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Abstract: This paper proposes a combined approach comprising a set of methods for the high-precision
mapping of soil moisture in a study area located in Jiangsu Province of China, based on the Chinese
C-band synthetic aperture radar data of GF-3 and high spatial-resolution optical data of GF-1,
in situ experimental datasets and background knowledge. The study was conducted in three stages:
First, in the process of eliminating the effect of vegetation canopy, an empirical vegetation water content
model and a water cloud model with localized parameters were developed to obtain the bare soil
backscattering coefficient. Second, four commonly used models (advanced integral equation model
(AIEM), look-up table (LUT) method, Oh model, and the Dubois model) were coupled to acquire nine
soil moisture retrieval maps and algorithms. Finally, a simple and effective optimal solution method
was proposed to select and combine the nine algorithms based on classification strategies devised
using three types of background knowledge. A comprehensive evaluation was carried out on each
soil moisture map in terms of the root-mean-square-error (RMSE), Pearson correlation coefficient
(PCC), mean absolute error (MAE), and mean bias (bias). The results show that for the nine individual
algorithms, the estimated model constructed using the AIEM (mv1) was significantly more accurate
than those constructed using the other models (RMSE = 0.0321 cm3/cm3, MAE = 0.0260 cm3/cm3,
and PCC = 0.9115), followed by the Oh model (m_v5) and LUT inversion method under HH
polarization (mv2). Compared with the independent algorithms, the optimal solution methods have
significant advantages; the soil moisture map obtained using the classification strategy based on the
percentage content of clay was the most satisfactory (RMSE = 0.0271 cm3/cm3, MAE = 0.0225 cm3/cm3,
and PCC = 0.9364). This combined method could not only effectively integrate the optical and radar
satellite data but also couple a variety of commonly used inversion models, and at the same time,
background knowledge was introduced into the optimal solution method. Thus, we provide a new
method for the high-precision mapping of soil moisture in areas with a complex underlying surface.

Keywords: soil moisture; multi-model coupling; optimal solution method

1. Introduction

The soil moisture is a main component of the earth system, with the first 0–5 cm of the soil layer
playing an important role in the exchange of substances and energy between the land and atmosphere;
moreover, it is an important parameter in the fields of agriculture, meteorology, and hydrology [1–6].
Although conventional in situ experiments can provide highly accurate data, the regional-scale
monitoring via this method has drawbacks because of the poor representativeness of the surface
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soil moisture in the limited spatial scale of strong heterogeneity areas [7–9]. Compared with the
cumbersome and time-consuming in situ experiments, the development of remote sensing technology
has led to promising methods for soil moisture monitoring, extending the “point” conventional
measurement to objective regional-scale soil moisture information [10–15].

Optical remote sensing has been successfully applied to soil moisture inversion by linking
the changes in the spectral characteristics with the soil moisture content. Optical methods are
straightforward to implement but are easily affected by weather conditions because of their weak
penetration [16]. Most of the thermal infrared methods are applicable only for monitoring the soil
moisture in bare soil and sparsely vegetated areas and under cloud-free conditions, based on the
estimation of soil thermal characteristics [17]. By contrast, the microwave remote sensing technology
is unaffected by cloud or weather conditions owing to the penetration to the vegetation canopy
and sensitivity to soil permittivity [18–22]. Therefore, the microwave remote sensing method,
owing to the synergy between microwaves and other information acquired from the electromagnetic
radiation spectrum, has a good application prospect for estimating the soil moisture of bare soil and
vegetation-covered areas [2,14,18].

In recent years, studies have shown that active microwave remote sensing could make up for the
low spatial resolution and long revisit period of passive microwave remote sensing and has become
a research hotspot in regional-scale soil moisture monitoring [22–24]. The theoretical basis of active
microwave remote sensing in extracting soil moisture information is the dielectric nature of the soil.
Depending on the soil texture and soil moisture, the dielectric constant of soil may vary significantly
even if the soil moisture content changes only slightly, thereby affecting the backscattering coefficient
obtained by active microwave remote sensing [25].

In addition to radar system parameters, the backscattering coefficient obtained by active microwave
remote sensing is mainly determined by the soil dielectric constant, surface roughness parameters,
and vegetation canopy water content [26]. Therefore, under the configuration of a known radar system,
the difficulty in estimating the soil moisture at the regional scale lies in effectively removing the influences
of the vegetation canopy and surface roughness [27–30]. In the process of vegetation impact correction,
the water-cloud model (WCM) and Michigan Microwave Canopy Scattering Model (MIMICS) model are
commonly used to separate the contributions of the vegetation backscattering and soil backscattering
from the radar data [27,31,32]. The vegetation canopy water content is a vital input parameter in the
above models; its value can be obtained by establishing empirical models based on optical remote
sensing data. In practical applications, the WCM is more widely used for its simplified physical theory,
simple model structure, and fewer input parameters [27,33–35]. Several models have been proposed
to develop the relationship between the surface parameters and the backscattering coefficient and
then realize the inversion of the soil moisture, including the integral equation model (IEM) [36,37],
advanced integral equation model (AIEM) [37,38], Oh model [37,39], Dubois model [37,40,41], and some
regression empirical models [42,43]. In recent years, several SAR satellites (Radarsat-2, Sentinel-1,
ALOS-2, and TerraSAR-X) have been used for soil moisture monitoring at the L/C/X-bands, and studies
based on these remote sensing data have achieved satisfactory results [2,44–52]. The domestic GF-3
satellite, launched on 10 August 2016, has shown good reliability and application prospects in the field
of soil moisture retrieval [53].

In conclusion, many efforts have been made for an efficient and accurate soil moisture monitoring,
with significant progress in terms of algorithm development and applications. However, there remain
several gaps in existing literature: (1) Most of the soil moisture retrieval studies selected only one
inversion model, and studies on the coupling of several commonly used models are limited; (2) In the
few studies on coupled models, parallel comparisons of these models were emphasized, and only a few
have comprehensively utilized the results of each model to obtain an optimal solution soil moisture
map with higher accuracy than any of the independent models; (3) In terms of remote sensing data
sources, there are few cases of a synergistic application of radar and optical data from high-resolution
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satellites launched by China; (4) The combination of background knowledge and commonly used
inversion models was rarely considered.

The purpose of this study was to integrate multi-source data, realize the coupling of commonly
used models, and introduce background knowledge into the optimal solution method to achieve
high-precision soil moisture mapping.

2. Study Area and Available Datasets

2.1. Study Area

The study area is located in the southwest of Jiangsu Province, covering an area of approximately
25 km × 25 km in the Yangtze River Delta (see Figure 1). The subtropical monsoon climate here is
characterized by mild and humid weather and four distinct seasons. The average temperature and
precipitation are approximately 15.5 ◦C and 1152.1 mm, respectively. The dominant wind direction
in this region is easterly. The land cover map of the study area was based on the Finer Resolution
Observation and Monitoring of Global Land Cover (FROM-GLC) developed using Thematic Mapper
(TM) and Enhanced Thematic Mapper Plus (ETM+) data (see Figure 1).
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rice plants were in the mature stage, and there was no water in the fields. There were many 
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we found that most of the forest land marked in the land cover map had been planted with shrubs. 
Therefore, we combined the forest and shrub lands under the same land use type. Although most of 
the research area is characterized by farmland land cover, the underlying surface of the farmland is 
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GF-1 data was used in this study. The GF-1 satellite was launched by China on April 26, 2013. The
CCD sensors include four spectral bands (blue: 0.45–0.52 μm, green: 0.52–0.59 μm, red: 0.63–0.69 μm,
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Figure 1. (a) Geographical location of the study area and (b) major land-cover types.

The study area contains several types of land covers, including cropland, forest, grassland, water,
impervious surface, and bare land. Among them, farmland is the main land-cover type, accounting for
59.02% of the study area, and the main crop is rice. During the in-situ experiment, the rice plants were
in the mature stage, and there was no water in the fields. There were many fragmented water bodies,
accounting for 4.73% of the total area therein. During the field experiments, we found that most of the
forest land marked in the land cover map had been planted with shrubs. Therefore, we combined
the forest and shrub lands under the same land use type. Although most of the research area is
characterized by farmland land cover, the underlying surface of the farmland is relatively complex.
From the perspective of planting types, there are rich vegetable varieties, mature rice, and a few rice
fields that were still covered with stubble and weeds after harvesting.

