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Abstract: Previous research has demonstrated that remote sensing can provide spectral information
related to vegetation moisture variations essential for estimating live fuel moisture content (LFMC),
but accuracy and timeliness still present challenges to using this information operationally. Consequently,
many regional administrations are investing important resources in field campaigns for LFMC monitoring,
often focusing on indicator species to reduce sampling time and costs. This paper compares different
remote sensing approaches to provide LFMC prediction of Cistus ladanifer, a fire-prone shrub species
commonly found in Mediterranean areas and used by fire management services as an indicator species
for wildfire risk assessment. Spectral indices (SI) were derived from satellite imagery of different spectral,
spatial, and temporal resolution, including Sentinel-2 and two different reflectance products of the
Moderate Resolution Imaging Spectrometer (MODIS); MCD43A4 and MOD09GA. The SI were used
to calibrate empirical models for LFMC estimation using on ground field LFMC measurements from a
monospecific shrubland area located in Madrid (Spain). The empirical models were fitted with different
statistical methods: simple (LR) and multiple linear regression (MLR), non-linear regression (NLR),
and general additive models with splines (GAMs). MCD43A4 images were also used to estimate LFMC
from the inversion of radiative transfer models (RTM). Empirical model predictions and RTM simulations
of LFMC were validated and compared using an independent sample of LFMC values observed in
the field. Empirical models derived from MODIS products and Sentinel-2 data showed R2 between
estimated and observed LFMC from 0.72 to 0.75 and mean absolute errors ranging from 11% to 13%.
GAMs outperformed regression methods in model calibration, but NLR had better results in model
validation. LFMC derived from RTM simulations had a weaker correlation with field data (R2 = 0.49)
than the best empirical model fitted with MCD43A4 images (R2 = 0.75). R2 between observations and
LFMC derived from RTM ranged from 0.56 to 0.85 when the validation was performed for each year
independently. However, these values were still lower than the equivalent statistics using the empirical
models (R2 from 0.65 to 0.94) and the mean absolute errors per year for RTM were still high (ranging from
25% to 38%) compared to the empirical model (ranging 7% to 15%). Our results showed that spectral
information derived from Sentinel-2 and different MODIS products provide valuable information for
LFMC estimation in C. ladanifer shrubland. However, both empirical and RTM approaches tended to
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overestimate the lowest LFMC values, and therefore further work is needed to improve predictions,
especially below the critical LFMC threshold used by fire management services to indicate higher
flammability (<80%). Although lower extreme LFMC values are still difficult to estimate, the proposed
empirical models may be useful to identify when the critical threshold for high fire risk has been reached
with reasonable accuracy. This study demonstrates that remote sensing data is a promising source of
information to derive reliable and cost-effective LFMC estimation models that can be used in operational
wildfire risk systems.

Keywords: satellite imagery; live fuel moisture content; Sentinel-2; MODIS; radiative transfer model;
wildfire; shrubland; Cistus ladanifer

1. Introduction

Wildfire activity is highly influenced by fuel characteristics, especially vegetation moisture
dynamics [1,2]. Live fuel moisture content (LFMC) has been proven to be a major driver of vegetation
flammability and fire behavior as it determines both the ability of ignition and the spread rate of
flames [3–5]. Due to the dampening effect of water content in plant tissues, vegetation may act as a
heat source or sink in a wildfire depending on LFMC level, thus conditioning fire front progression
and transition from surface to crown fires [6,7].

Many regions around the world are suffering more frequent extreme weather conditions and
an extension of the fire season along the year, with even worse scenarios projected in the future [8,9].
In Southern Europe, global change has also led to a shift in fire regimes from fuel-limited to
drought-driven due to rural abandonment that favors fuel build-up in unmanaged landscapes [10,11].
Current wildfire 3D models and simulation tools are useful for predicting potential fire behavior and
severity at the landscape level, but they require detailed and spatially-explicit fuel characteristics,
including LFMC, as key input parameters [12–15]. So, there is an increasing need for reliable and
updated spatial and temporal estimations of LFMC to improve fire danger rating systems and the
emergency response [16].

Despite its relevance, the estimation of LFMC variation is still uncertain because of the complex
interaction between weather, plants, and soil characteristics [17]. Research institutions and management
services in many countries are investing an important amount of resources on field-based vegetation
monitoring to understand LFMC dynamics and support operational fire management activities for
wildfire prevention and suppression planning [17,18]. Field sampling is expensive and time-consuming,
implying also a delay time until moisture data are available, hence fire managers often focus on only
collecting data from indicator species that are relevant for wildfire risk assessment.

Remote sensing is the only efficient alternative that can provide systematic and accurate vegetation
monitoring on a large scale. Previous research highlights the ability of satellite imagery for LFMC
estimation at different spatial and temporal resolutions [19]. Among optical sensors, the Moderate
Resolution Imaging Spectrometer (MODIS) is commonly used to this end due to its adequate temporal
and spectral resolution. Many authors proposed empirical models to estimate LFMC from several
spectral indices derived from MODIS data [20–23]. However, MODIS provides spectral information at
a coarse spatial resolution (500 m in the near to short wave infrared, NIR to SWIR), which may limit its
use in areas with heterogeneous vegetation or strong topographic effects that determine differences in
moisture conditions. Sentinel-2 is a new generation of sensors with similar spectral information to
MODIS and extra red-edge bands but with a higher spatial resolution (ranging from 10 m to 60 m) which
provides an opportunity to potentially improve LFMC estimations and the applications of the final
products for more detailed wildfire management. Nevertheless, to date, there are still very few studies
testing Sentinel-2 imagery for LFMC estimation [24], and no study has carried out a comprehensive
analysis of Sentinel-2 capability in comparison to other commonly-used sensors. Some authors
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have assessed the potential of microwave remote sensing for LFMC estimation, obtaining moderate
results compared to optical indices derived from MODIS [25,26]. Recently, Wang et al. [27] tested the
performance of synthetic aperture radar (SAR) from Sentinel-1A for LFMC retrieval, obtaining better
results compared to Landsat data.

