.e., 1

6 of the entire training set) as a clean subset.

Datasets Entire Training Subset Clean Labeled Subset Unlabeled Subset Pseudo-Labeled Subset

UC Merced Land-use 1260 210 1050 859
NWPU-RESISC45 18,900 3150 15,750 13,625

AID 6000 1000 5000 4535

4.1.2. Baselines and Model Variants

To evaluate the performance improvement of NLD, our approach is compared with some
pseudo-labeling methods [6]. Several related baselines are also provided for symmetric noise,
asymmetric noise. In addition, NLD is used as the base model for some other variants to verify
the effectiveness of NLD. The details of the baselines and variants are as follows.

Baseline-Clean: A backbone network of the student model is trained for remote sensing scenes
classification using the clean subset. This can be regarded as the lower bound of NLD. Our method
uses the noisy subset to improve performance on this baseline.

Baseline-Noise: A backbone network of the student model is trained solely on noisy labels from
the training set. This baseline can be viewed as a measurement of the quality of noisy labels.

Baseline-Mix: A backbone network of the student model is trained using a mix of clean and noisy
labels with standard CE loss. This baseline shows the damage caused by noisy subsets.

SCE Loss: Under the supervision of SCE loss, a model is trained on the entire dataset with both
clean and noisy labels. Parameters for SCE are configured as α = 0.1 and β = 1.0.This is a baseline for
a noise-robust method.

Noise model fine-tune with clean labels (Clean-FT): It is a common approach, which uses the
clean subset directly to fine-tune the whole network of Baseline-Noise. This method is prone to overfit
if there are few clean samples.

Noise model fine-tune with mix of clean and noisy labels (Mix-FT): To address the
problem caused by limited clean labels, fine-tuning the Baseline-Noise with mixed data is also a
common approach.

NLD with CE loss (NLD): NLD is trained on both the original clean datasets and different noisy
ratios of datasets. For a completely clean dataset, one image is used as input simultaneously for the
teacher and student, which is close to DML.

4.1.3. Experimental Settings

All experiments are implemented with PyTorch framework [35] and conducted on an NVIDIA
GeForce Titan X GPU. The networks used in our experiments are shown in Table 3. These networks
are all pre-trained on ImageNet. Although VGG architecture has a larger number of parameters and
needs more floating point operations(FLOPs), ResNet architecture has stronger feature representation
capabilities-based residual modules. Therefore, teacher networks in all experiments are ResNet
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architecture. For UC Merced Land-use dataset, it is worth mentioning that SSGA-E [6] uses VGG-S and
VGG-16, but after our experiments, the network with VGG architectures will be over-fitting because
the size of this dataset is small. So the actual network used is modified VGG architectures with BN to
learn this dataset. As a preprocessing step, random flip, random gaussian blur and resize images to
224× 224 are used. For optimization, we use Adam with weight decay of 10−2, batch size of 32 and
initial learning rate of 10−4. The leaning rate will decrease according to the exponential decay with
the multiplicative factor of 0.98 in each epoch. All networks mentioned in Section 4.1.2 are trained for
200 epochs. Besides, for NLD, a batch of images is half clean and half noise. In general, the weight
factors are set to α = 10 and β = 2. For additional experiments, experiments are conducted with more
different factors, losses and networks, which will be detailed in Section 4.6

Table 3. Comparison of various network architecture.