2.2. GF-1 Data

To eliminate the effect of vegetation water content (VWC) on the soil moisture estimation, the GF-1
data was used in this study. The GF-1 satellite was launched by China on 26 April 2013. The CCD
sensors include four spectral bands (blue: 0.45–0.52 µm, green: 0.52–0.59 µm, red: 0.63–0.69 µm,
and near-infrared: 0.77–0.89 µm). The two images used in this study acquired on 17 and 18 of October
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2018 were downloaded from the China Center for Resource Satellite Data and Application website
(http://218.247.138.119:7777/DSSPlatform/index.html); these have a spatial resolution of 8 m.

The reprocessing of the GF-1 data included radiation correction, atmospheric correction, and
geometrical correction. Th radiation correction for the four bands was performed using the ENVI
5.3 software to convert the digital number (DN) of the images to the surface spectral reflectance.
The atmospheric correction was conducted using the FLAASH Atmospheric Correction toolbox using
the ENVI software [44,47,52–55]. After atmospheric correction, the images were geo-referenced based
on 25 ground control points. After the preprocessing procedures, the four processed bands of the GF-1
data were used to calculate the vegetation index during the in-situ experiments.

2.3. GF-3 Data

The C-band GF-3 satellite is a multi-polarization high-resolution commercial SAR satellite,
launched by China on 10 August 2016. The GF-3 SAR sensors have 12 imaging modes with a fine
spatial resolution of up to 1 m, and the data used in this study were quad-polarization images of the
Quad-Polarization StripI (QPSI) mode acquired on 17 and 19 of October. The SAR images have a
nominal spatial resolution of 8 m. The incidence angle ranged from 35.38 to 37.21◦, at a frequency of
5.4 GHz.

A series of preprocessing procedures were performed on the single-look complex images using
SARscape 5.5 module developed by SARmap using the ENVI 5.5 software. First, Multi-Look processing
was applied to make the texture of the original images close to the real condition and to reduce the
speckle noise. The enhanced Lee filter with a window size of 5 pixels by 5 pixels was applied to reduce
the speckle noise as the filtering and denoising process, providing the best results compared to using
the other filters tested in this study [56]. The obtained data were geocoded using digital elevation
maps for geometric fine correction. Finally, radiometric calibration was conducted to transform the
DN of the pixel into the backscattering coefficient in the multi-polarization mode.

2.4. In Situ Measurements

In situ measurements were conducted from 17 to 19 of October 2018, simultaneously with the
GF-3 and GF-1 acquisitions. During the in-situ measurements, no evident changes in the temperature
or precipitation were found in the study area. A total of 94 soil samples were selected from this area.
The position of each sample field was identified and recorded by Global Positioning System (GPS).
Figure 2 shows the map of the sampling sites and details regarding the soil moisture samples.
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The entire study area was classified on the basis of three strategies, each containing 4–5 classes
(listed in Table 1). The number and proportion of sample points distributed in each class were
counted to observe the difference between the proportion of sample points contained in a class and the
proportion of this class in the total area of the study area [57]. As listed in the table, the proportion of
sample points in a certain class is similar to the proportion of the class in the total area of the study
area, indicating that the sampling is largely representative.

Table 1. Detailed information of the 94 samples taken from a study area in Jiangsu Province, China.

Type Class Number of
Samples

Proportion of
Total Samples (%)

Proportion of This Class in
the Entire Study Area (%)

Land Use Type

Farmland 63 67.02 68.62
Forest and shrub 25 26.60 30.51

Grassland 4 4.26 0.84
Bare land 2 2.13 0.03

Percentage Content
of Clay

(%)

14 1 1.06 0.67
26 37 39.36 35.04
28 26 27.66 35.94
29 28 29.79 26.12
37 2 2.13 2.23

Slope
(◦)

≤1 36 38.30 41.53
1–2 32 34.04 28.47
2–3 12 12.77 10.34
3–4 7 7.45 5.02
>4 7 7.45 14.64

The soil moisture measurements were mainly acquired using time-domain reflectometry (TDR)
probes for the top 5 cm in all the 94 sample fields, on the basis of the hypothesis that the factors
affecting radar signal penetration, such as vertical inhomogeneity of soil moisture content at a depth
of 0–5cm, could be ignored [42,56,58]. For each sample field, the probes were placed vertically, and
three close-distance measurements (few meters apart) of the near-surface volumetric soil moisture
were collected and averaged. Furthermore, a total of 29 samples were simultaneously collected,
uniformly mixed, and placed in cutting rings and aluminum specimen boxes using the oven-drying
method for the top 5 cm. These cutting rings and aluminum specimen boxes were weighed and
recorded, and then transported back to the laboratory for drying in an oven at 108 °C for 24 h, until the
boxes were completely dehydrated. The obtained gravimetric soil moisture (g/g) and soil bulk density
(g/cm3) were used to calculate the volumetric soil moisture (cm3/cm3), which was used to calibrate the
TDR measurements. A linear model was used to calibrate the volumetric soil moisture acquired by the
TDR probes, and the result is shown in Figure 3. The calibrated values of the volumetric soil moisture
ranged from 0.03 to 0.35 cm3/cm3, averaging at 0.19 cm3/cm3. A total of 60 soil moisture samplings
were randomly selected as independent testing data, and the remaining samplings served as training
data in different models and algorithms.

In this study, the root-mean-square (RMS) height and correlation length were measured as the
roughness parameters using a needle profiler made of a 1 m-long board with 100 pins digitized at an
interval of 1 cm, and a digital camera. At the sample fields, the needle profiler was inserted onto the
soil surface in the east-west and north-south directions, and then two images were taken to record
the roughness characteristics. The roughness values were calculated from the digitized curve based
on the roughness images using a developed MATLAB program. The RMS height ranged from 0.3
to 1.7 cm, averaging at 1 cm. The correlation length ranged from 5 to 25 cm, with the average value
of 15 cm. The results show that the microtopography of the study area is relatively flat. A total of
57 vegetation samples were collected and sealed in plastic black bags, in order to minimize the effects
of photosynthesis and transpiration on the water content of the vegetation samples. The VWC (kg/m2)
was calculated from the fresh and oven dried sampling measurements using the oven-drying method.



Remote Sens. 2020, 12, 2123 6 of 30

Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 32 

 

method for the top 5 cm. These cutting rings and aluminum specimen boxes were weighed and 
recorded, and then transported back to the laboratory for drying in an oven at 108 ℃ for 24 h, until 
the boxes were completely dehydrated. The obtained gravimetric soil moisture (g/g) and soil bulk 
density (g/cm3) were used to calculate the volumetric soil moisture (cm³/cm³), which was used to 
calibrate the TDR measurements. A linear model was used to calibrate the volumetric soil moisture 
acquired by the TDR probes, and the result is shown in Figure 3. The calibrated values of the 
volumetric soil moisture ranged from 0.03 to 0.35 cm³/cm³, averaging at 0.19 cm³/cm³. A total of 60 
soil moisture samplings were randomly selected as independent testing data, and the remaining 
samplings served as training data in different models and algorithms. 

In this study, the root-mean-square (RMS) height and correlation length were measured as the 
roughness parameters using a needle profiler made of a 1 m-long board with 100 pins digitized at an 
interval of 1 cm, and a digital camera. At the sample fields, the needle profiler was inserted onto the 
soil surface in the east–west and north–south directions, and then two images were taken to record 
the roughness characteristics. The roughness values were calculated from the digitized curve based 
on the roughness images using a developed MATLAB program. The RMS height ranged from 0.3 to 
1.7 cm, averaging at 1 cm. The correlation length ranged from 5 to 25 cm, with the average value of 
15 cm. The results show that the microtopography of the study area is relatively flat. A total of 57 
vegetation samples were collected and sealed in plastic black bags, in order to minimize the effects 
of photosynthesis and transpiration on the water content of the vegetation samples. The VWC (kg/m2) 
was calculated from the fresh and oven dried sampling measurements using the oven-drying 
method. 

 
Figure 3. Calibration of volumetric soil moisture acquired by TDR probes. 

After fixing the drying process, the vegetation samples were dried in an oven at 65 ℃, until the 
samples were completely dehydrated. 

3. Methodology 

In this study, a set of combined approach comprising a set of methods to obtain high-precision 
soil moisture, which integrate multi-source data, realize the coupling of commonly used models, and 
introduce background knowledge into the optimal solution method. The procedure of the 
methodology for soil moisture mapping, illustrated in Figure 4, is explained as follows: 

In the first step, the influence of the vegetation canopy water content was removed from the total 
backscattering coefficients, and the backscattering coefficient of the bare soil was obtained. The 
specific operations were as follows: first, an empirical VWC model was established using four 
vegetation indices extracted from the GF-1 satellite data and measured vegetation canopy water 
content data, and the accuracy of this empirical model was then compared with that of the 
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After fixing the drying process, the vegetation samples were dried in an oven at 65 ◦C, until the
samples were completely dehydrated.

