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Abstract: This paper focuses on landslide susceptibility prediction in Nanchuan, a high-risk landslide
disaster area. The evidential belief function (EBF)-based function tree (FT), logistic regression (LR),
and logistic model tree (LMT) were applied to Nanchuan District, China. Firstly, an inventory
with 298 landslides was compiled and separated into two parts (70%: 209; 30%: 89) as training
and validation datasets. Then, based on the EBF method, the Bel values of 16 conditioning factors
related to landslide occurrence were calculated, and these Bel values were used as input data for
building other models. The receiver operating characteristic (ROC) curve and the values of the area
under the ROC curve (AUC) were used to evaluate and compare the prediction ability of the four
models. All the models achieved good results and performed well. In particular, the LMT model
had the best performance (0.847 and 0.765, obtained from the training and validation datasets,
respectively). This paper also demonstrates the superiority of integration and optimization of models
in landslide susceptibility evaluation. Finally, the best classification method was selected to draw
landslide susceptibility maps, which may be helpful for government administrators and engineers to
carry out land design and planning.

Keywords: evidential belief function; function tree; logistic regression; logistic model tree;
Nanchuan District

1. Introduction

Landslides occur mainly due to the landform, geology, hydrology, soil, meteorology, human
activities, and land-use patterns of the region under different geospatial and geographic conditions [1,2].
Landslides often represent a danger to human beings and cause property damage, due to natural
conditions and human engineering activities [3]. In recent years, many areas of China have suffered
from landslides, posing a clear threat to the safety of communication equipment, transmission lines,
and transportation networks [4].

Landslide susceptibility assessment is an indispensable input into landslide risk management [5].
The selection of appropriate analysis, the scale of analysis, the choice of modeling methods,
and the quality and quantity of available data in a landslide inventory map collectively determine
the reliability of landslide susceptibility maps [6–9]. As increasing attention is paid to the application of
remote sensing and geographic information system technology, many scholars have used quantitative
and qualitative methods based on expert group experience, to prepare landslide susceptibility
maps [10,11]. Generally, a qualitative method uses a landslide inventory to predict sites with the same
geomorphological and geological characteristics, or to combine the concept of weighting and sequencing
with the view of experts to predict potential landslides [12–14]. A quantitative method is a numerical
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analysis of spatial relationships of historical landslides and conditioning factors [13]. The qualitative
method based on expert knowledge may be too subjective, so the quantitative approach is increasingly
being applied to landslide susceptibility modeling [13,15,16].

There are three kinds of quantitative methods: physically-based methods, statistical-based methods,
and machine learning methods. Physically-based methods [17,18] require more detailed data of rock
and soil records and regional-scale data relating to the geological aspects of slope failure at specific
locations [19,20]. However, because of the associated high cost, this approach is not suitable for large
areas. Traditional statistical analysis requires the presumption of a structural model. It then focuses on
parameterization, which is widely applied to the study of geological disasters, such as landslides [19,21,22].
However, this method is not very practical, and has a number of defects. In particular, it requires an
underlying hypothesis, and has an over-dependence on parameters [19], such as the certainty factor
(CF) [23,24], Dempster–Shafer theory [25,26], entropy [23,27], and weight of evidence (WoE) [28–30].

The machine learning approach includes a series of data-driven algorithms and tools that are used
to study the relationship between the occurrence of landslides and the conditioning factors related
to landslides [31,32]. These methods overcome the shortcomings of physically based and statistical
methods, and produce more reliable results from data [33–35]. In general, the machine learning
method is more effective than other methods [33,34], which is a common feature of the machine
learning algorithm. For instance, support vector machines (SVMs) [36,37], artificial neural networks
(ANNs) [38–40], random forest [41–43], naive Bayes (NB) classifiers [35], and other machine learning
models are widely used in LSM. Pourghasemi and Rahmati conducted a comparative study of
the 10 most advanced machine learning models [19].

It can be clearly seen from the literature review that additional comparative studies of distinct
machine learning models are required for better problem analysis, evaluating the effectiveness of
models, and to help improve landslide susceptibility prediction [19,34,44]. A large number of studies
have been undertaken to explore the landslide susceptibility of the high-risk landslide disaster area
of Nanchuan District (the research area). In this paper, the most suitable model and algorithm are
identified. The main focus of this paper is to utilize the evidential belief function (EBF), function
tree (FT), logistic regression (LR), and logistic model tree (LMT) to perform a landslide susceptibility
forecast in Nanchuan District, and subsequently to compare the performances of the four models.

2. Description of the Study Area

Nanchuan District is part of Chongqing, China, and is located at 106◦54′–107◦27′ E
and 28◦46′–29◦30′N. Nanchuan District is adjacent to Wulong in the northeast, Guizhou in the southeast,
Fuling in the north, and Banan, Qijiang and Wansheng in the west. It is the necessary transportation
gateway of Southern Chongqing and Northern Guizhou. The district is 80.25 km in length from south
to north, 52.5 km wide from east to west, and has a total area of 2601.92 km2 (Figure 1). Furthermore,
Nanchuan District is located in a subtropical warm monsoon area with abundant rainfall and a
mild climate. The annual average temperature is 20 ◦C. The maximum annual rainfall is 1534.80 mm,
and the annual average rainfall is 1170.20 mm. Figure 2 shows the average monthly rainfall from
1990 to 2019. The seasonal distribution of rainfall is uneven, the driest month is January, and the rainy
season is mainly from May to September [45,46] (http://www.weather.com.cn/).

http://www.weather.com.cn/
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Nanchuan District is located on the southeastern margin of the Sichuan Basin, and to the northwest
of the Dalou Mountains. The area has the characteristics of strong settlement in the northwest (within
the basin) and uplift in the southeast. The lithology in the area is mainly mudstone, sandstone,
and limestone, and Quaternary deposits are widely distributed in depressions, river valleys, and slopes.
Paleozoic and Mesozoic deposits are widely distributed in the area. The lithology is mainly carbonate
rocks and clastic rocks, and there are a few Quaternary loose accumulation layers, which laid
the foundation for the formation of groundwater and constituted carbon. The three basic types of
groundwater are karst water in salt rock, fissure water in bedrock, and pore water in loose rock.
The surface water system in the area mainly comprises the Yangtze River system, which is mostly
branched, followed by feathers, with a large slope drop and rapid water flow.