Network Type Million Parameters GFLOPs

ResNet-34 21.819 3.679
ResNet-50 25.578 4.136
VGG-16 138.379 15.608

VGG-16 with BN 138.387 15.662
VGG-19 143.688 19.771

VGG-19 with BN 143.699 19.830

4.2. Results on UC Merced Land-Use

The results on the original UC Merced Land-use without any label noise and the UC Merced
Land-use with symmetric label noise are reported in Table 4. Two confusion matrices for noise-free UC
Merced Land-use are shown in Figures 7 and 8, respectively. It is noticeable that the student network
(ResNet-34) can significantly benefit for NLD when learning from the original noise-free dataset.
Therefore, NLD can also be regarded as a model distillation-like process, without additional data and
pre-trained models. For symmetric noise, this type of noise label is completely random and there is
little correct information for NLD distilling the knowledge in the noisy subset. Our method can still
make better performance and robustness of the student network in most cases. As for Dc : Dn = 8 : 2
and Dc : Dn = 2 : 8 cases, it revealed that when the clean subset Dc or noisy subset Dn is too small (e.g.,
252 samples), clean labels or randomly generated labels are too weak to bootstrap the performance.
Instead of improving performance, other common approaches even hurt the performance. When the
label quality of the noise subset is extremely low, a lot of error guidance will be provided. Specifically,
different fine-tuning methods require a pre-trained model of the noise subset, which may get worse
initialization values than the ImageNet [3] pre-trained model. If the two subsets are mixed, the noise
labels will become adversarial examples, which confuse the network. SCE or other noise-robust
methods can alleviate this problem, but the performance is still far from the method with a small
number of clean labels available.

Table 5 shows the results for asymmetric label noise. This noise is closer to the real scene, similar
to crowd-sourcing labeling or crawling data from Internet. According to the results of Baseline-Noise,
such labels can provide a more valuable pre-trained model than labels with symmetric noise. Clean-FT
and Mix-FT provide clear improvements compared to Baseline-Clean and Baseline-Mix, respectively.
However, for mix-based methods, during training, the learning process of the model on the clean
subset will be continuously misguided by the noise labels. As the noise ratio increases and clean ratio
decreases, less clean data is difficult to fight against more noisy data, the performance of Mix-FT and
SCE Loss is severely impaired. For NLD, the framework can maintain a better performance with fewer
clean labels and more noisy labels. When Dc : Dn goes from 2 : 8 to 8 : 2, the performance of the model
will only decrease by 1.62%. It is particularly noteworthy that when Dc : Dn = 2 : 8, NLD can exceed
6.67% of the Baseline-Clean.
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Figure 7. The confusion matrix of Baseline-Clean with full UC Merced Land-use dataset.

Figure 8. The confusion matrix of NLD with full UC Merced Land-use dataset.
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Table 4. Classification accuracy (%) on the UC Merced Land-use test set for different methods trained
with the original noise-free dataset and symmetric label noise. We report the mean and standard error
across 5 runs.

Methods Network Types

None Symm

Dc : Dn Dc : Dn

10 : 0 8 : 2 6 : 4 4 : 6 2 : 8

Baseline-Clean ResNet-34 98.66± 0.84 98.48± 0.75 96.52± 1.27 94.86± 0.89 89.14± 1.01
Baseline-Noise ResNet-34 - 4.86± 1.65 6.05± 1.86 5.14± 0.76 6.14± 1.23
Baseline-Mix ResNet-34 - 91.98± 1.55 83.66± 1.96 69.67± 2.30 43.10± 2.40
SCE Loss ResNet-34 - 91.09± 0.69 81.43± 1.37 70.86± 3.81 44.67± 2.91
Mix-FT ResNet-34 - 91.95± 1.11 76.81± 2.33 56.19± 1.93 29.90± 1.88
Clean-FT ResNet-34 - 98.38± 0.38 97.29± 0.47 94.14± 0.75 87.10± 1.15
NLD ResNet-50+ResNet-34 99.08± 0.40 98.86± 0.28 97.43± 0.63 95.86± 0.29 89.28± 0.42

Table 5. Classification accuracy (%) on the UC Merced Land-use test set for different methods trained
with asymmetric label noise. We report the mean and standard error across 5 runs.