In addition to the empirical modeling of LFMC, some authors proposed the use of radiative
transfer models (RTM) to retrieve LFMC from optical sensors. RTM is a more complex method based on
physical approaches from simulations that can provide robust LFMC estimations independent of site
specificities [19,28–31]. Yebra et al. [29] compared the performance of empirical and statistical models
based on RTM from MODIS images for LFMC estimation, reporting good results for Mediterranean
grassland and shrubland in central Spain. However, these authors used MODIS data from an 8-day
composite product that may not be ideal for LFMC retrieval with operational purposes. Shu et al. [24]
combined Sentinel-2A data and coupled RTMs to retrieve LFMC in different types of vegetation,
including grassland, shrubland, and forest ecosystems from USA, South Africa, Australia, and France,
with promising preliminary results in terms of correlation (R2 = 0.64), but still obtaining low accuracies
(RMSE = 47%).

Research on LFMC estimation from satellite imagery to date has been mainly focused on composite
products that are useful to study vegetation dynamics, but there is a lack of information regarding the
ability of near-real-time remote sensing data for LFMC retrieval. Hence, accurate LFMC estimation
is still a challenge at an operational level, either through empirical modeling or RTM approaches,
which is a requirement for its integration into efficient fire pre-alert systems.

The aims of the present study are: (i) to assess the potential of satellite images of different
spectral, spatial and temporal resolutions collected by Sentinel-2 and MODIS to estimate LFMC,
including operational and non-operational products, and (ii) to compare the performances of empirical
models and RTM simulations based on the same MODIS product, assessing model accuracy within
the framework of previous results. We focused on Cistus ladanifer L., a fire-prone species commonly
found in Mediterranean shrubland areas. C. ladanifer is used by fire management services as an
indicator species for wildfire risk assessment. To our knowledge, this is the first study carrying out a
comprehensive analysis of Sentinel-2 capability in comparison to other sensors and retrieval algorithms.

2. Methods

2.1. Study Area and Reference Data

The study area is a 45 ha monospecific shrubland located in the Madrid region, Central Spain
(40◦30′ N, 4◦12′ W) (Figure 1). Vegetation is dominated by C. ladanifer, a shrub species that has been
identified by Spanish regional fire management services as a fire risk indicator species due to the high
seasonal variability and the low minimum moisture values reached during the fire season. The climate
is typically Mediterranean, with hot dry summers and rainfalls occurring mainly during spring and
autumn. The average minimum and maximum temperatures are 1 ◦C in winter and 31 ◦C in summer,
respectively, and mean annual precipitation is 450 mm.

Samples of C. ladanifer live fine fuels, including leaves and terminal twigs (Figure 1),
were systematically collected in the study area according to a field protocol defined by the Forest Fire
Laboratory of the Spanish National Institute for Agricultural and Food Research and Technology (INIA).
Random linear transects were established in order to avoid re-sampling of the same plants throughout
the study period. Between 50–100 g of fine fuel, i.e., twigs and leaves lesser than 6 mm according to
Fosberg and Deeming [32], were extracted using a manual saw on at least five different plants along the
selected transect. Samples were collected at 12:00 AM on a sunny hill facing southeast, were introduced
in a hermetic plastic recipient, and were transported to the laboratory before 3:00 PM to avoid potential
humidity loss. Sampling frequency varied along the year, starting in spring 2016, with an increased
frequency from up to three days during the summer, weekly during spring and autumn, and biweekly
in winter. Fresh samples were weighed daily in a laboratory, and then oven-dried at 100 ◦C for 24 h
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and weighed dry for moisture content estimation. LFMC was calculated as the percentage of water
content of vegetation on a dry-weight basis.
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Figure 1. Location of the study area and example of a field sample collected in the C. ladanifer shrubland.

A total of 143 field samples were available for the study area. Reference data were carefully
selected in order to exclude any sample with potential LFMC anomaly detected due to incorrect field
sampling (e.g., dead leaves, flowers or fruits included), previous rainfall, or loss of moisture prior to
laboratory processing.

2.2. Remote Sensing Data

2.2.1. Image Selection and Preprocessing

Spectral information derived from two types of satellite sensors was used: the Moderate Resolution
Imaging Spectroradiometer (MODIS) and the Sentinel-2 Multi-Spectral Instrument (MSI). MODIS provides
daily images with a coarse spatial resolution (250 m, 500 m or 1000 m). Sentinel-2 satellites provide images
at a finer spatial resolution, revisiting the same portion of the earth at least every 5 days with the two
satellites (2A and 2B) available. The high-resolution optical sensor (MSI) included in Sentinel-2 satellites
operates in 13 bands between the visible and the SWIR. The spatial resolution is 10 m for visible and NIR
bands, 20 m for red-edge and SWIR bands, and 60 m for atmospheric bands.