3. Methodology

This paper is mainly divided into five parts, as shown in Figure 3.

3.1. Evidential Belief Function

The EBF is primarily based on the Dempster–Shafer evidence algorithm theory [47,48].
The Dempster–Shafer theory, as an extension of Bayesian subjective probability theory, mainly
deals with the influence of the confidence degree of the problem and the probability of the problem.

The main advantage of applying this method to a landslide susceptibility study is its adaptability.
This is mainly due to the integration of beliefs from multiple sources and the acceptability of uncertainty.
The other advantage of the EBF model is that it is a method of uncertainty prediction in the landslide
mapping area [25]. These advantages lead to the EBF model having good prediction results as a
two-variable model. Belief (Bel) multi-tier integration is represented by the following formula [49]:

Bel =
Bel1 + Bel2 + · · ·+ Beln

1−
∑n

i = 2 Beli−1Disi −Disi−1Beli
(1)

where Beln indicates the element of each type or range of low confidence, Bel denotes the lower limit
of the propositional probability, and Disi indicates the level of distrust for each factor type or scope.
Thus, if there is no landslide, the Bel value will be zero.

3.2. Function Tree

As an effective classification method, the FT was first considered as a multivariate tree for
the promotion of decision problems [50]. Gama put forward the FT model, which combines a
significant construction discriminant function with a multivariate decision tree [50,51]. Here, D is
the training dataset and n is the number of samples (Xi, Yi), Xi ∈ Rn, Yi ∈ {1, 0}. Xi is an input variable,
which, in this paper, refers to the 16 landslide conditioning factors. Yi is an output, which can be
expressed as landslide or non-landslide. FT first establishes a decision tree to separate these two
classes from the training dataset [52]. The FT algorithm uses a logistic regression function to segment
the internal nodes (called oblique crack) and make an estimate on the leaves. Then, P(X) is the predictive
value (PV) of the measured probability and the logical enhancement of the iteratively reweighted least
squares method is determined for each class Yi (for each output comprising two classes) [41,52].

fYi(X) =
15∑

i = 1

βiXi + β0 (2)

P(X) =
e2 fYi (X)

1 + e2 fYi (X)
(3)

where Xi is the input variable and βi is the modulus of the i-th component.
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3.3. Logistic Regression

LR relates to one or more independent variables to predict the binary classification or reaction
probability [29,53]. Values of arguments in the model can be represented by 0 or 1, indicating whether
landslide units exist or not. The general form of LR is as follows [54]:

y = a + b1x1 + b2x2 + b3x3 + · · ·+ bmxm (4)

y = loge[
P

1− P
] = logit(P) (5)

P =
ey

1 + ey (6)
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where x1,x2, . . . ,xm, from Xi, represent arguments; b1,b2, . . . ,bm represents the estimated regression
coefficients; y denotes a combination function with a linear relationship; and P represents the probability
of landslide.

3.4. Logistic Model Tree

As a categorical model, LMT consists of a decision tree learning model and LR [55,56]. The LR of
tree nodes is constructed using the LogitBoost algorithm and pruned by the CART algorithm [57,58].
The LogitBoost algorithm selects the most relevant attributes or variables in the data, uses a simple
regression in each iteration, and stops working before convergence to the maximum likelihood solution
occurs [59]. The LR model is constructed by a staged fitting process, and the relevant attributes
in the data are selected. Furthermore, the LogitBoost algorithm creates the accumulated LR of
the least-squares method for the preset data of every c class, in the following format [59]:

Lc(x) = α0 +
F∑

i = 1

αixi (7)

where αi is the ratio of the i-th weight in the observation x, and F is the landslide specific number.
The probability of nodes in the LMT model can be calculated by the linear LR function [59]:

p(c|x ) =
exp(Lc(x))∑c

c′ = 1 exp(Lc′(x))
(8)

where c is the density of landslide classification; Lc(x) is converted to
∑c

c = 1 Lc(x) = 0 to apply the least
squares method [59].

4. Data Preparation

4.1. Landslide Inventory

The quality of the landslide inventory determines the results of landslide susceptibility prediction
and evaluation. However, there is currently no detailed standard for the accuracy of landslide
inventory [46,60]. This study uses landslide events caused mainly by multiple rainfalls during the time
span of 1979 to 2018. A total of 298 landslides were identified, based on field investigations, historical
reports, and Google Earth satellite image interpretations. A complete landslide inventory map of
Nanchuan District was used to identify and record the location (centroid) of these previous landslides
(Figure 1), which consists of 295 slides and three rockfalls [61]. According to the analysis of landslides
using GIS tools, the volumes of the three rockfalls are 4800 m3, 12,000 m3 and 13,100 m3, respectively.
The size distribution of 295 slides is shown in Figure 4. For slides, the smallest area was close to
70 m2, the largest was more than 8.4 × 105 m2, and the average area was about 3.07 × 104 m2. In terms
of volume, the minimum volume was only 140 m3, and more than 95% of the slides were less than
100,000 m3. The occurrence of landslides is closely related to the exposed strata, and its lithological
conditions are the decisive factors that determine landslides’ occurrence. Landslides are prone to
occur in strata distribution areas, such as clay, mudstone, shale, and marl. Based on the above, it can
be shown that the established landslide inventory map is sufficiently robust and can be used for
the landslide susceptibility analysis in this study. The split of the dataset is of significance to verify
the performance of the model [62]. Furthermore, through the analysis and comparison of landslide
data, it was found that 70%: 30% could be used as the classification standard of landslide data in this
paper [63–65]. In addition, an equal amount (298) of non-landslide points were randomly selected
in areas without landslides, and then allocated 70%: 30% to the training and verification data sets,
respectively. Then, data were assigned values of 1 (with landslide) and 0 (non-landslide).
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4.2. Landslide Conditioning Factors