3. Methodology

In this study, a set of combined approach comprising a set of methods to obtain high-precision
soil moisture, which integrate multi-source data, realize the coupling of commonly used models,
and introduce background knowledge into the optimal solution method. The procedure of the
methodology for soil moisture mapping, illustrated in Figure 4, is explained as follows:

In the first step, the influence of the vegetation canopy water content was removed from the total
backscattering coefficients, and the backscattering coefficient of the bare soil was obtained. The specific
operations were as follows: first, an empirical VWC model was established using four vegetation
indices extracted from the GF-1 satellite data and measured vegetation canopy water content data,
and the accuracy of this empirical model was then compared with that of the conventional one-variable
quadratic model; second, a WCM with localized parameters was established using the HH and VV
polarization backscattering coefficients extracted from the GF-3 satellite data and in situ experimental
data, and the accuracy of this model was compared with that of a model that uses empirical parameters.

In the second step, four commonly used soil moisture inversion models were coupled, and a total
of nine soil moisture maps were obtained. The specific operations were as follows: five maps of the soil
moisture and four RMS height maps were obtained using the AIEM model, Oh model, and look-up
table (LUT) method; the four RMS height maps were then taken as input data for the Dubois model,
and four soil moisture maps were obtained.

In the third step, based on the above nine soil moisture maps, a strategy of pixel classification and
algorithm selection was applied to draw the optimal solution soil moisture map based on background
knowledge. The specific operations were as follows: first, the study area was divided into several
categories based on a certain background knowledge, each of which was assigned one of the nine
algorithms with best precision. The results of all the categories were then combined to form a soil
moisture map of the entire study area; finally, the three soil moisture maps based on the three sets of
background knowledge were compared, and one with the best precision was selected as the optimal
solution soil moisture map.
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height and correlation length.

3.1. Vegetation Effect Correction Models

The empirical VWC model and WCM with localized parameters were applied to remove the
vegetation effects from the total backscattering coefficient. The reason for constructing an empirical
VWC model considering four vegetation indices is as follows: Although most of the study area
is farmland, the underlying surface of the farmland is relatively complex, so it is likely that the
VWC of the complex vegetation types cannot be accurately described by any single vegetation index;
furthermore, a total of 57 VWC samples were collected during the in situ experiment, and the measured
data were fully utilized in the process of constructing an empirical model that was more suitable for
the study area. Similarly, the WCM with localized parameters makes full use of the in- situ experiment.
To make the results more convincing, the accuracies of the empirical VWC model and WCM with
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localized parameters were compared with those of the conventional one-variable quadratic model and
WCM with empirical parameters.

3.1.1. Vegetation Water Content Estimation Model

The VWC is an important parameter in the WCM. To eliminate the influence of vegetation canopy
on the total backscattering coefficient, the VWC should be estimated. Because of the time and economic
costs, it is difficult to acquire the VWC via ground tests on a large scale. Fortunately, the development of
remote sensing technology has led to an effective solution to this problem. Published studies confirmed
that the VWC has a significant correlation with the vegetation indices obtained from remote sensing
datasets [55–60]. The vegetation indices often used to estimate the VWC include the normalized
difference vegetation index (NDVI), normalized difference water index (NDWI), enhanced vegetation
index (EVI), difference vegetation index (DVI), and ratio vegetation index (RVI) [61–64].

The GF-1 wide-field-view data synchronized with the GF-3 data passing time were used to
calculate the vegetation indices. Considering the configuration of the GF-1 satellite, four vegetation
indices were selected for the calculation: the NDVI, EVI, RVI, and DVI. These were calculated as follows:

NDVI =
NIR−RED
NIR + RED

(1)

EVI = 2.5×
NIR−RED

NIR + 6.0RED− 7.5BLUE + 1
(2)

RVI =
NIR
RED

(3)

DVI = NIR−RED (4)

where NIR is the reflectivity at the near-infrared band; RED is the reflectivity at the red band; BLUE is
the reflectivity at the blue band.

Previous works have indicated that the one-variable quadratic models, along with the linear and
exponential models, are suitable for describing the correlation between the vegetation indices and
VWC [55,61–63]. However, in most studies, only one of the vegetation indices (such as the NDVI) with
the strongest correlation with the VWC was used in the calculation [61]. For medium-scale research
areas with a complex surface cover, a combination of multiple vegetation indices may be more effective
and accurate.

In this study, we developed a new empirical model in which all the four vegetation indices were
incorporated in the calculation. Moreover, the accuracy of the new model was compared with those of
the four one-variable quadratic models with each vegetation index, so as to verify the efficiency of the
new model. The one-variable quadratic models used for accuracy comparison and the new model can
be described as follows:

VWCVI = a×VI2 + b×VI + c (5)

where VWCVI is the VWC calculated using the one-variable quadratic model (kg/m2); VI is the
vegetation index obtained from the GF-1 satellite data; a, b, and c are the empirical parameters obtained
using the least-squares method.

Each vegetation index has a certain scope of application and works well only under a certain
growth condition, so a VWC model constructed using only a single vegetation index may not effectively
reflect the condition of the entire study area. Considering the diversity of the vegetation types in the
study area, a combined model incorporating the four vegetation indexes was developed. The 1stOpt
software was used in the process of constructing the combined model, and the fitting accuracy and
number of parameters were considered. The combined model can be expressed as follows [59]:

VWC = d + e×NDVI ×RVI + f ×NDVI × EVI + g×DVI × EVI + h×RVI × EVI (6)
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where VWC is the VWC calculated using the new empirical model (kg/m2); NDVI, EVI, DVI, and
RVI are the vegetation indices obtained from the GF-1 satellite data; d, e, f, g, and h are the empirical
parameters obtained using the least-squares method.

3.1.2. Water-Cloud Model

The backscattering coefficient obtained from the study area is affected by the land surface and
radar configuration parameters [27,31]. In this study, the radar configurations were obtained from
the head file of the GF-3 SAR sensor. Therefore, only the influences of land surface parameters were
considered, including the soil moisture, roughness, and vegetation. To extract the backscattering of
the bare soil surface, which is directly correlated to the soil moisture, the effect of vegetation canopy
should be removed.

To describe the backscattering of the soil and vegetation in the vegetation-covered soil surfaces, a
semi-empirical WCM, first developed by Attema and Ulaby [31], has been widely used as the vegetation
impact correction model. The WCM is based on the following basic assumptions: (1) The vegetation
canopy is represented as a homogeneous horizontal water cloud of identical and uniformly water
spheres. (2) The multiple scattering between the canopy and soil is ignored. (3) The only significant
variables in the model are the height of the canopy layer and cloud density, and the latter is assumed
to be proportional to the volumetric VWC of the canopy [31].

For a given incidence angle, the classic WCM can be expressed as follows:

σ0 = σ0
veg + τ2

× σ0
soil (7)

τ2 = exp(−2× B×VWC/ cosθ) (8)

σ0
veg = A×VWC× cosθ×

(
1− τ2

)
(9)

where σ0 is the total backscattering coefficient, considering the incoherent sum of the contributions
of the vegetation and underlying soil (dB), σ0

veg is the backscattering coefficient of the vegetation
canopy (dB), σ0

soil is the direct backscattering coefficient of the underlying soil surface (dB), τ2 is the
two-way transmissivity of the vegetation, VWC is the vegetation water content (kg/m2), θ is the
incident angle (◦), and A and B are parameters depending on the vegetation type. There is no general
theoretical basis to obtain the values of A and B, which are typically determined by fitting the WCM
against experimental datasets.

The original WCM has been subsequently modified or extended by various researchers [27].
Bindlish and Barros showed that the accuracy of the WCM could be improved by considering the
radar-shadow effect. The concept of a dimensionless vegetation correlation length was used to
better describe the geometric effect of the vegetation spacing; this parameter is similar to the surface
correlation length used in the AIEM [59]. It can be interpreted as the distance at which the plants are
considered independent scatterers [60]. Based on the improved WCM, Equations (10) and (11) must
be modified to correct for the radar-shadow effect. The modified total backscattering coefficient and
vegetation effect can be expressed as follows:

σ0 = σ∗veg + τ2
× σ0

soil (10)

σ∗veg = σ0
veg × [1− exp(−α)] (11)

where σ∗veg is the modified vegetation contribution, and α is the radar-shadow coefficient parameter,
which is also considered the dimensionless vegetation correlation length.

