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Abstract: Taking advantage of 37-year-long (1982–2018) of high-quality satellite datasets, we examined
the role of direct atmospheric forcing on the high and low sea surface temperature (SST) extremes
over the Red Sea (RS). Considering the importance of SST in regulating ocean physics and biology,
the associated impacts on chlorophyll (Chl-a) concentration were also explored, since a small change
in SST can cause a significant impact in the ocean. After describing the climate features, we classified
the top 5% of SST values (≥31.5 ◦C) as extreme high events (EHEs) during the boreal summer period
and the lowest SST values (≤22.8 ◦C) as extreme low events (ELEs) during the boreal winter period.
The spatiotemporal analysis showed that the EHEs (ELEs) were observed over the southern (northern)
basin, with a significant warming trend of 0.027 (0.021) ◦C year−1, respectively. The EHEs were
observed when there was widespread less than average sea level pressure (SLP) over southern Europe,
northeast Africa, and Middle East, including in the RS, leading to the cold wind stress from Europe
being relatively less than usual and the intrusion of stronger than usual relatively warm air mass
from central Sudan throughout the Tokar Gap. Conversely, EHEs were observed when above average
SLP prevailed over southern Europe and the Mediterranean Sea as a result of the Azores high and
westward extension of the Siberian anticyclone, which led to above average transfer of cold and dry
wind stress from higher latitudes. At the same time, notably less wind stress due to southerlies that
transfer warm and humid air masses northward was observed. Furthermore, physical and biological
responses related to extreme stress showed distinct ocean patterns associated with each event. It was
found that the Chl-a concentration anomalies over the northern basin caused by vertical nutrient
transport through deep upwelling processes are the manifestation of the superimposition of ELEs.
The situation was the opposite for EHEs due to the stably stratified ocean boundary layer, which is a
well-known consequence of global warming.

Keywords: extreme sea surface temperature; Tokar Gap; Azores high; Siberian high; atmospheric
circulations; mixed layer depth

1. Introduction

An extreme sea surface temperature (SST) event is an important oceanographical phenomenon,
which can have a serious impact on biodiversity and may result in consequences that are, as yet,
unrecognized in marine ecosystems, especially under a climate change background. For example,
these events alter the frequency and intensity of blooms, reduce the deep-water nutrient flux to surface
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waters, and thus, change the global food chain, which may create a suitable environment for pathogenic
microbes [1–4]. Furthermore, different marine species have undergone shifts in their geographical
locations (invasive species) in response to biogeochemical changes and due to oxygen loss in their
habitats, which has resulted from ocean warming and sea ice change since 1950 [5].

The SST variations can also have a deep impact on climate physics components in both the
ocean (sea level [6]) and the atmosphere (droughts and dust transport [7,8] and precipitation [9,10]).
For instance, the SST variability in the tropical Pacific Ocean can lead to the most powerful climatic
phenomenon (El Niño/Southern Oscillation), leaving heavy precipitation and/or severe droughts over a
wide part in the world through the teleconnections process. Several studies have demonstrated that the
SST has increased on a global scale during the 20th century in terms of both the frequency and intensity
scale [6,11]. The effect of warming will remain in the ocean for centuries even if the global greenhouse
gas emissions remain constant or decrease [12]. However, the polar amplification property has meant
that the SST and air temperature over the mid and high latitude of the northern hemisphere have been
increasing faster than the tropical basins [13,14] while the shallow waters, such as semi-enclosed basins
like the Red Sea (RS), may display larger variation compared with deep and/or open-water areas [15].

The RS is an important water body in terms of its economic, political, environmental, and social
backgrounds (Figure 1). The RS SST has shown a tendency to increase during recent decades.
For example, August and February have shown significant trends of the warmest and coolest months in
the basin, increasing by 0.5 ◦C and 0.3 ◦C decade−1, respectively [16]. Overall, the basin maximum SST
has increased by about 0.017 ◦C year−1, while over the northern part, there was an increase of about
0.045 ◦C year−1 from 1982 to 2015, which was associated with an increase in heatwave events over the
northern part of the basin [17]. In addition to this, the annual mean SST shifted from 27.4 ◦C in 1985–
1993 to 28.1 ◦C in 1994–2007 [18]. Recently, Alawad et al. (2020) [19] found that the warming trend
over the northern half of the RS is 0.04 ◦C year−1, which is almost 4 times higher than the global trend,
and over the southern half it is 0.01 ◦C year−1, while the whole basin trend is 0.029 ◦C year−1 [20]. As a
consequence of this intense warming trend, the growth of central Red Sea coral has decreased [21,22],
as has the chlorophyll concentration over the northern half of the basin [23].Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 16 
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2.2. Methods 

Figure 1. Map of the Red Sea basin associated with bathymetry in meters (m).