After the compilation of the landslide inventory map, it is necessary to select and create landslide
conditioning factors for landslides susceptibility prediction [28]. These factors are mainly selected
according to three aspects: geological factors, topographic factors, and geological environment factors.
Based on the existing characteristics and geological conditions of the research area and the literature
review [66–69], 16 conditioning factors were selected for this paper: altitude, slope angle, slope
aspect, plan curvature, profile curvature, sediment transport index (STI), stream power index (SPI),
topographic wetness index (TWI), the normalized difference vegetation index (NDVI), land use,
geological age groups, soil, distance to roads, distance to rivers, distance to faults, and rainfall
(Figure 5). These 16 conditioning factors were converting into a thematic data layer with a unified
resolution of 20 × 20 m, in order to achieve the purpose of a unified format, which is conducive to
the prediction of landslide susceptibility.
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(e) profile curvature, (f) sediment transport index (STI), (g) stream power index (SPI), (h) topographic
wetness index (TWI), (i) normalized difference vegetation index (NDVI), (j) land use, (k) geological age
groups, (l) soil, (m) distance to roads, (n) distance to rivers, (o) distance to faults, (p) rainfall.

A digital elevation model (DEM) was extracted from Aster GDEM data (http://www.gscloud.cn).
In ArcGIS 10.5, the DEM was utilized to extract thematic data layers such as elevation, slope angle, aspect, plan
curvature, profile curvature, STI, SPI, and TWI. Landsat 8 OLI images, traffic maps, and 1:200,000 geological
maps were used to extract the NDVI, distance to roads, distance to rivers, and distance to faults. Using
the rainfall data of Chongqing Meteorological Bureau (http://www.weather.org.cn), the rainfall map was
drawn based on the distance weighted inverse method [64,65]. The land-use thematic data were drawn
from the 1:100,000 land-use map. In addition, the soil thematic data were extracted using the 1:1,000,000
scale soil map.

5. Results

5.1. Analysis of Landslide Conditioning Factors

5.1.1. Relationship between Landslide Conditioning Factors and Landslide Occurrence

In this paper, the thematic layer of landslide data and the thematic map of 16 conditioning factors were
combined to compute the number of pixels and landslides under different categories, and the proportion of
each category was calculated. On this basis, the EBF model can be used to summarize the spatial correlation

http://www.gscloud.cn
http://www.weather.org.cn
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between landslide occurrence and landslide conditioning factors (Figure 6). When the Bel value is zero,
the expected chance of landslide is also zero. Hence, the Bel value is positively correlated with the expected
probability of landslide occurrence.

The conditioning factor of altitude (Figure 6a), which is divided into nine categories, has the largest
Bel value (0.235) for 900–1100 m, with no landslides occurring at altitudes higher than 1700 m, and up
to the highest elevation in the research area. At the same time, landslides mainly occur at an altitude
of 1300 m, which is consistent with the opinion of Wu et al. [70]. In the eight categories classified
according to the slope angle (Figure 6b), although the Bel value is the largest in the range of 60–70◦

(0.330), this range only accounts for 0.17% of the total area, and landslides in this range only account for
0.47% of the total. The Bel value is only 0.164 in the range of 10–20◦, accounting for 35.95% of the total
area. Regarding geology, regions in the range of 10–20◦ are most prone to landslides, due to their
instability after heavy rain [71]. Regarding the slope aspect (Figure 6c), the Bel value of the southwest
(0.148) is the largest, and that of the flat is zero. The slope direction is positively correlated with
the occurrence of a landslide, which is consistent with the viewpoint of Oh et al. [72]. For the three
types of plan curvature (Figure 6d), the maximum Bel value (0.401) occurs in the range of −0.05 to
0.05, while the region of 0.05–19.49 has the smallest Bel value (0.279). The area of the region −0.05 to
0.05 is small, so the confidence is not large, which may also be related to the overweight effect [73,74].
Among the three types of profile curvature (Figure 6e), −27.51 to −0.05 has the highest Bel value (0.359),
and −0.05 to 0.05 has the lowest Bel value (0.301). However, for the profile curvature range of −27.51 to
−0.05, the susceptibility is higher, which is consistent with Hong et al. [75]. Furthermore, the Bel value
of the STI is the largest for STI >20 (0.318) of the seven categories and the smallest for 15–20 (0.087)
(Figure 6f). The SPI is divided into five categories, and the largest Bel value was obtained for SPI >20
(0.256) (Figure 6g). The STI and SPI are positively correlated with the rate of occurrence of landslides
(with the exceptions of 15–20 and 5–10, respectively), as in [76]. For the TWI (Figure 6h), 0.24–1 (0.225)
and 1–1.5 (0.178) had the largest and smallest Bel values, respectively, of the five constituent categories.
The lowest Bel value of the NDVI appeared for 0.38–0.56 (0.140), while the highest Bel value appeared
for 0.20–0.26 (0.231) (Figure 6i). In the five categories of land use (Figure 6j), farmland has the largest
Bel value (0.424). As for land use, the susceptibility of farmland is the largest, which is closely related
to land irrigation, human engineering activities, and rainfall. Furthermore, for geological age groups
(Figure 6k), the area of the fifth of the seven groups (Ordovician: greyish-black charcoal shale, siliceous
base) is prone to landslides with the largest Bel value (0.650)). This is consistent with the opinion of
Jaafari et al. [77] that shale transports permeated water to the fracture surface. Soil is divided into
seven classes (Figure 6l), with the largest Bel value obtained by the Dystric Cambisol class (0.363),
while the Bel values of the Rendzic Leptosol and the Dystric Regosol classes were zero. Regarding
the distance to roads (Figure 6m), the 0–200 m group has the maximum Bel value (0.296) of the five
categories. Here, the underlying trend is that the higher the distance to roads, the less prone an area is
to landslides. Among the five categories of distance to rivers, the Bel value of the 200–400 m group was
the highest (0.260) (Figure 6n). Skilodimou [78] proposed that urban and rural planners and engineers
can use a certain distance of a buffer zone to reduce the occurrence of landslides and protect the existing
environment. For the distance to faults (Figure 6o), the maximum (0.247) and minimum (0.144) Bel
values were obtained for the 1000–2000 m and 2000–3000 m groups of the seven classes, respectively.
In terms of rainfall (Figure 6p), the largest Bel value (0.340) was obtained in the 333.62–1221.86 class.
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positively correlated with the occurrence of a landslide, which is consistent with the viewpoint of Oh 