Methods Network Types

Asym

Dc : Dn

8 : 2 6 : 4 4 : 6 2 : 8

Baseline-Clean ResNet-34 98.14± 0.65 97.09± 0.63 94.62± 1.57 90.71± 1.23
Baseline-Noise ResNet-34 42.67± 0.41 43.53± 0.82 43.95± 0.32 43.23± 0.58
Baseline-Mix ResNet-34 90.76± 0.84 78.95± 2.10 65.57± 1.74 54.29± 1.49
SCE Loss ResNet-34 90.67± 0.73 81.48± 2.53 66.76± 2.91 54.08± 0.50
Mix-FT ResNet-34 89.96± 1.25 79.86± 2.62 67.14± 1.20 54.95± 1.82
Clean-FT ResNet-34 98.33± 0.54 96.62± 1.05 95.57± 0.89 92.67± 1.53
NLD ResNet-50+ResNet-34 99.00± 0.18 97.95± 0.44 97.57± 0.49 97.38± 0.56

4.3. Results on NWPU-RESISC45

In this experiment, NLD is tested on NWPU-RESISC45 with different noisy types. Table 6
summarizes the classification accuracy (%) of ResNet-34 trained with/without NLD. According to
Baseline-Noise, asymmetric noise can provide more correct information due to the larger scale of
NWPU-RESISC45 than UC Merced Land-use. Thus, Clean-FT can benefit from asymmetric noisy
labels. However, the performance of other methods is still compromised by the noise. On the contrary,
NLD has strong robustness and can benefit from different ratios and types of noisy labels. As for the
test set accuracy, NLD has clearly improved the baseline and direct fine-tuning. Figures 9 and 10 show
the confusion matrices of NLD and Baseline-Clean on original NWPU-RESISC45. It can be observed
that NLD improves the performance of the student network as a method of model distillation.

Table 6. Classification accuracy (%) on the NWPU-RESISC45 test set for different methods.

Methods Network Types

None Symm Asym

Dc : Dn Dc : Dn Dc : Dn

10 : 0 6 : 4 4 : 6 4 : 6 2 : 8

Baseline-Clean ResNet-34 94.95 91.89 90.14 90.32 90.05
Baseline-Noise ResNet-34 - 3.59 3.49 65.13 65.08
Mix-FT ResNet-34 - 35.03 21.27 75.97 68.83
Clean-FT ResNet-34 - 87.43 84.46 91.95 91.29
Ours ResNet-50+ResNet-34 95.86 93.79 92.81 95.76 94.59
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Figure 9. The confusion matrix of Baseline-Clean for the NWPU-RESISC45.

Figure 10. The confusion matrix of NLD for the NWPU-RESISC45.
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4.4. Results on AID

Next, the performance of NLD is evaluated on the AID dataset. Table 7 shows the results. As the
classes of AID are imbalanced, it is more challenge using noise labels. It can be observed that all
methods are significantly affected by symmetric noise, especially when the noise rate increases.
In contrast, asymmetric noise can change the imbalance of the data distribution. As a result,
NLD can benefit from asymmetric noisy labels and improve performance. The gap between NLD and
Clean-Baseline became especially apparent when the noise rate increased to larger values. Our method
can be applied to scenarios with more noisy labels. For example, when the asymmetric noise rate
is 2 : 8, NLD obtains 2.3% higher accuracy than Baseline-Clean and 3.35% higher than Clean-FT.
The confusion matrices for the AID dataset with asymmetric noise of Dc : Dn = 2 : 8 are shown in
Figures 11 and 12. The results of NLD are significantly better than Baseline-Clean.

Table 7. Classification accuracy (%) on the AID test set for different methods.