In this study, three different WCM experiments were conducted: in the first case, the classic WCM
was used, and the empirical parameters A and B were recorded as 0.0012 and 0.091, respectively, based
on the values reported by Bindlish [60] (WCM_1). In the second case, the same classic WCM was
used; however, the empirical parameters A and B were obtained using the least-squares method with
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the in situ experimental datasets (WCM_2). In the third case, an improved WCM considering the
radar-shadow effects was selected; the empirical parameters A, B, and α were calculated using the
least-squares method (WCM_3) with the in situ experimental datasets.

3.2. Soil Moisture Content Retrieval Model

To convert the bare soil backscattering coefficient to the soil moisture content, four commonly
used inversion models (AIEM model, LUT method, Oh model, and Dubois model) were coupled.
In this section, only the general principles and formulae of these models are introduced. A more
detailed discussion of the relevant techniques and theory can be found in the references mentioned in
this section.

The process of coupling the four models involved five steps. Only the general principles of these
models are introduced in this section, and since steps 2 and 3 involve the analysis and application of
the results generated in the intermediate process, the details of these are described in Section 4.2.

Step 1: The AIEM-simulated database was generated using the AIEM model, based on the in situ
datasets and GF-3 configuration.

Step 2: Based on the AIEM-simulated database obtained in step 1, the responses of the bare soil
backscattering coefficients and input parameters were analyzed, and the relationship structure between
the soil moisture and input parameters was then determined. Thereafter, the empirical model was
constructed using the measured soil moisture and bare soil backscattering coefficient; this model was
used as an algorithm to map the soil moisture (mv1).

Step 3: Similarly, based on the AIEM-simulated database, the LUT method was established using
tree cost functions, which generate three soil moisture maps (mv2, mv3, and mv4) and three RMS height
results (s1, s2, and s3).

Step 4: In parallel with the above three steps, based on the in-situ database and backscattering
coefficient, the Oh model was used to map the soil moisture (mv5), along with the RMS height result (s4).

Step 5: After the above four steps, a total of four RMS height results were obtained, which were
used as input data to the Dubois model. Based on the backscattering coefficient and measured soil
moisture, four soil moisture maps (mv6, mv7, mv8, and mv9) were obtained corresponding to the four
RMS height results.

3.2.1. Estimated Model Constructed by AIEM

The AIEM model was developed by Chen and Wu in 2003 based on the classic IEM [35–37].
The AIEM is a well-established theoretical model in which the discontinuities in the surface roughness
and Fresnel reflection coefficient were resolved by replacing the Fresnel reflection coefficients with
a transition function [37,38,65]. Extensive experimental datasets were used to analyze the accuracy
and validity of this model, the results of which indicated that the AIEM could accurately simulate the
backscattering coefficients under a wide range of conditions [38,66].

In this study, the AIEM was adopted to establish a simulated database, and the responses of
the bare soil backscattering coefficients, incident angle, roughness parameter, soil dielectric constant,
and frequency were simulated under the configuration of the GF-3 sensor. The soil dielectric constant
simulated from the AIEM was converted to the soil moisture via the dielectric-mixed Dobson model [67].
The frequency of the GF-3 sensor was fixed at 5.4 GHz, and other input parameters based on in situ
data are as listed in Table 2.

Table 2. Values of the input parameters to the AIEM model.

Input Parameters Minimum Maximum Interval

Incidence angle (◦) 30 60 1
RMS height (cm) 0.3 1.8 0.1

Correlation length (cm) 5 25 1
Soil moisture (vol. cm3/cm3) 0.03 0.36 0.01
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Considering the difficulties in simulating the bare soil backscattering coefficients in
cross-polarization using the AIEM, only the backscattering coefficients simulated in HH and VV
polarizations were used in this study. Based on the AIEM and Dobson model, the equations of the bare
soil backscattering coefficients can be expressed as follows:

σ0
PP = f (θ, f , s, l, mv) (12)

where θ is the incidence angle, f is the frequency of the GF-3 sensor, s is the RMS height, l is the
correlation length, and mv is the bare soil moisture content.

3.2.2. LUT Inversion Method

The LUT of the HH and VV polarization backscattering coefficients was obtained from previous
studies [37,38]. In this study, the LUT method was used to obtain soil moisture and root mean
square (RMS) height at the same time. It was based on the AIEM-simulated database, and under
the configuration of GF-3 satellite, each record of the database contains five interrelated parameter
values, including backscattering coefficient, root mean square (RMS) height, correlation length and soil
moisture. For a particular pixel of the bare soil backscattering coefficient map, a specific record in the
simulated database could be located by minimizing the cost function, and the soil moisture and root
mean square (RMS) height in this record were extracted as the best-fit inversion value corresponding
to the backscattering coefficient of the pixel.

Three cost functions were established to retrieve the bare soil moisture in this study:

Z1 = min


√(
σ0

HH − σ
0
HH_AIEM

)2
 (13)

Z2 = min


√(
σ0

VV − σ
0
VV_AIEM

)2
 (14)

Z3 = min


√(
σ0

HH − σ
0
HH_AIEM

)2
+

(
σ0

VV − σ
0
VV_AIEM

)2
 (15)

where σ0
HH and σ0

VV are the HH and VV polarization backscattering coefficients (dB) obtained from
the bare soil backscattering images, respectively, and σ0

HH_AIEM and σ0
VV_AIEM are the HH and VV

polarization backscattering coefficients (dB) in the AIEM-simulated database, respectively.

3.2.3. Semi-Empirical Oh Model

Oh et al. proposed several versions of the semi-empirical polarimetric models between 1992 and
2004 [37,39]. The Oh model is based on physical theoretical models, and the relevant parameters in this
model were obtained as field experimental data using several polarimeter radar scatterometers [39,68].
The latest version of the Oh model modified in 2004 contains a new equation that ignores the correlation
length, built on the previous version [37]. This improvement was made on the basis of the results
of a published research, which indicated that the ratio q (σ0

HV/σ0
VV) is not sensitive enough to the

roughness parameters and that the measurement of the correlation length may vary depending on the
scale of the instrument used [39].

In this study, a new expression for the Oh model (2004) was used to estimate the soil moisture of
the bare soil. The input parameters of the Oh model (2004) include the incidence angle, wavenumber,
RMS height, and soil moisture or dielectric constant. The 2004 version of the Oh model can be expressed
as [37,39]:

σ0
VH = 0.11×m0.7

v × (cosθ)2.2
×

[
1− exp

(
−0.32× (ks)1.8

)]
(16)



Remote Sens. 2020, 12, 2123 12 of 30

p ≡
σ0

HH

σ0
VV

= 1−
(
θ

90◦
)0.35×m−0.65

v
× exp

[
−0.4× (ks)1.4

]
(17)

q ≡
σ0

VH

σ0
VV

= 0.095× (0.13 + sin1.5θ)1.4
×

{
1− exp

[
−1.3× (ks)0.9

]}
(18)

where p is the co-polarized ratio, q is the cross-polarized ratio, σ0
VH represents the backscattering

coefficients for VH polarization (dB), and ks is the RMS height normalized to the wavelength
(k is the wavenumber). The dataset in this study satisfies the validity range of the Oh model (2004)
(0.04–0.29 cm3/cm3 for mv, 0.13–6.98 for ks, and 10–70◦ for θ) [37].

3.2.4. Semi-Empirical Dubois Model

The Dubois model was developed in 1995 using scatterometer data for retrieving the soil moisture
content and RMS height from the remote sensing radar data [37]. The Dubois model has been applied in
some studies, with satisfactory accuracy [40,41]. The validity domain of the model is mv < 0.35 cm3/cm3

and ks ≤ 2.5, θ ≥ 30◦. The equations applicable to HH and VV polarization data are:

σ0
VV = 10−2.35

×
cos3 θ

sin3 θ
× 100.046×ε×tanθ

× (ks× sinθ)1.1
× λ0.7 (19)

σ0
HH = 10−2.75

×
cos1.5 θ

sin5 θ
× 100.028×ε×tanθ

× (ks× sinθ)1.4
× λ0.7 (20)

where ε is the dielectric constant, and λ is the radar wavelength.
In this study, the Dubois and Dobson models were combined to complete the following processes:

the RMS height map obtained using the Oh model and LUT inversion method was used as the input
data, and the soil dielectric constant was generated using the Dubois model based on the HH and VV
polarization backscattering coefficients, which were converted to the soil moisture content using the
dielectric-mixed Dobson model.

3.3. Optimal Solution Method

This section presents a simple and effective optimal solution method used to select and combine
the nine soil moisture mapping algorithms proposed above based on three types of background
knowledge. Figure 5 shows the overall process of the optimal solution method.
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Color: pixel classification results; Pattern: soil moisture results after mosaic.