et al. [72]. For the three types of plan curvature (Figure 6(d)), the maximum Bel value (0.401) occurs 

in the range of −0.05 to 0.05, while the region of 0.05–19.49 has the smallest Bel value (0.279). The area 

of the region −0.05 to 0.05 is small, so the confidence is not large, which may also be related to the 

overweight effect [73,74]. Among the three types of profile curvature (Figure 6(e)), −27.51 to −0.05 

has the highest Bel value (0.359), and −0.05 to 0.05 has the lowest Bel value (0.301). However, for the 

profile curvature range of −27.51 to −0.05, the susceptibility is higher, which is consistent with Hong 

et al. [75]. Furthermore, the Bel value of the STI is the largest for STI >20 (0.318) of the seven 

categories and the smallest for 15–20 (0.087) (Figure 6(f)). The SPI is divided into five categories, and 

the largest Bel value was obtained for SPI >20 (0.256) (Figure 6(g)). The STI and SPI are positively 

correlated with the rate of occurrence of landslides (with the exceptions of 15–20 and 5–10, 

respectively), as in [76]. For the TWI (Figure 6(h)), 0.24–1 (0.225) and 1–1.5 (0.178) had the largest and 

smallest Bel values, respectively, of the five constituent categories. The lowest Bel value of the NDVI 

appeared for 0.38–0.56 (0.140), while the highest Bel value appeared for 0.20–0.26 (0.231) (Figure 6(i)). 

In the five categories of land use (Figure 6(j)), farmland has the largest Bel value (0.424). As for land 

use, the susceptibility of farmland is the largest, which is closely related to land irrigation, human 

engineering activities, and rainfall. Furthermore, for geological age groups (Figure 6(k)), the area of 

the fifth of the seven groups (Ordovician: greyish-black charcoal shale, siliceous base) is prone to 

landslides with the largest Bel value (0.650)). This is consistent with the opinion of Jaafari et al. [77] 

that shale transports permeated water to the fracture surface. Soil is divided into seven classes 

(Figure 6(l)), with the largest Bel value obtained by the Dystric Cambisol class (0.363), while the Bel 

values of the Rendzic Leptosol and the Dystric Regosol classes were zero. Regarding the distance to 

roads (Figure 6(m)), the 0–200 m group has the maximum Bel value (0.296) of the five categories. 

Here, the underlying trend is that the higher the distance to roads, the less prone an area is to 

landslides. Among the five categories of distance to rivers, the Bel value of the 200–400 m group was 

the highest (0.260) (Figure 6(n)). Skilodimou [78] proposed that urban and rural planners and 

engineers can use a certain distance of a buffer zone to reduce the occurrence of landslides and 

protect the existing environment. For the distance to faults (Figure 6(o)), the maximum (0.247) and 

minimum (0.144) Bel values were obtained for the 1000–2000 m and 2000–3000 m groups of the seven 

classes, respectively. In terms of rainfall (Figure 6(p)), the largest Bel value (0.340) was obtained in 

the 333.62–1221.86 class. 
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5.1.2. Multicollinearity Analysis of Conditioning Factors

In the process of building a landslide susceptibility model, it is necessary to carry out
multicollinearity analysis to test the conditioning factors [79,80]. Multicollinearity can be used
to test the possible interdependency between the conditioning factors of a landslide. If there is a high
degree of correlation, it will lead to serious system analysis error. Generally speaking, the tolerance
and variance inflation factor (VIF) are the commonly used indicators of the multicollinearity test
(tolerance < 0.1 or VIF > 10) [81,82]. The expressions for tolerance and VIF are as follows:

Tolerance = 1−R2
d (9)

VIF =
[ 1
Tolerance

]
(10)

where R2
d is the determining factor for the regression of explanatory variables and d concerns all other

explanatory variables [67,83].
Therefore, a multicollinearity analysis was carried out to determine if there is interdependence

between the adjustment factors of the EBF model preprocessing. The two values of tolerance and VIF
were obtained by multicollinearity regression modeling (Table 1). From Table 1, the lowest VIF
value (1.052) and the highest tolerance value (0.951) are exhibited by the distance to the rivers
conditioning factor. In contrast, the SPI conditioning factor has the largest VIF value (2.157)
and the smallest tolerance value (0.464).