However, the reported results reveal that climate change-related SST variation has been nonuniform
in terms of both the time of occurrence and/or space. This is probably due to the presence of different
driving forces, either from direct ocean interactions or throughout the atmosphere and overall
underlying mechanisms. Therefore, far-reaching analysis of extreme events may be considered a good
answer to some specific questions. For instance, thermal collapse can be defined as the temperature
that exceeds the thermal capacity of organisms, which is, therefore, dependent on the extremes on both
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sides, rather than the mean temperature variability. Furthermore, the successive and persistent extreme
SST events can contribute to a remarkable difference in intermediate- and deep-water formation in
the basin.

The current study employed a monthly satellite SST dataset to highlight the occurrence of extreme
high events (EHEs) and extreme low events (ELEs) over the RS, which has not yet been explored in
previous studies. We addressed the atmospheric factors driving the interannual variability of these
events during the summer and winter seasons and further explored their impacts on ocean physics and
biology. The monthly optimum interpolation SST has recently been used for different purposes in the
basin, including the study of heatwaves [17], long-term trends and variability [20], and the relations
with large-scale climate modes [24].

The manuscript is structured as follows: Potentially useful data sets and detailed methods
are presented separately in Section 2. The results and discussion, including information about the
climatological background over the RS, the EHEs and ELEs spatiotemporal scales of variability,
diagnosis of the associated physical processes throughout the atmosphere, and further, the ocean
response in terms of the physical and biological productivity for each event, are given in Section 3.
Finally, a brief summary of the major findings is given in Section 4.

2. Datasets and Methods

2.1. Datasets

The study was based on five data sets. A gridded monthly SST dataset from NOAA Optimal
Interpolation (OI, version 2) on a spatial resolution of 0.25◦, spanning from 1982 to 2018 [25], was used.
It merges satellite ocean skin temperatures, infrared satellite retrievals from the Advanced Very High
Resolution Radiometer (AVHRR), and in situ temperatures from ships and buoy platforms from the
ICOADS (International Comprehensive Ocean Atmosphere Data Set) on regular global resolutions [26].
The data are freely available for download at https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.
oisst.v2.highres.html.

Sea level pressure (SLP) and wind data were taken from the fifth-generation reanalysis dataset
(ERA5) from ECMWF, which replaced ERA-Interim, which stopped recently. ERA5 is produced on
different global spatial and temporal scales using advanced modelling and data assimilation systems
combining the available historical and satellite observations. We used the data from 1982 to 2018 in
0.25◦ format, which can be downloaded from https://cds.climate.copernicus.eu/#!/search?text=ERA5&
type=dataset.

The objectively analyzed net surface air–sea heat flux dataset was provided by the Woods Hole
Oceanographic Institution, which was produced by combining the turbulent terms (latent and sensible
heat) and radiative terms (short- and long-wave radiation) datasets. It is also freely available in a 1◦
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2.2. Methods

The main aim of this article was to investigate the extreme SST on both sides (EHEs and ELEs)
and to identify the associated driving forces over the RS. First, we organized the OISST data into
boreal summer (June, July, and August) and boreal winter (December, January, and February) seasons.
Next, we determined the seasonal climatology of the SST covering the entire basin for each season,
which was computed by averaging the months at each grid point.

2.2.1. Extreme SST Events

To identify the extreme SST events, we used the percentiles technique. First, we examined
threshold values (highest 5% from boreal summer and lowest 5% from boreal winter) from the
climatology mean SST data (mean of 37 years). The threshold value was identified according to the
range between maximum and minimum values of SST. We chose those seasons because they have
the highest probability of experiencing the highest (EHEs) and lowest (ELEs) SST events in the year,
respectively. The threshold value for EHEs was 31.5 ◦C, and for ELEs values was 22.8 ◦C. Second,
again, we examined the highest and lowest 5% of SST but for each time step (37 years). Then, the years
that have values ≥31.5 ◦C were classified EHEs, while ≤22.8 ◦C were classified ELEs. Our method
revealed 10 EHEs and 15 ELEs, which are shown in Table 1.