Two standard products of MODIS were selected: (i) MCD43A4, a 16-day composite that combines
images from Terra an Aqua satellites, which is daily available but with a timelag until the 16-day
composite period is completed, and (ii) MOD09GA, a non-composite daily product provided by Terra
satellite that has the drawback of depending on cloud-free image availability. We choose MOD09GA
over other similar MODIS products provided by Aqua satellite (e.g., MYD09GA) because image
acquisition time was closer to field data collection time (MODIS Terra is before noon, whereas MODIS
Aqua is later in the afternoon). Both MODIS products corresponded to atmospherically-corrected
surface reflectance, and MCD43A4 also include bidirectional reflectance distribution function (BRDF)
correction. The images were downloaded from the NASA Land Processess Distributed Active Archive
Center (LP DAAC, https://lpdaac.usgs.gov/).

Sentinel-2 products are non-composite images. Sen2Cor software [33] from the European Space
Agency (ESA) was used to convert the original bands (Level 1C images) from the top of the atmosphere
(TOA) to corrected reflectances at the bottom of the atmosphere (BOA).

https://lpdaac.usgs.gov/
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2.2.2. Spectral Indices

A set of spectral indices (SI) derived from MODIS images were calculated at 500 m resolution
(Table 1). The same MODIS indices were calculated for Sentinel-2 images at a 20 m pixel resolution,
with the exception of NDWI that cannot be computed due to the spectral resolution of Sentinel-2
(lack of an equivalent formulation for the two NIR bands in MODIS). Instead, an additional index for
the red-edge (NDI45) was tested for Sentinel-2 images (Table 1).

Table 1. Spectral indices obtained from MODIS and Sentinel-2 data. ρx is the reflectance in band x;
NIR, near-infrared; SWIR, short wave infrared; n.a., not applicable.

Index Formulation MODIS Bands Sentinel-2 Bands Refer.

Normalized Difference Vegetation Index NDVI = ρNIR−ρred
ρNIR+ρred

ρNIR = ρ2
ρred = ρ1

ρNIR = ρ8A
ρred = ρ4

[34]

Normalized Difference Infrared Index NDII = ρNIR−ρSWIR
ρNIR+ρSWIR

ρNIR = ρ2
ρSWIR = ρ6 (NDII6)
ρNIR = ρ2
ρSWIR = ρ7 (NDII7)

ρNIR = ρ8A
ρSWIR = ρ11

[35]

Global Vegetation Moisture Index GVMI = (ρNIR+0.1)−(ρSWIR+0.02)
(ρNIR+0.1)+(ρSWIR+0.02) ρNIR = ρ2

ρSWIR = ρ6

ρNIR = ρ8A
ρSWIR = ρ11

[36]

Normalized Difference Water Index NDWI = ρNIR2−ρNIR1
ρNIR2+ρNIR1

ρNIR2 = ρ2
ρNIR1 = ρ5

n.a. [37]

Normalized Difference Red-Edge Index NDI45 =
ρred−edge−ρred
ρred−edge+ρred

n.a. ρred = ρ4
ρred−edge = ρ5

Enhanced Vegetation Index EVI = 2.5(ρNIR−ρred)

ρNIR+6(ρred)−7.5(ρblue)+1 ρNIR = ρ2
ρred = ρ1
ρblue = ρ3

ρNIR = ρ8A
ρred = ρ4
ρblue = ρ2

[38]

Soil Adjusted Vegetation Index SAVI = (1 + 0.5) (ρNIR−ρred)

(ρNIR+ρred+0.5) ρNIR = ρ2
ρred = ρ1

ρNIR = ρ8A
ρred = ρ4

[39]

Visible Atmospherically Resistant Index VARI =
ρgreen−ρred

ρgreen+ρred−ρblue
ρgreen = ρ4
ρred = ρ1
ρblue = ρ3

ρgreen = ρ3
ρred = ρ4
ρblue = ρ2

[40]

Vegetation Index—Green VIgreen =
ρgreen−ρred
ρgreen+ρred

ρgreen = ρ4
ρred = ρ1

[41]

To compare image reflectance and LFMC field measurements, the extraction of pixel data for the
calculation of SI values was performed accounting for the different spatial resolutions of each sensor.
In the case of MODIS images (500 m), different pixels covered the study area but were not completely
included. Therefore, SI values calculated from MODIS products corresponded to the weighted mean
of pixel values according to the portion of each pixel surface overlapping the study area. For Sentinel-2
(20 m), SI values were the mean values of the pixels completely included inside the study area.

2.3. Empirical Methods

Empirical methods were used to estimate LFMC from SI derived from the three selected products
collected by MODIS and Sentinel-2 satellite sensors. The temporal variability of LFMC observed in the
field was assessed and compared with the temporal profiles of each SI. In addition, specific Pearson
correlation matrices between LFMC and the SI were obtained for each type of sensor and MODIS
product (Table 1).

The statistical methods assessed for empirical modeling included simple linear regression (LR),
multivariate linear regression (MLR), non-linear regression (NLR), and general additive models with
splines (GAMs). LFMC distribution in all datasets was tested for normality using the Shapiro-Wilk test
before regression analysis. Collinearity among potential predictors was checked using the variance
inflation factor (VIF), rejecting models with VIF > 5 for any variable included.

Models were fitted with 67% of the samples (calibration dataset), and then applied to the rest
of the field measured LFMC (33% of samples) to get an independent validation. We systematically
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selected one out of three observations for the validation dataset for each year, and checked that the
whole range of LFMC values was represented in both the calibration and validation datasets.