Methods Network Types

None Symm Asym

Dc : Dn Dc : Dn Dc : Dn

10 : 0 6 : 4 4 : 6 4 : 6 2 : 8

Baseline-Clean ResNet-34 96.30 95.70 94.95 95.10 92.95
Baseline-Noise ResNet-34 - 6.85 4.7 59.62 59.57
Mix-FT ResNet-34 - 20.99 11.49 77.71 68.77
Clean-FT ResNet-34 - 83.96 12.39 94.15 91.90
NLD ResNet-50+ResNet-34 96.35 95.70 93.60 95.90 95.25

Figure 11. The confusion matrix of Baseline-Clean for the AID dataset with asymmetric noise of
Dc : Dn = 2 : 8.
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Figure 12. The confusion matrix of NLD for the AID dataset with asymmetric noise of Dc : Dn = 2 : 8.

4.5. Comparison with Pseudo-Labeling

We explore pseudo-labeling in UC Merced Land-use, NWPU-RESISC45 and AID. For all datasets,
one-sixth of the training images per class is randomly selected as labeled, and the rest of images is
treated as unlabeled. Experiments are compared with three pseudo-labeling strategies: (1) traditional
self-training with single network; (2) traditional co-training with two networks respectively; (3)
SSGA-E [6] with three networks.

Tables 8 and 9 shows the result from Han et al. [6], supplemented with our results. NLD
achieves the best overall accuracy in all cases. For the UC Merced Land-use, Resnet34 is more effective
as a student network when there is less unlabeled data. When leveraging entire unlabeled subset,
VGG-16 shows better performance as a student network. With a larger scale of labeled data (e.g.,
NWPU-RESISC45), the improvement of our framework is higher. This confirms that NLD benefits
pseudo-labeling scenarios.

Table 8. The effect of the unlabeled sample ratio on accuracy for the UC Merced Land-use test set
reported by Han et al. [6], supplemented with our results.

Methods Network Types
Unlabeled Samples

210 420 630 840 1050

Self-training [6] VGG-S - 86.14± 1.87
ResNet50 91.57± 2.00

Co-training [6] ResNet50&&VGG-S 89.75± 1.27 91.62± 0.93 92.58± 0.78 93.42± 1.32 93.75± 1.42
SSGA-E [6] ResNet50&&VGG-S+VGG16 91.42± 0.95 92.68± 0.87 93.56± 1.42 94.21± 1.18 94.52± 1.38

NLD ResNet50&&VGG-19+ResNet50+VGG16 91.48± 0.80 92.10± 0.52 92.67± 0.74 93.00± 0.82 95.15± 0.85
NLD ResNet50&&VGG-19+ResNet50+ResNet34 93.43± 0.55 94.19± 0.71 94.81± 0.46 94.52± 0.87 93.86± 0.99
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Table 9. Comparison with results on the NWPU-RESISC45 and AID test set reported by Han et al. [6].

Methods Network Types
Dataset

NWPU-RESISC45 AID

Self-training [6]
VGG-S 81.46 86.02

ResNet-50 85.82 89.38

Co-training [6] ResNet-50&&VGG-S 87.25 90.87
SSGA-E [6] ResNet-50&&VGG-S+VGG-16 88.60 91.35

NLD ResNet-50&&VGG-19+ResNet-50+VGG16 91.35 92.65

4.6. Additional Experiments

In this section, we study the importance of hyper-parameters and investigate the effect of changing
components to provide additional insight into NLD.

Table 10 presents the following four experiments on UC Merced Land-use: (a) NLD with the
weight factors α = 10 and β = 2. (b) NLD with the weight factors α = 2 and β = 10. (c) Using two
same networks as student and teacher, respectively. (d) For the noisy teacher network, CE loss is
replaced by SCE loss.

Table 10. Classification accuracy (%) on the UC Merced Land-use test set after changing each module
from our model.