Table 1. Extreme high events (EHEs) and extreme low events (ElEs) during summer and winter periods.

Winter ELEs Summer EHEs

1982 1995
1988 1997
1989 1998
1991 1999
1992 2001
1994 2002
1995 2008
2006 2009
2007 2010
2011 2012

- 2013
- 2014
- 2016
- 2017
- 2018

10 15

2.2.2. Composite Analysis

In this part, we hypothesized that the RS extreme events are a manifestation of broader regional
climate variation, which likely operates directly through the atmosphere. In order to understand how
the signals reach the basin, we demonstrated the general atmospheric circulation patterns that favor
the EHEs and ELEs SST values for the year, as shown in Table 1. For these events, we averaged the
corresponding atmospheric variables to produce composite maps separately for each event. Specifically,
we looked at SLP and wind stress. Last, particular attention was given to the composite map of MLD,
taking into account its roles in ocean convection and deep- and intermediate-water formation over the
northern half of the RS as well as its roles in biogeochemical processes. Lastly, we investigated the
biological response to atmospheric forcing in the Red Sea ecosystem in terms of Chl-a.
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3. Results and Discussion

3.1. Climatological Features over the RS

Figure 2 shows the seasonal climatology of the SST, averaged over the summer and winter seasons
of 1982–2018. The results show a strong meridional gradient of approximately 6 ◦C along a distance of
1500 km [29]. Summer values reaching 32 ◦C were observed over the southwestern part of the basin,
while the lowest values of up to 26 ◦C were observed over the far northern end [30], especially on
the Gulf of Suez (Figure 2a). This finding can be explained by the northerly winds that blow from
relatively cold areas and cover the entire basin, which are associated with a negligible amount of water
inflow from the Gulf of Aden during this season [31]. This gradient seems to be the factor triggering
thermohaline-driven circulation, which is an important term in the RS circulation [32,33]. For the
winter season (Figure 2b), a meridional gradient is also presented, but it is weak in comparison with
the summer gradient, mainly due to the entrance of the relatively cold Gulf of Aden intermediate
water [34]. In this situation, the maximum temperature shifts to the wind convergence zone in the
central basin, where the wind is weak or calm [35,36].
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To obtain background information about the atmospheric circulation that influences the extreme
SST in the RS, we also present the climatology shown in the mean sea level pressure (SLP) and wind
stress maps. In summer, the entire basin is affected by the westward extension of a monsoon low that
crosses the RS and combines with the Sudan thermal low (or equatorial African low-pressure system
in some studies), which is a favorable condition for the development of a clear pressure gradient in
southern Europe (Figure 2c). During winter, the Sudan thermal low seems to be associated with the Red
Rea Trough, which may play a key role in the projection of both central Asia and Azores high-pressure
systems (Figure 2d). As a result of the pressure gradients, a wide blowing of northerly wind stress over
the entire RS and surrounding area was observed during the summer season (Figure 2e). The same
features were observed during the winter season (Figure 2f), which is associated with the blowing of
southerly wind stress that converges in the central basin.

3.2. Spatial and Temporal EHEs and ELEs Variability

The spatial distributions of EHEs and ELEs anomalies are presented separately in Figure 3.
Visually, the distributions of these two event types are completely different, as they have different
atmospheric circulation. During EHEs, the RS experiences significant positive anomalies, up to 0.5 ◦C
over the southern and northern ends, with less than this value in the center (Figure 3a). In addition
to oceanic and atmospheric factors, the shallow area near the southern end seems to contribute to
warming the water, since the land warming is much faster and vigorous than the water. During ELEs,
the RS experiences significant negative anomalies of up to −0.6 ◦C over the northern end; this value
gradually decreases toward the southern end (Figure 3b).Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 16 
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Figure 3c,d show the time series of the highest and lowest 5% of SST (37 years), including the years
that have EHEs (red shaded area) and ELEs (blue shaded area) superimposed with their corresponding
linear trends. The trend was fitted using least squares method, and the significance (99%) of the result
was tested using the Mann–Kendall. It is clear that the EHEs that were greater than or equal to the
threshold value (31.5 ◦C) started in the mid-1990s, with these events being absent prior to this period.
The red line, which refers to the SST trend, indicates that the highest 5 % values including the EHEs are
increasing by 0.027 ◦C year−1 (Figure 3c).