Model performance was assessed with the coefficient of determination (adjusted value of R2 to
compare goodness-of-fit between models with a different number of input variables), mean absolute
error (MAE), and root mean square error (RMSE). Statistical analyses were performed in R Software [42].

2.4. Radiative Transfer Model (RTM) Simulations

A radiative transfer model (RTM)-derived FMC product was used to compare the results
of empirical and physically-based approaches for LFMC estimation. This RTM-based product is
operationally generated by the Australian National University’s Centre for Water and Landscape
Dynamic for Australia (WALD, http://anuwald.science/afms) but also tested and operationally used
in Europe (https://effis.jrc.ec.europa.eu/) and South Africa (https://www.afis.co.za/). The product
is based on Look-up Table (LUT) inversion techniques [43], making use of three different LUTs,
including MODIS simulated spectra and corresponding fuel moisture values representative of the
range of values observed for grassland, shrubland, and forest. The shrubland’s LUT, which is the land
cover of interest in this paper, was generated using the leaf level PROSPECT [44] coupled with the
canopy level SAILH RTM [45,46].

PROSPECT simulates leaf reflectance and transmittance over the solar spectrum (400–2500 nm)
as a function of the chlorophyll a + b content (Ca+b), the equivalent water thickness (EWT), the dry
matter content (DM), and the leaf structural parameter N [44]. As LFMC is the percentage of the
water content of vegetation on a dry-weight basis, it can be estimated from PROSPECT parameters
(LFMC = EWT/DM). SAILH simulates canopy reflectance from the hot-spot parameter (h), the leaf
area index (LAI), the leaf angle distribution (LAD), the soil reflectance, the viewing and illumination
conditions, and the leaf reflectance and transmittance [45,46].

Yebra et al. [43] parameterized PROSPECT and SAILH using detailed ecological information for
the main shrubland species of Spain, including C. ladanifer [30,47]. More specifically, the authors used a
set of 26 and 49 specific combinations of leaf-level parameters measured in the field for Mediterranean
and Eurosiberian shrublands, respectively, as the input into the PROSPECT model. At the canopy level,
each combination of leaf parameters was assigned a theoretical LAD according to the re-orientation
that leaves experience as a strategy to decrease the light intercepted and the water stress. The hot-spot
was fixed (h = 0.001) as well as the viewing geometry (sun zenith angle = 30◦ and 0◦, nadir angle = 0◦

and azimuth angle = 0◦). The ranges of LAI considered were 0.5 to 2.5 and 0.5 to 5 according to
previous field measures in Mediterranean and Eurosiberian shrublands, respectively [29]. The product
developers linearly mixed the spectra with normal and dry soils in a proportion of 40–60 percent to
account for the heterogeneity in the fraction of cover. As per the RTM inversion procedure, the product
is generated using bands 1, 2, 4, 6, 7, and the NDII computed from B6 and B1 of MCD43A4 as input in
the computation of the spectral angle, which is used as the merit function. The spectral angle was
found to be the best merit function given its insensitivity to illumination or albedo effects [46]. All the
details behind the production of this product are made publicly available at the “Fire Data Processing”
repository of WALD (https://github.com/ANU-WALD/fire-data-processing).

3. Results

3.1. LFMC Variability and Remote Sensing Data

LFMC monitored in the field varied between years along the study period, especially during the
fire season (15 June to 15 October). Maximum values were generally registered in spring, with the
highest value in 2016 (196%), whereas minimum LFMC was observed in summer, with 44.9% as the
lowest value registered in 2018 (Figure 2a). Differences between years were observed in LFMC values
along the fire season (Figure 2b), which may be explained by the different meteorological conditions.
Whereas the temperature regime between years was similar during the study period (April 2016 to

http://anuwald.science/afms
https://effis.jrc.ec.europa.eu/
https://www.afis.co.za/
https://github.com/ANU-WALD/fire-data-processing
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February 2019), with an absolute maximum reaching 38 ◦C to 40 ◦C in summer (June/August) and
an absolute minimum ranging −3 ◦C to −6 ◦C in winter (December/February), precipitation varied
between years (Figure 3). A typical drought period occurred during the 2016 and 2018 fire seasons,
but 2017 registered some storm rainfalls during the summer. However, the year 2018 was considerably
wetter than in 2016 and 2017 mainly due to a higher amount of precipitation in spring (Figure 3).
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Concerning remote sensing data, the time series available for the study period varied depending
on the sensor and MODIS product used. The timelag between images and the sampling date was
limited to a maximum of 2 days to compare with the field data. Both Sentinel-2 sensors were not fully
operational in 2016, hence only 8 images from 2A (and non from 2B) were available in the study area,
compared to 30 and 25 images for MODIS composite (MCD43A4) and non-composite (MOD09GA)
products, respectively.

Outliers in SI for each surface reflectance source were checked in scatter plots and excluded from
the modeling datasets (see an example in Appendix A, Figure A1). Final sample size was n = 120 for
MCD43A4, n = 97 for MOD09GA and n = 71 for Sentinel-2. The range of field LFMC values included
in both calibration and validation datasets for each sensor and MODIS product is shown in Table 2.
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Table 2. Sample size (n) and the range of LFMC field values available in model calibration and
validation datasets for each surface reflectance source.