For a specific background knowledge, the pixels in the study area were classified into several
categories using the classification strategy constructed based on this knowledge, and the algorithm with
the highest accuracy was selected in terms of the evaluation index. The algorithm results corresponding
to each category were calculated independently. Thereafter, the calculation results of all the categories
were combined to form the soil moisture map of the entire study area.
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A total of three spliced maps of the soil moisture were obtained using three classification strategies.
Finally, these maps were compared, and the one with the best accuracy was selected as the optimal
solution soil moisture map of the study area.

Three optimal solution classification strategies were proposed as follows: (1) Based on the four
main land use types (farmland, grassland, shrub, and bare land) in the study area, a statistical analysis
was made on the accuracy of the nine soil moisture inversion maps, and the best inversion method for
each type was selected; (2) Based on the percentage of clay, nine soil moisture inversion accuracies
were calculated corresponding to the five clay percentage values (14, 26, 28, 29, and 37%), and the best
inversion method was selected for each type; (3) Similarly, based on the slope levels of the study area,
a statistical analysis was made on the accuracies of the nine soil moisture inversion maps under five
slope levels (Level 1: ≤1◦; Level 2: 1–2◦; Level 3: 2–3◦; Level 4: 3–4◦; Level 5: ≥4◦), and the inversion
method with the highest accuracy for each slope level was selected as the optimal solution method.

The equation of the optimal solution methods is expressed as follows:

mv = f (mv1, mv2, . . . . . . , mv9) (21)

where mvn is the retrieved moisture based on the four models.

4. Results and Discussion

4.1. Vegetation Effect Correction

This section presents the results of the calculation parameters of the empirical VWC model and
WCM with localized parameters. To prove the superiority of the two models compared with the
commonly used empirical models and empirical parameters, we developed conventional one-variable
quadratic models and WCM with empirical parameters for comparative experiments. The comparison
results are given in this section.

The developed empirical model was used to retrieve the VWC from the GF-1 vegetation indices,
compared with the one-variable quadratic model. The agreement between the measured VWC and the
modeled VWC was evaluated on the basis of the Pearson correlation coefficient (PCC). Table 3 lists the
coefficient of determination values based on 19 validation sample datasets.

Table 3. Parameters of the VWC model and the PCC based on the 19 validation sample datasets.

VWC model
Empirical Parameters

PCC
a b c

VWCNDVI 26.0820 −1.8558 1.0915 0.9158
VWCEVI 4.6957 1.4673 0.9790 0.9054
VWCRVI 1.3854 −1.7960 1.3724 0.9124
VWCDVI 46.9080 5.8157 0.9459 0.8805

VWC
d e f g h

0.9442
1.1604 4.3773 18.2684 14.1764 −4.8787

From Table 3, we find that by comparing the performances of the four vegetation indices in the
one-variable quadratic models, VWCNDVI provides a higher accuracy than the other vegetation index
models (PCC = 0.9158). However, the accuracy of the VWC estimated from the combined vegetation
model was significantly higher than those estimated from any one of the one-variable quadratic models
(PCC = 0.9442).

The VWC was estimated using GF-1 satellite data. As shown in Figure 6, the PCC between the
estimated and measured VWC values is 0.9440, the root-mean-square error (RMSE) of the estimated
VWC is 0.1651 kg/m2, and the coefficient of determination (R2) is 0.8915. The correlation between the
measured and estimated VWC values was significant at the 0.01 level.
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Three different WCM experiments were conducted using the results of the above VWC.
As mentioned previously, the classic WCM was used, and the empirical parameters A and B were
recorded as 0.0012 and 0.091, respectively (WCM_1); in the second case, the same classic WCM was
used; however, the empirical parameters A and B were obtained using the least-squares method with
the in situ experimental datasets (WCM_2); in the third case, the improved WCM considering the
radar-shadow effects was selected, and the empirical parameters A, B, and α were calculated using the
least-squares method (WCM_3) with the in situ experimental datasets. The values of the empirical
parameters used in the WCM were recorded by referring to published works or calculated based on
the in situ experimental datasets. The AIEM model was used to simulate the bare soil backscattering
at each sampling location where in situ experimental data of the soil moisture and auxiliary data
were available.

To evaluate the validity of the three WCM experiments conducted on the vegetation effect
correction in the GF-1 and GF-3 satellite configurations, the bare soil backscattering simulated using
the WCM was compared with that simulated using the AIEM, in Figure 7.
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Based on the analysis of the comparative experimental results, we find that the empirical VWC
model and WCM with localized parameters considering the radar-shadow effects do have evident
accuracy advantages, confirming that the accuracy of the calculated bare soil backscattering coefficient
could be ensured.

4.2. Bare Soil Moisture Estimation Based on Four Commonly Used Models

The process of coupling the four commonly used models included the five steps described in
Section 3.2. In this section, Sections 4.2.1–4.2.4 correspond to steps 2–5, respectively. Because steps 2
and 3 involve the analysis and application of the results generated in the intermediate process, they
will be analyzed in more detail.

4.2.1. Bare Soil Moisture Estimation Based on AIEM

To build the bare soil moisture empirical estimation model based on the AIEM and map the soil
moisture content, three steps were carried out. First, the responses of the backscattering coefficient
and input parameters were analyzed to support the judgment of the structure of the inversion
model; second, the parameters of this model were calculated based on the in situ experimental data;
third, the soil moisture content in the entire area was mapped based on the model.

The input parameters of the AIEM include the radar system parameters and surface parameters
of the study area. In the GF-3 radar sensor configuration, the frequency and incidence angle of the
radar system parameters can be obtained from the header file. Therefore, only the responses of the
bare soil backscattering coefficients and surface parameters of the study area were mainly considered
in this study.

At a frequency of 5.4 GHz and an incident angle of 37◦, the AIEM was used to generate a
simulated database of the changed soil moisture conditions with a fixed roughness parameter value.
Two conditions were required to be analyzed: first, the correlation length was considered a fixed
value (15 cm), and the RMS height was considered a fixed-interval parameter (0.3, 0.6, 0.9, 1.2, 1.5,
and 1.7 cm); second, the RMS height was considered a fixed value (1.0 cm), and the correlation length
was considered a fixed-interval parameter (5, 10, 15, 20, and 25 cm). Figure 8 shows the results.
The following rules can be summarized from this figure: First, When the roughness parameter is
fixed, there is an evident nonlinear relationship between the soil moisture and the soil backscattering
coefficients, the trends of which do not vary with the roughness interval parameter. With the increase
in the soil moisture, the trend in the soil backscattering coefficient is upward, and the growth rate
gradually decreases with an increase in the soil moisture.
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Second, when the correlation length is fixed, the soil backscattering coefficient increases with
the increase in the RMS height, and the increase amplitude gradually flattens with the increase in the
RMS height. Third, at a fixed RMS height value, the soil backscattering coefficient decreases with
the increase in the correlation length; however, the change trend is not as evident as the trends in
the soil backscattering coefficients and RMS height. Fourth, under the same parameter conditions,
the soil backscattering coefficient value for the HH polarization is slightly lower than that for the
VV polarization.

At a frequency of 5.4 GHz and an incident angle of 37◦, the AIEM was used to create a database
for two conditions: first, the correlation length was considered a fixed value (15 cm), and the soil
moisture was considered a fixed-interval parameter (0.03, 0.09, 0.15, 0.21, 0.27, and 0.33 cm3/cm3);
second, the RMS height was considered a fixed value (1.0 cm), and the soil moisture condition was
the same as in the first case. The responses of the roughness parameter and bare soil backscattering
coefficient could be analyzed based on the database.

The following rules can be summarized from Figure 9: First, at a fixed soil moisture value,
the backscattering coefficient decreases with the increase in the correlation length, whereas it increases
with the increase in the RMS height.
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Second, the sensitivity of the backscattering coefficient to the correlation length declines with the
increase in the soil moisture.

Third, the soil backscattering coefficients are highly sensitive to the RMS height and tend to
decrease with the increase in the soil moisture; however, this trend is not as evident as the change
tendency in the correlation length.

Fourth, at a fixed soil moisture value, the soil backscattering coefficients gradually decrease with
the increase in the RMS height; the change range gradually decreases, and the curve tends to flatten.

For a fixed sensor configuration, the soil backscattering coefficient is mainly affected by the
roughness parameter and soil moisture. As shown in Figure 9, there is a significant nonlinear
relationship between the soil backscattering coefficient and surface parameter for both the polarizations.
In this section, based on the above qualitative analysis, a quantitative estimation model is presented
and verified.

The effects of the roughness parameter and soil moisture on the soil backscattering coefficient are
considered independent of each other, based on published studies [9,42]. In this study, the quantitative
relationship between the soil backscattering coefficient and surface parameter could be described as
the sum of the contributions of the roughness and soil moisture.