These results support the previous finding of Alawad et al. (2020) [19] that the whole RS has
experienced a nonuniform warming trend since 1996, which has amplified over the northern half to
reach 0.04 ◦C year−1—approximately 4 times higher than the global trend.

Figure 3d shows that the ELEs mostly occurred before 1996, being absent in the last 7 years.
The trend analysis for the time series of the lowest 5 % including the ELEs shows an increasing
tendency (0.027 ◦C year−1), which corresponds to the previous study showing that the annual mean
SST (1982–2016) exhibited significant warming trend of 0.029 ◦C year−1 [20].

In brief, EHEs occur over the southern and northern ends, while ELEs over the northern ends
only. Moreover, the positive trend in the SST indicates that warmer ocean climate conditions over the
RS could be expected in the near future, increasing (decreasing) the EHEs (ELEs).

3.3. Physical Mechanisms

Atmospheric forcing on the ocean basins has been discussed on various spatial and temporal
scales, since it can regulate air–sea heat fluxes, including the SST, and vice versa [24,37–41]. In this
part, a composite analysis was carried out by averaging the corresponding SLP, wind stress, and net
surface air–sea heat flux to determine the atmospheric pattern associated with each event.

3.3.1. SLP

SLP is considered an important atmospheric variable that is closely related to the general
atmospheric circulation. Furthermore, it can give an indication about the surface air temperature,
humidity, cloudiness, and wind flow in term of speed and direction.

Figure 4 shows the composite SLP maps corresponding to the EHEs and ELEs and their deviances
from the climatology mean. The main conspicuous summer features are the monsoon low system
and eastward extension of the Azores anticyclonic system over the southeastern Mediterranean Sea.
The monsoonal trough has a westward propagation, which enables it to adjoin the equatorial African
low belts, including the Red Sea Trough and Sudan thermal low. As a result of these synoptic features,
the atmospheric circulation over the RS and adjoining regions is modulated by the pressure gradients
between the monsoon low with less than 1002 hPa and the Azores high with more than 1014 hPa [37,42].
During EHEs, there is widespread negative SLPs that cover the extension area of both Azores and
monsoon systems (Figure 4c). The most negative value (1 hPa) was found in the Azores high over
the southeastern Mediterranean Sea. This situation decreases the above-mentioned pressure gradient,
which weakens the wind advection to the RS and adjoining regions in the Middle East and Africa.

The most conspicuous winter features are the prominent existence of a westward extension of
the Siberian anticyclone over eastern Asia (greater than 1032 hPa) jointly with the relatively weak
eastward extension of the Azores high, covering a broad area from central Asia to southern Europe and
North Africa. This synoptic condition creates a significant SLP gradient for transferring continental,
cold, and dry air through the arid land mass around the northern part of the basin to the central
part [23,32,43]. This gradient is clear from the existence of a strong positive SLP anomaly during ELEs
over Turkey and the Mediterranean Sea (greater than 2 hPa) and it extends to central Africa. Charabi
and Al-Hatrushi (2010) [44] considered these gradients to be important factors that modulate the winter
rainfall (wet seasons) variability over northern Oman.
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Figure 4. Composite SLP (a) and associated anomaly values (b) in hPa for EHEs. Same for (c) and (d),
but for ELEs.

In brief, the intensity and the position variability of the main circulation pattern, namely the
Siberian and Azores high and monsoon low, may trigger the occurrence as well as determine the
intensity of EHEs and ELEs during the summer and winter periods, respectively.

3.3.2. Wind Stress

Figure 5 depicts the wind stress flow over the RS and surrounding area. From an atmospheric
point of view, the winds follow the above spatial distributions of SLP in terms of speed and direction
to form wind stress. For instance, the pressure gradient between the Azores high and monsoon low
shapes the north-northwesterly wind over the entire RS and surrounding area during the summer
season. In particular, for EHEs cases, the northerly wind stress experiences less than average values in
all areas, including the RS. This means that the relatively cold air masses that are transferred from
southern Europe to the southern RS are reduced during EHEs cases, which may be a possible factor
that enhances the occurrence of EHEs. An interesting result is the intrusion of air masses (red box) from
the mountain gap (Tokar gap) along the Sudanese coasts on the western RS side, with greater than
average values (Figure 5b). These air masses are relatively warm and dry (locally called Hababai) and
are mainly advected by the rain that is associated with the movement of the inter-tropical convergence
zone that dominates eastern and central Africa during the summertime.