Image
Calibration Validation

n LFMC Range (%) n LFMC Range (%)

MCD43A4 80 50–197 40 45–196
MOD09GA 65 50–196 32 61–195
Sentinel-2 47 50–183 24 63–160

3.2. Comparison between Reflectance Source and Statistical Method

Most of the SI derived from MODIS and Sentinel-2 showed a high correlation with LFMC data
(Tables 3 and 4). For the composite product (MCD43A4), all indices had a significant linear relationship
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with LFMC (p-value < 0.01). The strongest correlations were found for NDVI, VARI, and VIgreen,
with R2 from 0.70 to 0.71, RMSE ranging 17.9% to 18%, and MAE from 14.1% to 14.2%. The best MLR
model included VIgreen, GVMI, and NDWI providing a very slight improvement compared to the
simple regression models, but all parameters were not significant at the 0.05 level (Table 5).

Table 3. Pearson correlation matrix for each MODIS product calibration dataset. All correlations
significant at p-value < 0.001.

Product SI LFMC NDVI NDII6 NDII7 GVMI NDWI EVI SAVI VARI

MCD43A4 NDVI 0.844
NDII6 0.461 0.578
NDII7 0.590 0.730 0.647
GVMI 0.678 0.852 0.640 0.918
NDWI 0.671 0.751 0.619 0.854 0.804
EVI 0.712 0.799 0.660 0.775 0.742 0.875
SAVI 0.728 0.816 0.654 0.758 0.736 0.868 0.999
VARI 0.846 0.961 0.616 0.718 0.838 0.735 0.803 0.815
VIgreen 0.843 0.961 0.622 0.729 0.846 0.741 0.807 0.817 1.000

MOD09GA NDVI 0.761
NDII6 0.630 0.633
NDII7 0.566 0.581 0.949
GVMI 0.630 0.633 1.000 0.949
NDWI 0.596 0.477 0.699 0.711 0.699
EVI 0.714 0.506 0.683 0.639 0.683 0.677
SAVI 0.761 1.000 0.633 0.581 0.633 0.477 0.506
VARI 0.866 0.738 0.682 0.592 0.682 0.673 0.793 0.738
VIgreen 0.859 0.724 0.689 0.597 0.689 0.681 0.794 0.724 0.999

Table 4. Pearson correlation matrix for Sentinel-2 calibration dataset. Significance level: * p-value < 0.05,
** p-value < 0.01, *** p-value < 0.001.

SI LFMC NDVI NDII NDI45 GVMI EVI SAVI VARI

NDVI 0.428 **
NDII 0.445 ** 0.311 *
NDI45 0.382 ** 0.959 *** 0.274
GVMI 0.159 0.307 ** 0.225 0.166
EVI 0.523 *** 0.338 * 0.385 ** 0.396 ** 0.338 **
SAVI 0.458 ** 0.708 *** 0.178 0.743 *** 0.013 0.729 ***
VARI 0.637 *** 0.456 ** 0.825 *** 0.408 ** 0.233 * 0.407 ** 0.239
VIgreen 0.624 *** 0.432 ** 0.815 *** 0.375 ** 0.251 * 0.392 ** 0.221 0.995 ***

The indices with higher correlation with LFMC from MOD09GA images were VARI and VIgreen,
followed by NDVI and SAVI (Table 3). However, simple regression analysis only resulted in significant
LR models for VARI (R2

adj = 0.75, MAE = 12.9%) and VIgreen (R2
adj = 0.73, MAE = 13.1%). A significant

MLR model was found combining NDVI and VARI, with an increase in estimation accuracy compared
to LR models (R2

adj = 0.78 with MAE = 11.8%).
Regarding Sentinel-2, VARI and VIgreen also showed a higher correlation with LFMC (Table 4),

but simple linear regression models had a poorer fit (R2
adj < 0.40, MAE > 17%) (Table 5). In this

case, the MRL model combining VARI and SAVI significantly improved linear regression results
(R2

adj = 0.48, MAE > 15.8%).
Concerning non-linear regression methods, the best formulation found was similar in all cases,

including log(1 + VARI) as the main input variable, and either log(NDVI) or log(SAVI) for MODIS and
Sentinel-2 images, respectively. GAMs models included similar SI indices as NLR models, but showing
a higher R2

adj and lower errors for the three types of surface reflectance source used, with R2
adj > 0.78

for both MODIS products and R2
adj = 0.58 for Sentinel-2. Details of the best models found for each

fitting method and surface reflectance source are shown in Table 5.
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Table 5. Best empirical models fitted for each sensor, MODIS product, and method used. R2
adj, adjusted R2; MAE, mean absolute error; RMSE, root mean square error.

Sensor/MODIS Product Model Formulation Parameters p-Value
Calibration Validation

R2
adj RMSE (%) MAE (%) R2

adj RMSE (%) MAE (%)

MCD43A4 LR FMC = a+b·VARI a = 152.676
b = 487.731

< 0.0001
< 0.0001

0.711 17.87 14.14 0.756 17.29 12.32

MLR FMC = a+b· VIgreen +c·GVMI+d·NDWI a = 198.73
b = 715.49
c = −149.33
d = 234.32

< 0.0001
< 0.0001

0.0556
0.0534

0.718 17.54 13.88 0.782 16.31 12.12

NLR FMC = a+b·log(1+VARI)+c·log(NDVI) a = 203.5
b = 253.5
c = 88.61

< 0.0001
0.0195
0.0441

0.729 17.20 13.58 0.752 17.36 12.05

GAMs FMC = f(a,s(VARI),s(NDVI)) a = 111.23
s(VARI)
s(NDVI)