Table 1. Multicollinearity analysis in the current study.

Landslide Conditioning Factor
Collinearity Statistics

Tolerance VIF

Distance to rivers 0.951 1.052
Slope aspect 0.936 1.069

Distance to faults 0.907 1.103
Rainfall 0.903 1.108

Profile curvature 0.896 1.116
Land use 0.886 1.129

Plan curvature 0.871 1.148
Geological age groups 0.863 1.158

Distance to roads 0.855 1.169
NDVI 0.845 1.183

Slope angle 0.84 1.19
Soil 0.804 1.244
TWI 0.769 1.300

Altitude 0.767 1.304
STI 0.536 1.867
SPI 0.464 2.157

The results show that all of these factors meet the conditions of TOL value greater than 0.1 and VIF
value less than 10 [29,79,84]. Therefore, no multicollinearity issues exist between the 16 conditioning
factors in the current paper.

5.1.3. The Prediction Ability of the Conditioning Factors

The removal of negative landslide susceptibility factors can optimize model performance
and ensure the accuracy of landslide susceptibility prediction [85]. In the current paper, the prediction
ability of the conditioning factors pretreated by the EBF model was investigated and quantified
by the contribution values of the 16 landslide conditioning factors. Ten-fold cross-validation
and the correlation attribute evaluation method (CAE) were used to calculate the average merge
and standard deviation of each conditioning factor [86–88]. The results show that the slope angle
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(AM = 16) has the greatest influence on landslide occurrence, followed by the altitude (AM = 15),
distance to roads (AM = 13.4), soil (AM = 12.6), rainfall (AM = 12.4), geological age groups (AM = 10.8),
STI (AM = 10.6), distance to faults (AM = 8.6), land use (AM = 8.6), distance to rivers (AM = 6.7),
slope aspect (AM = 5.9), SPI (AM = 4.3), NDVI (AM = 3.3), TWI (AM = 2.9), profile curvature (AM = 2.8),
and plan curvature (AM = 2.1) (Figure 7). Each conditioning factor has a corresponding predictive
value. Hence, all of these factors were adopted in this study.
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5.2. Model Configuration

In the current paper, the landslide susceptibility models were analyzed by EBF, FT, LR, and LMT
models. The EBF algorithm was mainly used to preprocess the landslide data in this paper. The landslide
susceptibility index (LSI) of the EBF model is calculated, as in Equation (11):

LSIEBF = AltitudeBel + Slope angleBel + Slope aspectBel+

Plan curvatureBel + Pro f ile curvatureBel + STIBel+

SPIBel + TWIBel + NDVIBel + LanduseBel + Geological age groupsBel+

SoilBel + Distance to roadsBel + Distance to riversBel+

Distance to f aultsBel + Rain f allBel

(11)

The FT model was used as one approach to perform the landslide susceptibility assessment.
After the preprocessing of the conditioning factors, the FT algorithm was implemented using the Weka
software. The FT model can be applied in three ways: including leaves and inner nodes, only inner
nodes, or only leaves. In this paper, after three ways of testing, it was found that only using the leaves
yielded the best results.

Thus, it was decided to implement the FT model using only the leaves in this work. As the output
representation style of the FT model, the classification decision tree highly generalizes, organizes,
and analyzes the landslide data and the conditioning factors under the FT model, classifies the landslide
data through the LR model, and gradually forms the binary tree structure (Figure 8). The classification
decision tree of the FT model shows that the final output contribution (weight) corresponds to the initial
output contribution, which is consistent with Freund’s and Mason’s views [89].
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Figure 8. Classification decision tree of landslide susceptibility using the function tree (FT) model.

In landslide susceptibility mapping, the LR model quantizes the contribution of the 16 conditioning
factors into coefficients to quantify the LSI. The expected probability of landslide occurrence depends
on the value of the coefficient. The larger the coefficient value of the conditioning factor, the higher
the influence of the conditioning factor on landslide susceptibility. A negative value of the coefficient
indicates that the factor reduces the probability of landslide occurrence. There may also be intercepts
that affect LSI values. The LSI value range is [0,1]; a value approaching 1 indicates a landslide,
while that approaching 0 indicates no-landslide.

Based on the dependent variables (landslide data) and independent variables (16 conditioning
factors), the values of various conditioning factors in the LR model are calculated using
the Weka software. The selected test mode is 10-fold cross-validation. Meanwhile, the linear
combination equation of the LSI of the LR model was constructed (Equation (12)). The intercept
(−19.0897) and the coefficient of every conditioning factor is shown in the formula. The coefficient size
of each factor is different, and the contribution to LSI is also different. From these coefficients, in the LR
model, slope angle and TWI have the greatest impact on LSI, while the negative NDVI and profile
curvature have a suppressive effect on LSI.