The first step is to establish a quantitative relationship between the soil backscattering coefficients
and two roughness parameters based on the AIEM-simulated database for an average value (0.19)
of the soil moisture from the in-situ datasets. For a quantitative model, the greater the number of
roughness parameters, the greater the uncertainty in the model [64]. Therefore, a combined roughness
parameter that combines the correlation length and the RMS height into one comprehensive parameter
is selected. The combined roughness parameter has been widely used in previous studies for soil
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moisture estimation [9,37,69]. The results of these studies show that the new roughness parameter
can help characterize the natural surface roughness conditions, while reducing the uncertainty of the
estimation model. Under the different conditions of study areas and sensor configurations, the form
of the combined roughness parameter can be different. In this study, three forms of the combined
roughness parameter were tested to select the most suitable one for the surface conditions. Based on
the database simulated using the AIEM, a multivariate regression analysis of the three forms of
the combined roughness parameter and the soil backscattering coefficient was performed using the
1stOpt software. Table 4 lists the results. From Table 4, we find that there is a significant logarithmic
relationship between the three forms of the combined roughness parameter and the soil backscattering
coefficients. The PCC of all the constructed equations is greater than 0.8.

Table 4. Quantitative relationship between the three forms of combined roughness parameters and the
soil backscattering coefficient.

Combined Roughness Parameter Formula PCC References

ZS1 = S/L σ0
HH = 9.0421 + 13.0996× ln(ZS1) 0.8070 [9]
σ0

VV = 6.8906 + 12.0569× ln(ZS1) 0.8339

ZS2 = S2/L
σ0

HH = −1.7147 + 8.7825× ln(ZS2) 0.9579 [70]
σ0

VV = −3.2885 + 7.9854× ln(ZS2) 0.9659

ZS3 = S3/L
σ0

HH = −8.3608 + 6.1922× ln(ZS3) 0.9629 [71]
σ0

VV = −9.4118 + 5.6029× ln(ZS3) 0.9680

In contrast, the equations based on ZS3 give the highest precision for both HH (0.9629) and
VV (0.9680) polarizations. Therefore, the form of ZS3 was used as ZS in this study, to characterize
the combined effect of the correlation length and RMS height. Figure 10 shows the corresponding
relationship between ZS and the soil backscattering coefficient under different soil moisture conditions.
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The functional expressions between the soil moisture and the backscattering coefficients for a
correlation length of 15 cm and an RMS height of 1 cm based on the simulated database are shown
in Figure 10. The R-square of the regression equations for both HH and VV polarizations is greater
than 0.99.

According to Figure 10, the effect of soil moisture on soil backscattering coefficients under the
condition of fixed roughness parameters can be expressed as follows:

σ0
HH = −8.9780 + 6.2948× ln(mv) (22)

σ0
VV = −9.0709 + 6.2433× ln(mv) (23)
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Based on the above analysis, for a fixed frequency and incident angle, the expression of the
quantitative model can be written as:

σ0
HH = −17.3388 + 6.2948× ln(mv) + 6.1922× ln(Zs) (24)

σ0
VV = −18.4827 + 6.2433× ln(mv) + 5.6029× ln(Zs) (25)

Combining Equations (24) and (25), the soil moisture can be estimated mathematically, and the
general expression is as follows:

mv = exp
(
i× σ0

VV + j× σ0
HH + k

)
(26)

where i, j, and k are the empirical parameters. In this study, the empirical parameters were obtained
using the least-squares method based on the in-situ datasets. The bare soil moisture estimation equation
based on the in-situ experiments is as follows:

mv = exp
(
−0.0407× σ0

VV + 0.0236× σ0
HH − 2.0599

)
(27)

The soil moisture map of the entire study area was obtained using this estimation model based on
the backscattering coefficients for HH and VV polarizations.

4.2.2. Bare Soil Moisture Estimation Based on the Oh Model

The backscattering coefficients for the VV, HH, and VH polarizations used in the Oh model
were obtained from the results of the vegetation effect correction model described in Section 4.1.
The backscattering coefficients of urban land and water bodies are significantly different from those of
bare soil [69,72,73]. Therefore, the threshold value summarized based on the datasets can be used to
effectively mask the urban land and water bodies. For bare soil, the backscattering coefficient for VV
polarization is always greater than that for HH polarization, and the latter is greater than that for VH
polarization [37,39]. Based on the statistical analysis of the backscattering coefficients, we found the
existence of pixels whose backscattering coefficients for HH polarization are higher than that for VV
polarization. The reason for this phenomenon may be that, despite the high accuracy of the vegetation
correction model, some pixels are still affected by the influence of sparse vegetation [37].

In this study, the pixels in the Oh model were screened based on the following conditions:
First, the backscattering coefficients of the pixel are above the threshold value set for urban land and
water bodies, summarized based on the datasets. Second, the backscattering coefficient of the pixel for
VV polarization is greater than that for HH polarization. Lastly, the estimated soil moisture and ks
should meet the range of soil moisture condition of the Oh model: 0.04 cm3/cm3 < mv < 0.29 cm3/cm3,
and 0.13 < ks < 6.98.

4.2.3. Bare Soil Moisture Estimation Based on LUT

The LUT in this study was based on the AIEM-simulated database, described in Section 3.2.1,
with fixed incidence angle (37◦) and frequency (5.4 GHz) values under the configuration of GF-3 images.
This LUT indicates the one-to-one correspondence relationship between the bare soil backscattering
coefficients for HH and VV polarizations, roughness parameters, and soil moisture. The pixels of
the bare soil backscattering-coefficient images, obtained in Section 4.1, were calculated using the cost
functions one by one. When the cost function value Zn (n = 1, 2, and 3) reached the minimum, the soil
moisture value corresponding to σ0

HH_AIEM and σ0
VV_AIEM in the LUT was used as the best-fit inversion

soil moisture value under the HH or VV polarization.
The results of the retrieved soil moisture content based on the cost functions Z1, Z2, and Z3 show

that the average soil moisture contents were 0.32, 0.29, and 0.30, respectively, with standard deviations
of 0.05, 0.07, and 0.07, respectively.



Remote Sens. 2020, 12, 2123 20 of 30

4.2.4. Soil Moisture Estimation Based on Dubois Model

The four RMS height results retrieved from the LUT and Oh method were used in the Dubois model
as input data to indirectly estimate the soil moisture. The inversion results of the soil moisture under the
two polarization conditions could be obtained simultaneously in the Dubois model. After comparing
their accuracies, we selected the HH polarization mode results of this model. Considering the limitation
of the application conditions of the Dubois model, the pixels of the input and output images that do
not meet the conditions were set as null values. Consequently, four soil moisture inversion maps
were obtained.

4.2.5. Validation and Analysis of the Individual Soil Moisture Inversion Models

To evaluate the performance of the nine inversion soil moisture maps obtained using the most
commonly used soil moisture models (AIEM, Oh model, LUT inversion model, and Dubois model),
a validation experiment was conducted to confirm the agreement between the modeled soil moisture
and the measured soil moisture in terms of the RMSE, PCC, mean absolute error (MAE), and bias.
The RMSE and MAE could reflect the differences between the estimated and measured soil moisture
values, where a low index value represents a high prediction accuracy. The positive and negative
values of the bias could reflect the deviation direction. The PCC could reflect the linear correlation
between the estimated and measured soil moisture values, where a value close to 1 represents a strong
linear correlation.

Table 5 lists the RMSE, MAE, PCC, and bias between the measured and estimated soil moisture
values based on the 60 sample values from the validation dataset acquired during the in situ
measurements. It should be noted that mv1 represents the result of the estimation model based on the
AIEM; mv2, mv3, and mv4 represent the results of the LUT inversion model; mv5 represents the results of
the Oh semi-empirical model; mv6, mv7, mv8, and mv9 represent the results of the indirect soil moisture
estimation method based on the Dubois model.

Table 5. RMSE, MAE, PCC, and bias between the measured and estimated soil moisture values based
on the validation dataset.