< 0.0001
< 0.0001

0.0012

0.781 15.05 11.91 0.750 16.54 12.47

MOD09GA LR FMC = a+b·VARI a = 153.352
b = 430.273

< 0.0001
< 0.0001

0.750 15.46 12.96 0.696 17.01 14.52

MLR FMC = a+b·VARI+c·NDVI a = 96.18
b = 331.77
c = 101.37

< 0.0001
< 0.0001

0.0032

0.783 14.41 11.83 0.721 16.24 13.35

NLR FMC = a+b·log(1+VARI)+c·log(NDVI) a = 178.00
b = 325.36
c = 42.07

< 0.0001
< 0.0001

0.0034

0.780 14.30 11.66 0.720 15.96 13.39

GAMs FMC = f(a,s(VARI),s(NDVI)) a = 111.65
s(VARI)
s(NDVI)

< 0.0001
< 0.0001

0.0157

0.784 13.98 11.47 0.686 15.99 13.33

Sentinel-2 LR FMC = a+bVARI a = 136.320
b = 372.929

< 0.0001
< 0.0001

0.393 22.84 17.33 0.702 14.73 12.69

MLR FMC = a+b·VARI+c·SAVI a = 60.57
b = 333.05
c = 390.22

0.0242
< 0.0001

0.0048

0.482 20.85 15.77 0.732 13.65 11.21

NLR FMC = a+b·log(1+VARI)+c·log(SAVI) a = 244.53
b = 327.81
c = 65.41

< 0.0001
< 0.0001

0.0075

0.473 20.81 15.46 0.737 13.54 11.11

GAMs FMC = f(a,s(VARI),s(SAVI)) a = 113.88
s(VARI)
s(SAVI)

< 0.0001
0.0002
0.0031

0.586 17.63 13.33 0.695 13.58 11.06
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Despite the fact that GAMs models showed the best goodness of fit and error for model calibration
in all cases, the model performance with the independent datasets suggested that more simple
formulations provide better validation results (Table 5). Linear regression methods had the best fit for
MCD43A4 images, but NLR showed the lowest estimation error (12%) with a good model performance
(R2

adj > 0.75). For MOD09GA images, MLR and NLR showed similar validation results (R2
adj > 0.72,

MAE = 13%), although lower RMSE estimation errors for NLR model (<16%). NLR model provided
the best validation results for Sentinel-2 images, with a good performance and estimation errors
(R2

adj = 0.74, RMSE = 13%, MAE = 11%). However, regarding critical moisture levels (LFMC < 80 %)
there is a tendency to overestimate in all cases (Figure 4). Examples of spectral reflectance profiles
derived from Sentinel-2 and both MODIS products comparing two different levels of moisture during
the summer period (LFMC = 62% and LFMC = 109%) are shown in Appendix B (Figure A2).

1 
 

 

Figure 4. Observed vs. predicted values of LFMC using the best empirical model obtained for each
type of surface reflectance source and method used (LR, MLR, NLR, and GAMs). Blue and red circles
depict calibration and validation data, respectively.
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3.3. RTM Simulations

Predicted LFMC using RTM showed a significant correlation with observed LFMC but weaker
compared to LFMC values derived from empirical models for the same type of MODIS product
(Table 6). Stronger correlations between predictions and observations were found when assessing the
performance of RTM simulations per year, with R2 between 0.56 and 0.85 (Table 6, Figure 5). However,
these values were still lower than the equivalent statistics using the empirical models. Errors ranged
from 36% to 43% (RMSE) and 25% to 38% (MAE), whereas NLR model validation for MCD43A4 images
provided errors ranging 11% to 21% (RMSE) and 7% to 15% (MAE).

Table 6. Comparison between observed data and LFMC estimations from RTM simulations and NLR
empirical model for MCD43A4 images. RMSE, root mean square error; MAE, mean absolute error; n,
sample size.

Dataset
RTM NLR Model (Validation Dataset)

R2 RMSE (%) MAE (%) n R2 RMSE (%) MAE (%) n

Total 0.489 39.44 31.55 116 0.752 17.36 12.05 40
2016 0.848 37.52 25.02 30 0.938 10.74 7.47 10
2017 0.711 43.44 38.07 43 0.79 16.24 12.03 14
2018 * 0.562 36.43 29.58 43 0.647 21.22 14.92 16

Notes: * data from 2019 are included in 2018 dataset given the short sampling period.
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complete dataset (continuous black) and each year (dashed color lines).

RTM simulations systematically overestimated the observed LFMC under a threshold value of 65%
(Figure 5). When assessing the performance of the RTM per year, the slopes of the correlation between
observed LFMC and RTM estimations are similar between years (Figure 5). However, estimated LFMC
in 2017 always underpredicted the observed values, being also generally lower than estimations in
2016 and 2018 for the same field data. Temporal trends of LFMC along the study period showed that
RTM simulations seemed to amplify either the increasing or decreasing LFMC values, thus resulting
in higher overestimation or underestimation, respectively, of moisture levels compared to empirical
modeling (Figure 6).
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4. Discussion

Reflectance data from Sentinel-2 and two MODIS products (MOD09GA and MCD43A4) provided
useful information for LFMC retrieval in C. ladanifer shrubland. Comparing the best models for both
types of MODIS products, similar results were found for the composite product MCD43A4 (R2 = 0.75,
MAE = 12%, RMSE = 17%) compared to non-composite product MOD09GA (R2 = 0.72, MAE = 13%,
RMSE = 16%). These results are in the range of values reported by previous authors using empirical
modeling for LFMC from MODIS composite products in different types of vegetation [19,21–23].
However, even though MCD43A4 is a daily product, reflectance data would not be valid for retrieving
LFMC estimations at an operational level due to the timelag in image availability inherent to a 16-day
composite. Moreover, image composite products tend to smooth LFMC variability in the short term,
which hinders the identification of days with higher fire risk associated with anomalous extreme LFMC
values (see Appendix B, Figure A2, for an example comparing spectral reflectance profiles derived from
each type of product for two different field LFMC levels measured in the study area during the same
summer period). This may be more relevant in areas covered by vegetation types including species
that are more sensitive to LFMC variations in short periods of time, i.e., shrubland and grassland,
compared to forests that do not generally change moisture contents within a few days.