LSILR = (AltitudeBel ∗ 9.633) + (Slope angleBel ∗ 18.722)+
(lope aspectBel ∗ 14.034) + (Plan curvatureBel ∗ (−0.717))+
(Pro f ile curvatureBel ∗ (−3.059)) + (STIBel ∗ 5.289)+
(SPIBel ∗ 0.1794) + (TWIBel ∗ 18.062) + (NDVIBel ∗ (−4.0862))+
(LanduseBel ∗ 4.381) + (Geological age groupsBel ∗ 7.737)+
(SoilBel ∗ 2.372) + (Distance to roadsBel ∗ 7.848)+
(Distance to riversBel ∗ 7.039) + (Distance to f aultsBel ∗ 11.383)+
(Rain f allBel ∗ 5.876) − 19.0897

(12)

To improve the performance of the LMT model, the calculation parameters need to be
adjusted. In this study, according to the data obtained in the modeling process and many attempts,
three parameters, given in Table 2, were selected for the LMT model by 10-fold cross-validation,
and then optimized. Curves of the values of the AUC under different conditions were drawn (Figure 9).
Here, two graphs and eight lines are included. The AUC values were observed and calculated.
According to the AUC value, the parameters with better performance were selected and applied to
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LMT modeling. The AUC value obtained from the best training data parameter was 0.847, and from
the best parameter for the validation data was 0.765 (Table 2).

Table 2. Relevant parameters of the LMT model.

numBoostingIterations splitOnResiduals useAIC

line1 [−1, 30] FALSE FALSE
line2 [−1, 30] FALSE TRUE
line3 [−1, 30] TRUE FALSE
line4 [−1, 30] TRUE TRUE

Selected parameters 0 TRUE TRUE
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5.3. Model Validation

The landslide data was assigned a value of 1. In the study area, the pixels equal to the landslide
data were randomly sampled as non-landslide data, with a value of 0. The 16 conditioning factors
were used to sample these pixels and generate the training and validation datasets. The landslide data
preprocessed by the EBF model were applied to the three models (FT, LR, and LMT). Then, the training
and validation data sets of these models were calculated in the form of line graphs, and the error
statistics were reported (Figure 10). The datasets of the four models for landslide training were
statistically analyzed (Figure 11). The mean standard errors (Mean std. error) for the EBF, FT, LR,
and LMT models were 0.0066, 0.0193, 0.0156, and 0.0147, respectively. The standard deviations
(Std. deviation) of the EBF, FT, LR, and LMT models were 0.135, 0.395, 0.319, and 0.301, respectively.
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Meanwhile, the variances of the EBF, FT, LR, and LMT models were 0.018, 0.156, 0.102, and 0.091,
respectively. According to the analysis shown in Figures 10 and 11, the best performance was achieved
with the EBF model, while the LMT model was better than the LR model and the FT model.
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In the current study, ROC curves and AUC values were used to compare and evaluate training
and validation datasets of the landslide susceptibility model (Figure 12). The ROC curve is a coordinate
graph and a high-quality tool for probability prediction systems [90,91]. In the coordinate system,
the closer the point of the ROC curve to the upper left corner, the higher the accuracy of the test results.
The AUC value range is [0.5, 1.0], in which the highest AUC has the best diagnostic value [92]. Then,
the AUC value produced by an excellent model is between 0.9-1, good model (0.8-0.9), fair model
(0.7–0.8), a poor model in the range of 0.6-0.7 and the final 0.5-0.6 poor accuracy range of the model [93].
The AUC of the LMT model was the highest (0.847) in the training dataset, followed by the LR (0.838),
EBF (0.824), and FT (0.780) models. In the validation dataset, the highest AUC value was given by
the LMT model (0.765), followed by the LR (0.756), EBF (0.737), and FT (0.676) models. These results
show that all of the AUC values of the training dataset were slightly higher than those of the validation
dataset, and the LMT model was the best of the four models.
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5.4. Generating Landslide Susceptibility Maps

In this study, a unique LSI was applied to all pixels in this research area, to establish a landslide
susceptibility model. The classification methods of LSI mainly include Jenks natural breaks, quantile,
geometrical interval, equal interval, and standard deviation [94,95]. In this study, the four classification
methods of Jenks natural breaks, equal interval, quantile, and geometrical interval were used to divide
LSI into five categories: very low (VLC), low (LC), moderate (MC), high (HC), and very high (VHC).
The relative distribution of susceptibility category areas and the relative proportion of landslides in
each category in the study are shown in Figure 13. Generally, the histograms of different models under
different classification methods show regularity: the higher the susceptibility category, the greater
the landslide distribution. Most landslides were recorded in the very high (VHC) category. It can
be clearly seen from Figure 13 that this rule exists, and the quantile is superior to the other three
classification methods, with outstanding performance. In the FT model, the quantile classification
method does not perform as well as the other three models, but for the FT model, the quantile
classification method is still its best choice. Therefore, the quantile is used as a classification scheme for
landslide susceptibility maps of the EBF, FT, LR, and LMT models.
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The final four landslide susceptibility maps were drawn according to the selected classification
method (Figure 14). In the EBF model (Figure 14a), the scales of the VLC (19.75%), LC (19.51%),
MC (20.65%), HC (20.51%), and VHC (19.59%) classifications are distributed. The proportions of
landslides in the areas of various categories are VLC (1.35%), LC (7.07%), MC (13.80%), HC (22.22%),
and VHC (55.56%). In the modeling results of the FT model (Figure 14b), the proportions of VLC
(26.52%), LC (23.14%), MC (16.94%), HC (16.58%), and VHC (16.82%) categories are distributed.
The proportions of landslides in the areas of each category are VLC (8.08%), LC (7.74%), MC (22.22%),
HC (27.61%), and VHC (34.34%). According to the landslide susceptibility zoning results of the LR
model (Figure 14c), the scales of the VLC (19.86%), LC (20.47%), MC (19.77%), HC (20.20%), and VHC
(19.70%) classifications are distributed. The proportions of landslides in the areas of each category are
VLC (1.35%), LC (11.78%), MC (17.17%), HC (23.23%), and VHC (46.46%). Finally, in the modeling
results of the LMT model (Figure 14d), the proportions of VLC (20.00%), LC (20.11%), MC (20.24%),
HC (19.69%), and VHC (19.96%) categories are distributed. The proportions of landslides in the areas
of each category are VLC (1.68%), LC (5.05%), MC (19.53%), HC (28.28%), and VHC (45.45%).