Network Types

Loss None Symm Asym

α β
Dc : Dn Dc : Dn Dc : Dn

10 : 0 6 : 4 4 : 6 4 : 6 2 : 8

ResNet-50+ResNet-34 10CE 2CE 99.08± 0.40 97.43± 0.63 95.86± 0.29 97.57± 0.49 97.38± 0.56
ResNet-50+ResNet-34 2CE 10CE 99.10± 0.31 95.33± 0.52 92.00± 0.80 98.71± 0.27 97.76± 0.71
ResNet-34+ResNet-34 10CE 2CE 98.00± 0.44 97.48± 0.68 95.29± 0.66 97.05± 1.05 97.33± 0.41
ResNet-50+ResNet-34 10CE 2SCE 99.14± 0.12 95.62± 0.75 93.28± 0.82 98.43± 0.24 98.00± 0.44

Hyper-parameters: From Table 10, hyper-parameters settings have a significant effect on the
performance of NLD. As α decreases and β increases, the student network learns more information
from noise distillation. Since the information in symmetric noise labels is limited, a larger β cannot
make the teacher network to distill more knowledge. In such cases, the network performance can be
degraded by incorrect guidance. Similarly, asymmetric noise labels have more correct information.
So a larger β can enhance the teacher’s ability to distill the right instruction to the student. In the
absence of noisy labels, the effect of factors is not significant. This result thus suggests that appropriate
factors are needed to select based on the quality of the noise labels in practice.

Distillation with the same network: As shown in Table 10, we perform experiments for
ResNet-34 as a teacher and a student. In general, the first thing to notice is that the teacher network with
a smaller capacity can also benefit the student network. However, for noise-free scenarios, it cannot
take effect because the teacher and student have the same input and architecture and it is difficult to
get extra knowledge. Moreover, a larger standard deviation for most results implies worse robustness.
Therefore, a large teacher network is still a better option. In some low-cost scenarios, it is also possible
to choose a small teacher network.

Training teacher with different loss: SCE can supervise the network to learn more information
in the noisy labels (i.e., more errors in symmetric noise or more correctness in asymmetric noise).
For fully clean data, there is little additional benefit from SCE. Such a property produces the results in
Table 10. Therefore, for most real applications, SCE should be used instead of CE for the teacher to
achieve a better performance of NLD.
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5. Conclusions

This work proposes an efficient framework named NLD to address the noisy label problem for
remote sensing image scene classification. NLD can distill the knowledge from different types of
noise to improve performance of networks. Teacher networks can avoid overfitting into the noise
through consistent decisions with student networks. The decision network is introduced to replace KL
divergence. It is different from previous methods for distillation. The proposed NLD framework is
end-to-end and does not require a pre-training process besides ImageNet. Thus, NLD is more practical
and easier to deploy.

NLD can fully leverage the information contained in the noisy labels to improve the performance
of network trained on the clean labels. Experiments are conducted on UC Merced Land-use,
NWPU-RESISC45 and AID with different noise types. NLD improves over the baseline and direct
fine-tuning. It can also be easily extended to pseudo-labeling. NLD performs significantly better than
SSGA-E and other methods. For completely clean datasets, NLD can also improve accuracy as a model
distillation-like process.

Future work will explore real-world noise datasets. More data with noisy labels can be collected
from search engines and google earth, etc. Furthermore, mixing multiple existing public datasets as a
clean dataset is also a worthwhile experiment. Our goal is to apply NLD to real scenarios.

Author Contributions: Conceptualization, R.Z., Z.C. and T.L. ; methodology, R.Z., Z.C. and T.L.; software, R.Z.
and Z.C.; validation, R.Z., Z.C. and T.L.; formal analysis, R.Z. and F.S.; investigation, R.Z. and S.Z.; resources,
T.L.; data curation, R.Z.; writing—original draft preparation, R.Z.; writing—review and editing, Z.C. and G.Z.;
visualization, R.Z. and Q.Z.; supervision, T.L.; project administration, T.L.; funding acquisition, T.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by Youth Innovation Promotion Association, Chinese Academy of Sciences
(Grant No. 2016336).