Regarding the comparison of non-composite products between sensors, MODIS showed a
considerably better performance in model calibration than Sentinel-2. It should be highlighted that,
despite the worse fitting results obtained for Sentinel-2, the good performance observed with an
independent validation dataset (R2 = 0.74, MAE = 11%, RMSE = 13%) suggests that the proposed NLR
model seems robust enough to estimate LFMC in similar shrubland, at least within the range of values
tested in this study (50–183%). These are good results, taking into account that errors of 10% in LFMC
estimation from field measurements are generally acceptable according to fire management services.
Nevertheless, lower LFMC values are extreme and anomalous values, and hence are less frequent
in the sample for the three types of images. So, despite calibration and validations datasets are well
balanced to represent the whole range of the LFMC in both the MODIS and Sentinel-2, the numbers of
observations regarding extreme LFMC values are not as large as in the calibration. This is especially
true in the case of Sentinel-2, where there is also a lower number of total samples. We hypothesize that
as low LFMC values are more difficult to predict, validation in our models may, in turn, provide better
results compared to the calibration dataset in most cases. In the particular case of Sentinel-2, only 3 data
were available below the critical threshold of 80% in the validation, highlighting the need for longer
time series that include more samples with lower LFMC values.

Regarding previous studies using Sentinel-2 data, our results are remarkably better than those
obtained by Shu et al. [24], especially in terms of errors. However, we recognized that this could be
due to the limited number of observations available in Shu et al. [24] study compared to the longer
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number of observations used in the present work. The finer spatial resolution of Sentinel-2 did not
substantially increase model performance, at least for the monospecific shrubland site used in this
manuscript. Consequently, the MOD09GA daily reflectance product may be recommended when
near real-time estimations of LFMC are required. However, with both satellites 2A and 2B fully
operational, it could be possible to retrieve LFMC from Sentinel-2 every 5 days or less, depending on
the latitude (e.g., 2–3 days in the study area). Hence, Sentinel-2 may be a good alternative to MODIS
if daily estimations are not a priority but higher spatial resolution is needed (e.g., patchy vegetation
areas). Other authors proposed upscaling methods using multiple remote sensing data to provide
higher temporal resolution, as reported by Adab et al. [48] to retrieve daily estimations of LFMC from
Landsat and MODIS in a humid temperate forest. These authors first fitted empirical models based
on spectral data derived from Landsat to predict LFMC measured at 30 m and then aggregated pixel
values to 500 m using the nearest neighbor resampling method to perform PCA analysis and get daily
LFMC estimations from MODIS data [48]. However, this method is not suitable when near-real-time
estimations of vegetation moisture are required at a finer spatial resolution.

Comparing fitting methods for empirical modeling, validation results showed that although
GAMs models had a better performance in terms of model calibration, simpler models can provide
higher estimation accuracy. Namely, NLR formulation showed the best results in both MODIS and
Sentinel-2 images, especially for the non-composite products (Table 5). The best NLR model for
MODIS products (MCD43A4 and MOD09GA) included VARI and NDVI with a log-transformation.
The Sentinel-2 model had a very similar NLR equation but included SAVI instead of NDVI.

The present study is in agreement with previous studies reporting VARI as the best SI to predict
LFMC variation from MODIS images [21–23,26,29]. VARI is an SI based on reflectance from only
visible wavelength bands (blue-green-red), but it has been reported to be very sensitive to chlorophyll
and LAI variations associated with leaf drying [29]. Yebra et al. [29] observed that VARI provided the
best correlation for C. ladanifer but offered the lowest for grasslands, being the only index with higher
correlations for shrubs than for grasslands in their study. Our results showed that the combination of
VARI with NDVI resulted in the best multivariate models for both MODIS products tested. Some authors
have suggested that other SI improve model performance. For example, Peterson et al. [22] proposed a
combination of VARI and VIgreen. Even though, in our case, VIgreen also explained well the variability
of LFMC in the three types of surface reflectance sources, the high correlation found between VIgreen

and VARI precluded the use of the former as an input in our models when the latter was included
(Table 3). Stow et al. [21] reported the best empirical model with VARI and NDWI in California
chaparral, whereas Caccamo et al. [23] found a better model performance combining VARI with
NDII6 for Australian vegetation. Conversely, NDII6 and NDWI were among the indices with lower
correlation in this study. VARI and NDVI are based on visible/NIR reflectance data, which is suitable
for measuring greenness variations, whereas NDWI and NDII6 are supposed to be more sensitive to
water content as they are based on NIR/SWIR reflectance [23]. Our results suggest that, since moisture
variations affect C. ladanifer’s chlorophyll activity, greenness indices can effectively provide an indirect
estimation of water content even though they do not include water absorption bands [29].