When entering the RS, it joins the northerly wind stress that governs the basin, and both move
forward in a southerly direction. This mechanism may explain the occurrence of EHEs in the southern
half of the basin during the summer period.
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In brief, the combined effect of a relatively weaker than usual cold wind stress from the north
and the intrusion of relatively stronger than usual warm air massed from the Tokar Gap are possible
reasons for the occurrence of EHEs in the RS during the summer period.

Similarly, for the ELEs during the winter period (Figure 5d), the northerly wind stress strengthens
over the northern half of the basin due to the strong pressure gradient shown in Figure 4c,d. At the
same time, the stronger than usual wind stress coincides with the presence of less than usual southerly
wind stress over the southern end, especially in Bab-Al-Mandab, where both winds converge in the
central basin. This process may explain the occurrence of ELEs in the northern half of the basin.
Moreover, the western land that surrounds the RS has experienced more wind stress than the eastern
side, in particular Egypt and Sudan. This may be due to the eastern extension of the Azores high
that makes the SLP center tilt to the west with reference to the RS. Previous studies have investigated
the role of the atmospheric circulation in the RS circulation, and all have identified the immediate
importance of the wind stress contribution on different spatial and temporal scales [30,31,45–47].

In brief, the strengthening of northerly wind stress, which advected cold air masses to the basin,
coincides with the presence of less than usual southerly wind stress over the southern end, which
transfers warm and humid air northward. This is a possible reason for the occurrence of ELEs in the
RS during the winter period.

Taken together, the wind analysis emphasizes the vital role of atmospheric circulation in
enhancing the occurrence as well as the frequency of EHEs and ELEs during the summer and
winter periods, respectively.
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3.3.3. The Net Surface Air–Sea Heat Flux

To understand in depth the transferring of atmospheric circulation signals to the sea, we showed
the net air–sea heat fluxes anomalies during the EHEs and ELEs. Note that we present 8 years out of 10
and 15 years for the EHEs and ELEs, respectively, since the data span from 1984–2009. As the natural
result of the presence of relatively warm air masses associated with less than average SLP and wind
stress over the basin during the EHEs, the net surface air–sea heat flux is positive over the entire basin
(heat gain from air to sea), with values up to 100 W m2 (not shown). These values produce positive
anomalies mainly over the central basin (Figure 6a).
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Conversely, during the ELEs, the net surface air–sea heat flux is negative over the entire basin (heat
loss from sea to air), associated with a strong meridional gradient ranging from -1 W m2 in the south to
over -200 W m2 in the north (not shown). These values represent less than average anomalies over the
entire basin, except the southern end (Figure 6b). Interestingly, the far northern end seems to differ
from the entire basin; this may be due to a complex physical process that enhances the intermediate-
and deep-water formation. Further investigation using the re-analysis dataset and modelling approach
can be more beneficial and a key point to understand the water formation process, which still remains
unresolved [38].

In brief, the net surface air–sea heat flux results are consistent with the distinguished spatial
distribution of SLP and wind stress for each event. The above average heat gain (loss) due to the
presence of relatively warm (cold) air masses and less than (above) average SLP and wind stress is a
possible reason for the occurrence of EHEs (ELEs).

3.3.4. Associated MLD and Chl-a

In order to understand the roles of atmospheric forcing and ocean physics variability on the
biological ecosystem in the basin, we present the anomalies of MLD and Chl-a for EHEs and ELEs, which
were calculated from the difference between composite maps of those events and their climatology
values. The latter two maps are not shown in this analysis, and we only present the anomaly values for
each event. The analysis included a nonsignificant anomaly in MLD for EHEs during the summer
period (Figure 7a). The warmer the ocean surface and the more stable the stratified boundary layer,
the shallower the MLD [48]; this is a well-known consequence of global warming [49]. The biological
response during EHEs revealed a lower than average Chl-a concentration, especially in the central
basin (Figure 7b). This result is in line with previous studies conducted on the RS [17,50]. The Chl-a
concentration revealed a negative correlation [23], and reached its minimum values during heat wave
events [20]. Comparable results have been observed in other ocean basins [51,52] and these have been
linked with a warmer global climate [53]. Note that, due to the availability of data on Chl-a, which
started to be recorded in 2003, we used 9 out of the 15 years available to analyze the EHEs during
summer and only 3 out of 10 years to analyze the ELEs in the composite analysis.
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 Figure 7. Composite anomalies of the mixed layer depth in m (a) and Chl-a concentration in mg/m3 (b)
for EHEs. Same for (c) and (d) but for ELEs.