Acknowledgments: The authors thank the editor and anonymous reviewers for their helpful comments and
valuable suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD linear dichroism

References

1. Chaib, S.; Liu, H.; Gu, Y.; Yao, H. Deep feature fusion for VHR remote sensing scene classification. IEEE Trans.
Geosci. Remote Sens. 2017, 55, 4775–4784. [CrossRef]

2. Nogueira, K.; Penatti, O.A.; Dos Santos, J.A. Towards better exploiting convolutional neural networks for
remote sensing scene classification. Pattern Recognit. 2017, 61, 539–556. [CrossRef]

3. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F. ImageNet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), Miami, FL, USA, 20–25 June 2009; IEEE Computer Society: Washington, DC, USA, 2009; pp. 248–255.

4. Algan, G.; Ulusoy, I. Image Classification with Deep Learning in the Presence of Noisy Labels: A Survey.
arXiv 2019, arXiv:1912.05170.

5. Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.;
Duerig, T.; et al. The open images dataset v4: Unified image classification, object detection, and visual
relationship detection at scale. arXiv 2018 arXiv:1811.00982.

http://dx.doi.org/10.1109/TGRS.2017.2700322
http://dx.doi.org/10.1016/j.patcog.2016.07.001


Remote Sens. 2020, 12, 2376 20 of 21

6. Han, W.; Feng, R.; Wang, L.; Cheng, Y. A semi-supervised generative framework with deep learning features
for high-resolution remote sensing image scene classification. ISPRS-J. Photogramm. Remote Sens. 2018,
145, 23–43. [CrossRef]

7. Li, W.; Wang, L.; Li, W.; Agustsson, E.; Van Gool, L. Webvision database: Visual learning and understanding
from web data. arXiv 2017, arXiv:1708.02862.

8. Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; Wang, X. Learning from massive noisy labeled data for image
classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 7–12 June 2015; IEEE Computer Society: Washington, DC, USA, 2015; pp. 2691–2699.

9. Lee, K.; He, X.; Zhang, L.; Yang, L. CleanNet: Transfer Learning for Scalable Image Classifier Training with
Label Noise. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, UT, USA, 18–22 June 2018; IEEE Computer Society: Washington, DC, USA, 2018;
pp. 5447–5456.

10. Jiang, J.; Ma, J.; Wang, Z.; Chen, C.; Liu, X. Hyperspectral image classification in the presence of noisy labels.
IEEE Trans. Geosci. Remote Sens. 2018, 57, 851–865. [CrossRef]

11. Tu, B.; Zhang, X.; Kang, X.; Wang, J.; Benediktsson, J.A. Spatial density peak clustering for hyperspectral
image classification with noisy labels. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5085–5097. [CrossRef]

12. Damodaran, B.B.; Flamary, R.; Seguy, V.; Courty, N. An Entropic Optimal Transport loss for learning deep
neural networks under label noise in remote sensing images. Comput. Vis. Image Underst. 2020, 191, 102863.
[CrossRef]

13. Wang, Y.; Ma, X.; Chen, Z.; Luo, Y.; Yi, J.; Bailey, J. Symmetric Cross Entropy for Robust Learning with Noisy
Labels. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul,
Korea, 27 October–2 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 322–330.

14. Northcutt, C.G.; Jiang, L.; Chuang, I.L. Confident Learning: Estimating Uncertainty in Dataset Labels.
arXiv 2019, arXiv:1911.00068.

15. Kim, Y.; Yim, J.; Yun, J.; Kim, J. NLNL: Negative Learning for Noisy Labels. In Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 101–110.

16. Veit, A.; Alldrin, N.; Chechik, G.; Krasin, I.; Gupta, A.; Belongie, S.J. Learning from Noisy Large-Scale
Datasets with Minimal Supervision. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE Computer Society: Washington, DC,
USA, 2017; pp. 6575–6583.

17. Li, Y.; Yang, J.; Song, Y.; Cao, L.; Luo, J.; Li, L. Learning from Noisy Labels with Distillation. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV),Venice, Italy, 22–29 October 2017;
IEEE Computer Society: Washington, DC, USA, 2017; pp. 1928–1936.