Remote Sens. 2020, 12, 2180 19 of 27

Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 27 

 

 

 

 

 

Figure 13. Selection of the best classification method for landslide susceptibility maps: (a) natural 

breaks, (b) equal interval, (c) quantile, and (d) geometrical interval. 
Figure 13. Selection of the best classification method for landslide susceptibility maps: (a) natural
breaks, (b) equal interval, (c) quantile, and (d) geometrical interval.



Remote Sens. 2020, 12, 2180 20 of 27

Remote Sens. 2020, 12, x FOR PEER REVIEW 19 of 27 

 

The final four landslide susceptibility maps were drawn according to the selected classification 
method (Figure 14). In the EBF model (Figure 14(a)), the scales of the VLC (19.75%), LC (19.51%), 
MC (20.65%), HC (20.51%), and VHC (19.59%) classifications are distributed. The proportions of 
landslides in the areas of various categories are VLC (1.35%), LC (7.07%), MC (13.80%), HC 
(22.22%), and VHC (55.56%). In the modeling results of the FT model (Figure 14(b)), the proportions 
of VLC (26.52%), LC (23.14%), MC (16.94%), HC (16.58%), and VHC (16.82%) categories are 
distributed. The proportions of landslides in the areas of each category are VLC (8.08%), LC (7.74%), 
MC (22.22%), HC (27.61%), and VHC (34.34%). According to the landslide susceptibility zoning 
results of the LR model (Figure 14(c)), the scales of the VLC (19.86%), LC (20.47%), MC (19.77%), 
HC (20.20%), and VHC (19.70%) classifications are distributed. The proportions of landslides in the 
areas of each category are VLC (1.35%), LC (11.78%), MC (17.17%), HC (23.23%), and VHC (46.46%). 
Finally, in the modeling results of the LMT model (Figure 14(d)), the proportions of VLC (20.00%), 
LC (20.11%), MC (20.24%), HC (19.69%), and VHC (19.96%) categories are distributed. The 
proportions of landslides in the areas of each category are VLC (1.68%), LC (5.05%), MC (19.53%), 
HC (28.28%), and VHC (45.45%). 

Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 27 

 

 
Figure 14. Landslide susceptibility maps derived from (a) the EBF model, (b) the FT model, (c) the LR 
model, and (d) the LMT model. 

6. Discussion 

Landslide spatial prediction is an important issue in land use and management [93]. Although 
different prediction methods exist, these different techniques and methods have the same purpose. 
In order to obtain accurate and reliable landslide sensitivity prediction results, landslide researchers 
pay great attention to the establishment of the model. Bivariate algorithms, machine learning 
algorithms, and hybrid models are updated on a daily basis. The purpose of this study is to explore 
the mapping of landslide prone areas in Nanchuan District. In this paper, the evidential belief 
function (EBF)-based function tree (FT), logistic regression (LR), and logistic model tree (LMT) were 
applied to Nanchuan District, China. Compared with machine learning models, a bivariate 
algorithm is not able to achieve satisfactory results in nonlinear modeling [21,96]. Before conducting 
any research, the two-variable algorithm must define strict assumptions, and the relationship 
between conditioning factors is largely ignored, that is, the same weight is assumed for different 
effective factors [21,97]. Furthermore, the internal structure and parameters of the bivariate 
algorithm are unknown. As a traditional bivariate model, the EBF model is easy to understand and 
operate, and does not require a complex training process or the adjustment of various parameters. 
However, EBF models can result in surprises, and the accuracy provided by the EBF model still 
cannot meet requirements. Machine learning algorithms can improve the prediction ability of the 
model in the face of complex nonlinear problems. However, the dependence on modeling 
parameters is high, and the performance of machine learning methods is generally affected by the 
quality and quantity of training data [45,98]. Training data may also be affected by data distribution, 
data size, and data resolution [60,99]. Therefore, machine learning algorithms are constantly 
updated. This paper finds that the FT model is improved by the decision tree model and is more 
sensitive to the classification of classes. The LR model relies on coefficients to predict binary 
classification. The LMT model is a classification model composed of the decision tree model and the 
LR model. It is used as an integrated model to predict and evaluate the susceptibility of landslides in 
Nanchuan District with the first three models. The ensemble algorithm can be used as a more stable 
algorithm with higher precision, to produce satisfactory results and improve the prediction ability of 

Figure 14. Landslide susceptibility maps derived from (a) the EBF model, (b) the FT model, (c) the LR
model, and (d) the LMT model.

6. Discussion

Landslide spatial prediction is an important issue in land use and management [93]. Although
different prediction methods exist, these different techniques and methods have the same purpose.
In order to obtain accurate and reliable landslide sensitivity prediction results, landslide researchers pay
great attention to the establishment of the model. Bivariate algorithms, machine learning algorithms,
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and hybrid models are updated on a daily basis. The purpose of this study is to explore the mapping
of landslide prone areas in Nanchuan District. In this paper, the evidential belief function (EBF)-based
function tree (FT), logistic regression (LR), and logistic model tree (LMT) were applied to Nanchuan
District, China. Compared with machine learning models, a bivariate algorithm is not able to achieve
satisfactory results in nonlinear modeling [21,96]. Before conducting any research, the two-variable
algorithm must define strict assumptions, and the relationship between conditioning factors is largely
ignored, that is, the same weight is assumed for different effective factors [21,97]. Furthermore,
the internal structure and parameters of the bivariate algorithm are unknown. As a traditional bivariate
model, the EBF model is easy to understand and operate, and does not require a complex training
process or the adjustment of various parameters. However, EBF models can result in surprises,
and the accuracy provided by the EBF model still cannot meet requirements. Machine learning
algorithms can improve the prediction ability of the model in the face of complex nonlinear problems.
However, the dependence on modeling parameters is high, and the performance of machine learning
methods is generally affected by the quality and quantity of training data [45,98]. Training data may
also be affected by data distribution, data size, and data resolution [60,99]. Therefore, machine learning
algorithms are constantly updated. This paper finds that the FT model is improved by the decision
tree model and is more sensitive to the classification of classes. The LR model relies on coefficients to
predict binary classification. The LMT model is a classification model composed of the decision tree
model and the LR model. It is used as an integrated model to predict and evaluate the susceptibility of
landslides in Nanchuan District with the first three models. The ensemble algorithm can be used as a
more stable algorithm with higher precision, to produce satisfactory results and improve the prediction
ability of the model. By reflecting the global impact and the specific local impact in partitioned data
space, the LMT model is ultimately more accurate [100].