Visually, the map of MLD anomalies looks somewhat similar to the spatial distribution of the
SST during ELEs, since the area of the above average MLD corresponds to the area of the spatial
distribution of the SST in the far northern end of the basin (compare Figures 7c and 3c). The above
average MLD is a natural impact of the unstable water column caused by the theoretical existence of
dense water in the surface through the contribution of a less than average SST. A further natural impact
is due to the occurrence of an above average Chl-a concentration over the same area as the water
column mixing process increases. Triantafyllou et al. (2014) [54] and Sofianos and Johns (2003) [33]
confirmed that vertical nutrient transport in this area is controlled by a deep convection or upwelling
process. Conversely, the Chl-a concentration decreases over the southern entrance of the basin during
ELEs (Figure 7d). This may be due to the wind stress weakening in the area, since Chl-a is advected by
the southerly wind [18,55].

In brief, the analysis emphasizes links between the atmospheric circulations; ocean physical
factors, including SST and MLD; and ocean fertility in terms of the Chl-a concentration.

4. Conclusions

This study explored the atmospheric circulation influencing the EHEs and ELEs over the RS,
an area that has not yet been explored in previous studies. The question of how the physical processes
of the atmosphere can affect the RS circulation is a highly important research topic, while the expected
impact on the ecosystem is a challenge for near-future conditions. We focused on the summer and
winter months only, since EHEs and ELEs are likely to take place during the hottest and coldest seasons
of the year. The 37-year-long OISST record concludes that the EHEs (ELEs) observed over the southern
(northern) basin have had a significant warming trend of 0.027 (0.021) ◦C year−1.

Based on the findings shown in this study (Figure 8), we propose a distinct type of atmospheric
circulation for each event:
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EHEs during the summer period mainly occur over the southern RS when the westward monsoonal
trough is dominant and adjoins the equatorial African low belts, including the Red Sea Trough and
Sudan thermal low. Negative SLP anomalies are widespread over the RS and surrounding area, centered
over the Mediterranean Sea. The SLP gradient deceases in southern Europe. Overall, anomalous
wind stress decreases over the RS and increases over the Tokar Gap area. Overall, anomalous Chl-a
values decrease due to the stably stratified ocean boundary layer. This is a straightforward negative
consequence of EHEs on the chlorophyll concentration.

ELEs during the winter period mainly occur over the northern RS when the westward extension
of the Siberian anticyclone high adjoins the eastward extension of the Azores high. There is a strong
positive SLP anomaly over Turkey, Mediterranean Sea, and northeast Africa. The SLP gradient
significantly increases in southern Europe. The anomalous wind stress increases over northern RS
and decreases over the southern part. The anomalous Chl-a values increase over northern RS due to a
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significant increase in anomalous MLD but decrease over the southern part. This is a straightforward
positive consequence of the effect of ELEs on the chlorophyll concentration.

These results bring us a step closer toward the ability to report and understand the extreme SST
variability seen in the RS. Our findings raise the possibility that a warmer global climate could make the
RS ecosystem less productive following the tropical ocean [49,53], which provides a useful background
on how a warmer climate scenario can alter marine ecosystems. Furthermore, there is a need to include
paleo-biological data to allow us to closely look for RS productivity under past climatic conditions
before simulating the effects of future climate change using climate models. In addition, it is important
to understand that the atmospheric circulations that forced the RS and surrounding area climate,
including EHEs and ELEs, are not local or regional phenomena but are a manifestation of superimposing
remote impacts of the large-scale climatic mode from the tropical and polar regions [24,37,46,47,56–58].

Finally, sensitive experiments using ocean models could determine the exact roles of the SST and
wind on RS productivity, enabling better projection of future climatic conditions, and this could help
decision makers to mitigate the harmful impacts of global warming on the region.
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