18. Hu, M.; Han, H.; Shan, S.; Chen, X. Weakly Supervised Image Classification Through Noise Regularization.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 16–20 June 2019; Computer Vision Foundation/IEEE: Piscataway, NJ, USA, 2019; pp. 11517–11525.

19. Zhang, Y.; Xiang, T.; Hospedales, T.M.; Lu, H. Deep Mutual Learning. In Proceedings of the 2018 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018;
IEEE Computer Society: Washington, DC, USA, 2018; pp. 4320–4328.

20. Zagoruyko, S.; Komodakis, N. Learning to compare image patches via convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; IEEE Computer Society: Washington, DC, USA, 2015; pp. 4353–4361.

21. Yang, Y.; Newsam, S.D. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings
of the 18th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems
(ACM-GIS), San Jose, CA, USA, 3–5 November 2010; Agrawal, D., Zhang, P., Abbadi, A.E., Mokbel, M.F.,
Eds.; ACM: New York, NY, USA, 2010; pp. 270–279.

22. Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art.
Proc. IEEE 2017, 105, 1865–1883. [CrossRef]

23. Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for
performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981.
[CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2017.11.004
http://dx.doi.org/10.1109/TGRS.2018.2861992
http://dx.doi.org/10.1109/TGRS.2019.2896471
http://dx.doi.org/10.1016/j.cviu.2019.102863
http://dx.doi.org/10.1109/JPROC.2017.2675998
http://dx.doi.org/10.1109/TGRS.2017.2685945


Remote Sens. 2020, 12, 2376 21 of 21

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; IEEE Computer Society: Washington, DC, USA, 2016; pp. 770–778.

25. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556.

26. Zhang, W.; Tang, P.; Zhao, L. Remote sensing image scene classification using CNN-CapsNet. Remote Sens.
2019, 11, 494. [CrossRef]

27. Li, J.; Lin, D.; Wang, Y.; Xu, G.; Zhang, Y.; Ding, C.; Zhou, Y. Deep Discriminative Representation Learning
with Attention Map for Scene Classification. Remote Sens. 2020, 12, 1366. [CrossRef]

28. Inoue, N.; Simo-Serra, E.; Yamasaki, T.; Ishikawa, H. Multi-label Fashion Image Classification with Minimal
Human Supervision. In Proceedings of the 2017 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), Venice, Italy, 22–29 October 2017; IEEE Computer Society: Washington, DC,
USA, 2017; pp. 2261–2267.

29. Sohn, K.; Berthelot, D.; Li, C.L.; Zhang, Z.; Carlini, N.; Cubuk, E.D.; Kurakin, A.; Zhang, H.;
Raffel, C. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. arXiv 2020,
arXiv:2001.07685.

30. Li, Q.; Peng, X.; Cao, L.; Du, W.; Xing, H.; Qiao, Y. Product Image Recognition with Guidance Learning and
Noisy Supervision. arXiv 2019, arXiv:1907.11384.

31. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
32. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. arXiv 2015, arXiv:1502.03167.
33. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent

neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
34. Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into

convolutional nets. arXiv 2014, arXiv:1405.3531.
35. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;

Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings
of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019 (NeurIPS), Vancouver, BC, Canada, 8–14 December 2019; Wallach, H.M.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2019; pp. 8024–8035.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs11050494
http://dx.doi.org/10.3390/rs12091366
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Remote Sensing Image Scene Classification
	Learning from Noisy Labels

	Method
	Problem Formulation
	Noisy Distillation
	Model Training
	Extension to Pseudo-Labeling

	Experiments
	Datasets and Settings
	Datasets
	Baselines and Model Variants
	Experimental Settings

	Results on UC Merced Land-Use
	Results on NWPU-RESISC45
	Results on AID
	Comparison with Pseudo-Labeling
	Additional Experiments

	Conclusions
	References