Analyzing the performance of the model and optimizing the preform model can ensure the quality
of the modeling, establish a robust landslide inventory map, and select 16 landslide conditioning
factors from it. The EBF algorithm is used to analyze the correlation between landslide occurrence
and the landslide conditioning factors. Rainfall, which has a positive correlation with susceptibility, is
the most important factor in this paper, and should be paid attention to. Meanwhile, the influence
of other conditioning factors on landslide cannot be ignored. In this research, in order to ensure
the quality of conditioning factors, the necessary multicollinearity diagnosis and prediction ability
analysis (CAE method) of landslide susceptibility factors are carried out. The results show that there
is no interdependency among the 16 selected conditioning factors, and each factor has a different
prediction ability and contribution. Therefore, the priority of each factor is determined and applied to
the final modeling process.

In this study, the selected models are optimized, the optimal parameters are determined,
and excellent parameter configuration is used to ensure the optimization of the model, so as to
obtain better model performance. Then, these parameters were chosen to acquire the optimal solution
for the landslide susceptibility prediction to provide the best model results. Moreover, the LSI value
of each model was calculated and used in the establishment of the landslide susceptibility map.
Meanwhile, statistical analysis of the landslide dataset was conducted, and the data distribution, mean
standard errors, standard deviation, and variances of each model were obtained. It can be seen from
these values that the LMT model was the most accurate for landslide susceptibility evaluation in
Nanchuan District, compared to the EBF, FT, and LR models. To find more optimal solutions, it is
necessary to apply these models to the study area. According to the ROC curve and AUC value, it is
clear that the curve of the LMT model is closest to the upper left corner of the coordinate system,
and the AUC values of the training dataset (0.847) and verification dataset (0.765) are also the largest.
The FT model has the lowest AUC value among the four models for the training dataset (0.780)
and validation dataset (0.676).

In order to undertake a comparative analysis of landslide susceptibility maps among different
models, it is necessary to use a variety of classification methods to fully describe the output of these
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models. Therefore, in this paper, four classification methods, of Jenks natural breaks, equal interval,
quantile, and geometrical interval, were used to divide LSI into five categories: VLC, LC, MC, HC,
and VHC. The relative distribution in each category area and the relative proportion of landslides in each
category were analyzed, and the quantile classification method was selected to output the classification
scheme of landslide susceptibility map output. In this process, not only the rationality of the landslide
distribution, but also the rationality between the landslide distribution and the relative distribution
in the category area were required. In the landslide susceptibility classification, it can be clearly
seen that the susceptibility distribution of the LMT model is superior to the EBF, FT, and LR models
(Figure 13c). Therefore, the performance of the LMT model is better than the EBF, LR, and FT models.
In short, the integrated algorithm is superior to the single algorithm, and the performance of these
models is good. The approach has the correct guiding significance for preventing and controlling
future landslides.

7. Conclusions

Generally, landslide susceptibility zoning is a useful tool for landslide disaster management and
planning. This research was based on four different algorithms (EBF, FT, LR, and LMT) for landslide
susceptibility spatial prediction in Nanchuan District. The conditioning factors, landslide datasets,
and models were analyzed and improved to achieve the most suitable algorithm. The main results are
summarized as follows:

(1) The maps showed that the four landslide susceptibility models were adequate for landslide
susceptibility zoning. Compared with the EBF, LR, and FT models, the LMT model showed the
best performance.

(2) According to the results of the EBF model, most landslides occur at altitudes of 900–1100 m in
the southwest, with a slope angle of 10–20◦, plan curvature of −0.05 to 0.05, profile curvature
of −27.51 to −0.05, STI > 20, SPI > 20, TWI of 0.24–1, NDVI of 0.20–0.26, farmland category in
land use, the fifth group (Ordovician: greyish-black charcoal shale, siliceous base) in lithology,
the Dystric Cambisol category in soil, 0–200 m distance to roads, 200–400 m distance to rivers,
1000–2000 m distance to faults, 333.62–1221.86 category in rainfall.

(3) According to the results of the attribute evaluation method, the most factors influencing the
occurrence of landslide were the altitude, slope angle, slope aspect, plan curvature, profile
curvature, STI, SPI, TWI, NDVI, land use, geological age groups, soil, distance to roads, distance
to rivers, distance to faults, and rainfall.

(4) The landslide susceptibility mapping by quantile classification scheme can be a promising tool
for government decision makers and engineering technicians.

This method successfully compared four different models and explored the landslide sensitivity
in Nanchuan District. The developed method can be used in landslide management and land planning.
However, in the future, the ensemble of machine learning techniques for landslide susceptibility
modeling still needs to be tested in different cases.
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