When comparing results between RTM and empirical modeling for the MODIS composite product
(MCD43A4), NRL model provided better results than RTM simulations, especially regarding error
level. Both RTM and empirical models showed higher accuracy assessing the performance per year
than when including the complete time series. The best results were observed in 2016, with R2 of 0.85
and 0.95 and MAE of 25% and 7.5% for RTM and NLR empirical model, respectively. This shows that
the effect of inter-annual variability on LFMC could be partly due to the different weather conditions
occurring during the study period (Figure 3), especially regarding precipitation distribution [2,17].
Hence, further work is needed to disentangle the complex interactions between plant water status,
soil moisture, and previous rainfalls [17,49]. Nevertheless, ecophysiological and weather data may be
considered in order to improve model estimations [50,51].
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Both approaches (empirical and RTM) tended to overestimate the lower LFMC values observed in
the field, although with RTM simulations at a lower threshold (<65%) than empirical models (<80%).
These values are below the 80% critical value considered by the fire management services in Spain for
C. ladanifer and similar to other fire-prone shrubland fuels reported in previous studies. For example,
the critical threshold considered in California chaparral varied from 60% to 79% [2,3,49]. Our results
suggest that models should be further developed to improve estimations under these critical LFMC
values. Our empirical models do not seem biased (Figure 4), but an enlarged calibration dataset with
more reference values with LFMC < 60% would be strongly recommended to improve estimations at
the highest flammability levels of C. ladanifer. However, despite the general trend to overpredict lower
LFMC values, the proposed empirical models may be useful to identify when the critical threshold for
high fire risk has been reached with reasonable accuracy in operational pre-alert systems.

Results in this study confirm that empirical modeling is an effective method to get reasonably
accurate estimations of LFMC (MAE < 13%) at the local scale for fire-prone shrub species with high
moisture variability, and under differing weather conditions when reliable field data is available
for the calibration. With robust, long-term databases of LFMC measurements recently becoming
open-access [17,18], the empirical approach is still an efficient one that should be considered for remote
sensing estimation of vegetation moisture dynamics of the main species affected by wildfire at local
scales. Empirical modeling may be successfully applied to estimate LFMC of indicator species useful
for wildfire risk rating, as presented in this study. The adequacy of using indicator species for LFMC
monitoring has already been highlighted by other authors [49]. Nevertheless, this approach may also
be used to retrieve LFMC of mixed vegetation, provided that the cover fraction of dominant species
would be registered to obtain a representative LFMC value at an appropriate scale according to the
equivalent pixel value estimated by each sensor [19].

Conversely, current results regarding RTM suggest that estimation accuracy should be further
improved to be efficiently used at an operational level. Although RTM provided less tendency to
systematically overpredict lower moisture values compared to empirical models, the estimation error
(MAE > 25%) may somehow hinder its use when more detailed LFMC monitoring would be required.
Calibration and validation are on-going to adapt RTM simulations to reflectance from different types
of sensors, including Sentinel-2. Hence, more operational applications of RTM are expected in the near
future, which may favor the implementation of advanced fire danger rating systems at a global level.

5. Conclusions

This is the first study to date that carried out a comprehensive analysis of Sentinel-2 capability
for LFMC estimation in comparison to MODIS products (composite and non-composite images) and
different retrieval methods (empirical vs. RTM). Our results suggest that empirical modeling is an
effective method to monitor LFMC dynamics in fire-prone shrubland with operational remote sensing
products at a reasonable accuracy for wildfire danger rating at a local scale. Empirical models derived
from Sentinel-2 and MODIS data provide similar results in terms of fitting and error level. VARI is
the best spectral index for LFMC retrieval in C. ladanifer shrubland, showing an improved model
performance in a non-linear formulation with NDVI or SAVI, depending on the type of sensor used.
RTM simulations are a suitable alternative for LFMC estimation at a regional or global scale but do not
yet provide the same accuracy level as empirical models at a local scale. Both RTM simulations and
empirical models tend to overestimate the lower LFMC values observed in the field and should be
further improved to get better estimations of vegetation moisture under the critical levels considered
as more extreme flammability conditions for wildfires.
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Appendix B. Examples of Spectral Reflectance Profiles Derived from Sentinel-2 and Both
MCD43A4 and MOD09GA MODIS Products

Figure A2 depicts the spectral reflectance profiles for two sampling dates during the summer of
2016 (21 of July and 30 of August, respectively) with contrasting C. ladanifer’s LFMC (109% and 62%).
Reflectance values obtained from Sentinel-2 and the MODIS daily reflectance product (MOD09GA) for
the LFMC = 109% and LFMC = 62% show higher variability than those obtained from the 16-day MODIS
composite product (MCD43A4). In the higher moisture case (109%), estimated LFMC is 109% and 94%
using the best empirical models (NLR) derived from Sentinel-2 and MODIS products, respectively,
whereas 91% using RTM simulations. In the lower moisture case (62%) all models overestimated
observed LFMC, with empirical models providing values of 92% with Sentinel-2, 81% with MOD09GA
and 77% with MCD43A4, whereas a value of 82% is estimated with RTM simulations. The similar
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trend in reflectance spectra observed between both LFMC levels that basically vary only in magnitude
but not in shape (as it is expected as wetter vegetation has higher values in NIR and lower values
in SWIR than dryer vegetation), might be the cause of the overestimation of the LFMC on the 30th
August and be influenced by the effect of soil reflectance during the dry summer period. Nevertheless,
the expected variability in spectral reflectance profiles is observed in samples with larger differences in
LFMC along the year.
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