Inversion Models RMSE (cm3/cm3) MAE (cm3/cm3) PCC Bias (cm3/cm3)

mv1 0.0321 0.0260 0.9115 −0.0150
mv2 0.0538 0.0338 0.7441 −0.0117
mv3 0.0769 0.0563 0.7287 −0.0426
mv4 0.1059 0.0811 0.5679 0.0230
mv5 0.0428 0.0306 0.8843 0.0174
mv6 0.0710 0.0567 0.6551 −0.0420
mv7 0.0687 0.0529 0.4114 0.0266
mv8 0.0761 0.0608 0.6278 0.0107
mv9 0.0676 0.0564 0.4599 −0.0141

In terms of the RMSE and MAE, the estimation model constructed using the AIEM
(mv1: RMSE = 0.0321 cm3/cm3, MAE = 0.0260 cm3/cm3) was more accurate than the other models,
followed by the Oh model (mv5: RMSE = 0.0428 cm3/cm3, MAE = 0.0306 cm3/cm3) and the LUT
inversion method under HH polarization (mv2: RMSE = 0.0538 cm3/cm3, MAE = 0.0338 cm3/cm3).
The indirect Dubois model combined with the Oh model (mv9), combined with the LUT inversion
method under VV polarization (mv7) and the direct LUT inversion method under VV polarization
(mv3) gave moderate accuracy results, with an RMSE value lower than 0.077 cm3/cm3 and MAE value
lower than 0.056 cm3/cm3. The accuracy of the LUT model for both HH and VV polarizations (mv4) is
relatively lower than those of the other inversion models.

The PCC could directly reflect the linear correlation between the estimated and measured soil
moisture values. As listed in Table 5, the soil moisture estimated from the inversion model constructed
using the AIEM (mv1) had a strong linear relationship, with the PCC reaching 0.9115. The soil moisture
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calculated using the Oh model (mv5) and LUT inversion method under HH or VV polarizations
(mv2 and mv3) also had a good linear relationship with the measured values (PCC higher than 0.70).
In contrast, there is no significant linear correlation between the results estimated using the indirect
Dubois model combined with the Oh model (mv9) and LUT inversion method under VV polarization
(mv7) and the measured soil moisture (PCC lower than 0.50).

The statistical analysis of the bias results shows that, among the nine inversion soil moisture maps,
five models (mv1, mv2, mv3, mv6, and mv9) show negative bias, indicating that the inversion results
of these five models are generally higher than the measured soil moisture values; at the same time,
four models (mv4, mv5, mv7, and mv8) show positive bias, indicating that these models give an overall
underestimated result.

In summary, the evaluation and analysis results of the nine inversion maps on the validation
dataset are as follows:

(1) The estimation model constructed using the AIEM (mv1) gives the highest accuracy for all the
four verification indexes, followed by the Oh model (mv5) and LUT inversion method under HH
polarization (mv2), whereas the accuracy of the LUT model for both HH and VV polarizations
(mv4) is relatively poor. The good performance of the estimation model constructed using the
AIEM is attributed to the well-established theoretical model describing the radar scattering
process, and at the same time, 37 sample datasets from the in-situ measurements were used as
modeling data in establishing the regression model [9,42]. Previous studies have also shown that
the Oh model is a highly accurate semiempirical model and that it is more favorable in the case of
cross-polarized data for the inversion of complex surfaces [37,48]. However, because the model
cannot express the soil moisture precisely for pixels with soil moisture below 0.04 or greater than
0.29, the precision of the model is compromised [69,70,74].

(2) The RMS height, obtained from the LUT inversion method or Oh model, was used as input data
for the Dubois model to estimate the soil moisture indirectly. In general, the indirect Dubois
model (mv6, mv7, mv8, and mv9) has a relatively lower inversion accuracy than the direct inversion
models (mv1, mv2, mv3, mv4, and mv5). There are two possible reasons for this: first, significant
errors exist in the process of RMS height inversion, which will be transmitted to the indirect
inversion Dubois model; second, some factors, such as the residual vegetation effects and the row
directional effects, may be taken as soil moisture fluctuation in the Dubois model [72,75].

(3) Among the three LUT direct inversion methods (mv2, mv3, and mv4), the differences between the
estimated and measured soil moisture values are relatively minimum under HH polarization
(mv2: RMSE = 0.0538, MAE = 0.0338), followed by the inversion method under VV polarization
(mv3: RMSE = 0.0769, MAE = 0.0563). The linear correlation between the estimated and measured
soil moisture values is acceptable under single polarization (mv2 and mv3), and the PCC values are
greater than 0.7. This shows that the LUT inversion under single polarization is feasible to retrieve
the soil moisture, consistent with previous results [37,40]. However, the accuracy of the direct
or indirect LUT inversion under dual-polarization (mv4 and mv8) is unsatisfactory, inconsistent
with a previous research by Zhang et al. [56]. The possible reason for the inconsistency is that
the surface coverage of the study area in the previous research was monotonous, whereas in
this study, the surface coverage was complex, and the vegetation types were varied, including a
certain proportion of nurseries with evident body scattering effect.

4.3. Optimal Solution Method

Based on the nine soil moisture mapping algorithms, a simple and effective optimal solution
method of pixel classification and algorithm selection was implemented, in order to obtain the most
accurate soil moisture map. The principle and main steps of the optimal solution method have been
described in detail in Section 3.3. In this section, the process and results of the algorithm selection,
as well as the verification process of the accuracy of the spliced soil moisture maps, are described
in detail.
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In the last section, the accuracy of all the methods is verified and analyzed for the entire validation
dataset. The overall analysis shows that the estimation model constructed using the AIEM (mv1,) is
the best, followed by the Oh model (mv5) and LUT inversion method under HH polarization (mv2).
However, if the study area is divided into different categories based on background knowledge, the
accuracy of the nine inversion maps in each category could be estimated differently, probably different
from that of the overall analysis. In this study, three types of background knowledge data were used,
including land use types, percentage content of clay, and slope levels.

The 30-m resolution land use data were downloaded from the website of Finer Resolution
Observation and Monitoring Global Land Cover Products (http://data.ess.tsinghua.edu.cn/). The land
use cover product is the first 30-m resolution global land cover map produced using Landsat
Thematic Mapper and Enhanced Thematic Mapper Plus data. The soil texture data were
downloaded from the Geographic Data Sharing Infrastructure, College of Urban and Environmental
Science, Peking University (http://geodata.pku.edu.cn), and divided on the basis of three categories:
the percentage of sand, percentage of silt, and percentage of clay. The slope levels were derived from
the Shuttle Radar Topography Mission digital elevation model with a resolution of 30 m using the
ArcGIS 10.2 software.

4.3.1. Construction of the Optimal Solution Method under Three Strategies

On the premise of introducing background knowledge to classify the study area, the soil moisture
inversion method with the highest accuracy under each category was selected as the optimal solution
method. In this study, three construction strategies for the optimal solution method were proposed
based on the modeling dataset.

In strategy 1, the study area was divided into four categories based on the four main land use
types. The soil moisture inversion map with the highest accuracy was selected as the optimal solution
model for this certain land use type (Table 6). From Table 6, we find that, although the estimation
model constructed using the AIEM (mv1) has the highest accuracy in the overall evaluation process,
it does not have the highest accuracy in all the four land use types. The Oh model (mv5) and LUT
inversion method under HH polarization (mv2) shows the best precision in the case of grassland and
bare land, respectively.

Table 6. Optimal solution strategy based on land use types and the accuracy of each algorithm
(strategy 1).

Land Use Types Optimal Model RMSE (cm3/cm3) MAE (cm3/cm3) PCC BIAS (cm3/cm3)

farmland mv1 0.0327 0.0264 0.9436 −0.0187
grassland mv5 0.0171 0.0128 0.8984 0.0128

shrub mv1 0.0340 0.0273 0.8763 0.0065
bare land mv2 0.0231 0.0201 0.9033 0.0134

The study area was divided into five categories based on the value of the percentage content of
clay, in strategy 2. The soil moisture inversion map with the highest accuracy was selected as the
optimal solution method for this certain category (Table 7). In the category with the highest percentage
of clay content, the LUT inversion method under HH polarization (mv2) gave the best precision; in the
category with the lowest percentage of clay content, the estimation model constructed using the AIEM
(mv1) was selected as the optimal solution method; in the other three categories, respectively, the LUT
inversion method under VV polarization (mv3), estimation model constructed using the AIEM (mv1),
and Oh model (mv5) gave the highest precision.

http://data.ess.tsinghua.edu.cn/
http://geodata.pku.edu.cn
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Table 7. Optimal solution method strategy based on the percentage content of clay and the accuracy of
each algorithm (strategy 2).

Percentage
Content of Clay (%) Optimal Model RMSE (cm3/cm3) MAE (cm3/cm3) PCC Bias (cm3/cm3)

14 mv1 0.0468 0.0338 0.8409 −0.0296
26 mv3 0.0354 0.0291 0.9145 −0.0119
28 mv1 0.0231 0.0193 0.9673 −0.0141
29 mv5 0.0251 0.0213 0.9555 0.0193
37 mv2 0.0261 0.0269 0.9376 −0.0196

In strategy 3, the study area was divided into five categories based on five slope levels, as listed in
Table 8. The LUT inversion method under VV polarization (mv3) was selected as the optimal solution
method in Levels 1 and 4. The Oh model (mv5) gave the highest accuracy in Levels 3 and 5.

Table 8. Optimal solution modeling strategy based on the slope levels and the accuracy of each
algorithm (strategy 3).

Levels of Slope Optimal Model RMSE (cm3/cm3) MAE (cm3/cm3) PCC BIAS (cm3/cm3)

Level 1 (≤1◦) mv3 0.0438 0.0379 0.8419 −0.0156
Level 2 (1–2◦) mv1 0.0216 0.0204 0.9114 −0.0125
Level 3 (2–3◦) mv5 0.0387 0.0291 0.8871 0.0102
Level 4 (3–4◦) mv3 0.0332 0.0254 0.8933 −0.0144
Level 5 (>4◦) mv5 0.0380 0.0288 0.8674 0.0135

4.3.2. Validation and Analysis of the Three Strategies

The scatter plot could directly reflect the correlation between the estimated and measured soil
moisture values and the corresponding error between them. In this study, a set of scatter plots (Figure 11)
were used to show the results of the optimal solution methods under the three different strategies.

Table 9 lists the validation results under the three strategies. The RMSE, MAE, PCC, and bias
between the measured soil moisture and the one estimated using the optimal solution method were
calculated based on the 60 sample values from the validation dataset acquired during the in-situ
measurements. It should be noted that the modeling strategies represent the three strategies for
building the optimal solution method, as described in the previous section, based on land use types,
percentage content of clay, and slope levels.

Similarly, the optimal solution method under strategies 2 and 1 exhibited a higher precision than
the nine individual inversion soil moisture maps (the highest precision was: PCC = 0.9115 cm3/cm3).
As listed in Table 9, the soil moisture estimated using the optimal solution method under strategy 2 had
a strong linear relationship, with the PCC value reaching 0.9364. The soil moisture calculated using
the optimal solution method under strategy 1 also had a good linear relationship with the measured
values (PCC value higher than 0.90).

Table 9. RMSE, MAE, PCC, and bias between the measured and estimated soil moisture based on the
validation dataset.

Modeling Strategies RMSE (cm3/cm3) MAE (cm3/cm3) PCC BIAS (cm3/cm3)

Strategy 1 0.0314 0.0249 0.9186 −0.0182
Strategy 2 0.0271 0.0225 0.9364 −0.0133
Strategy 3 0.0502 0.0351 0.7703 −0.0231

In terms of the RMSE and MAE, the soil moisture obtained using the optimal solution method
under strategies 2 and 1 was more accurate than that obtained from the nine individual inversion
soil moisture maps (the highest precision was: RMSE = 0.0321 cm3/cm3, MAE = 0.0260 cm3/cm3).
The optimal solution method under strategy 2 (RMSE = 0.0271 cm3/cm3, MAE = 0.0225 cm3/cm3)
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exhibited a higher accuracy than the other two models, followed by optimal solution strategy 1
(RMSE = 0.0314 cm3/cm3, MAE = 0.0249 cm3/cm3).Remote Sens. 2020, 12, x FOR PEER REVIEW 25 of 32 
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Interestingly, the bias values of the soil moisture estimated using the optimal solution
methods under the three strategies were negative, indicating that all the strategies gave an overall
overestimated result.

In this study, a mask file built using the threshold value was used to mask the urban land and
water bodies to improve the accuracy of the bare soil moisture estimation. Figure 12 shows the soil
moisture map retrieved using the optimal solution method under strategy 2.
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strategy 2.

In summary, the evaluation and analysis results on the validation dataset are as follows:

(1) The optimal solution method showed advantages, confirming the assumptions made in this study.
Among them, the soil moisture calculated using the optimal solution method under strategies 2
and 1 was more accurate than those obtained from the nine individual inversion soil moisture
maps. The RMSE index for the optimal solution method under strategy 2 was 0.005 cm3/cm3

lower than that for the individual estimation model constructed using the AIEM (mv1: the only
model with the highest accuracy among the nine individual inversion maps), and the RMSE
index for the optimal solution method under strategy 1 was 0.0007 cm3/cm3 lower than that for
the individual estimation model. Similarly, the PCC index for the optimal solution method under
strategy 2 was 0.0249 higher than that for the individual estimation model constructed using
the AIEM, and the optimal solution method under strategy 1 was 0.0071 higher than that for
the individual estimation model. This means that the error between the estimated results of the
optimal solution methods under most strategies and the measured soil moisture was lower and
that their linear correlation was stronger compared with the individual inversion models.

(2) Among the strategies used for constructing the optimal solution methods, strategy 2 gave the
best accuracy, followed by strategy 1. Compared with the former two strategies, the accuracy of
the optimal solution method under strategy 3 was relatively low. Nevertheless, it was still higher
than the accuracy of the nine individual models (77.78%), thus demonstrating its superiority.
To some extent, this inconsistent result reflects the sensitivity of the soil moisture to the different
background knowledge. For the study area, the optimal solution construction strategy with the
clay percentage content as the background knowledge exhibited the best performance, followed by
the optimal solution construction strategy with the land use type as the background knowledge.
The optimal solution strategy with the slope level as the background knowledge exhibited the
lowest performance.

5. Conclusions

To accurately map the soil moisture of a study area in Jiangsu Province, China, in this study, we
used both optical and radar remote sensing data in a combined manner, improved and coupled several
commonly used inversion models, fully utilized in situ ground experimental datasets, and introduced
background knowledge into the optimal solution method.
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For study areas with a complex coverage, it is important to effectively remove the influence of
vegetation canopy. In the process of removing the influence of vegetation canopy, we made two
improvements based on the conventional WCM. A combined VWC model was proposed, and its
accuracy (PCC = 0.9442) was found to be significantly higher than that of the one-variable quadratic
models. The empirical parameters A, B, and α calculated based on the in situ experimental datasets
(WCM_3) were selected as the WCM parameters to remove the effect of vegetation canopy.

Based on an individual inversion algorithm constructed using four commonly used models,
nine soil moisture inversion maps were obtained. The estimated model constructed using the AIEM
(mv1) exhibited a higher accuracy than the other models, followed by the Oh model (mv5) and LUT
inversion method under HH polarization (mv2). In general, the indirect Dubois model (mv6, mv7, mv8,
and mv9) exhibited a relatively lower inversion accuracy than the direct inversion models (mv1, mv2,
mv3, mv4, and mv5). The possible reasons for these were analyzed. The influencing factors may have
included the inherent characteristics of these models, the sensitivity of the radar polarization mode to
the soil moisture, and the error transmission of the intermediate parameters of the indirect models.

Notably, we attempted to retrieve the RMS height based on the LUT method; this is a relatively
new approach. The RMS height was retrieved from the LUT method and Oh model as input to estimate
the soil moisture using the Dubois model. Although the accuracy of these indirect algorithms was
relatively lower than that of the direct inversion algorithm, the attempts made gave feasible and
valuable results to some extent.

Optimal solution methods were proposed by analyzing the nine individual inversion algorithms
with background knowledge. The superiority of the optimal solution method was significant.
The model under strategy 2 (RMSE = 0.0271 cm3/cm3, MAE = 0.0225 cm3/cm3, PCC = 0.9364) gave
the best accuracy, followed by strategy 1. Compared with the former two strategies, the accuracy of
the optimal solution method under strategy 3 was relatively low, though it was still higher than the
accuracy of the nine individual models (77.78%). The superiority of the optimal solution methods
was attributed to the integration of various categories of the nine individual algorithms with the best
accuracy based on background knowledge.

In this study, various efforts were made to retrieve the soil moisture with high accuracy. Some of
the individual inversion algorithms and most of the optimal solution methods gave satisfactory
results. However, as with any study, there remain some shortcomings: (1) The surface coverage of
the study area was complex and inconsistent with the basic assumptions of the WCM. (2) Although
the influence of vegetation water was reduced as much as possible, the polarization backscattering
coefficient is significantly affected by the structure of the vegetation canopy, which would introduce
some errors in the calculation process. (3) There were uncertainties in the in situ measurement of
the RMS height, which may have caused errors in the inversion processes. (4) Only a few types of
background knowledge data were used in the optimal solution methods, and the construction methods
were relatively simple. Future research can be carried out from the following aspects: GF-1 could be
replaced by GF-6 to obtain more spectral information; this may give a better accuracy in removing the
influence of the vegetation canopy. In the process of bare soil moisture inversion, more diversified and
comprehensive multi-model coupling methods could be tried to explore the potential of each model
and improve the coupling algorithms. More diverse and representative background knowledge could
be introduced in the process of constructing the optimal solution method, and the algorithm used for
the construction process can be further improved.
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