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Abstract: Multi-sensor remote sensing image classification has been considerably improved by deep
learning feature extraction and classification networks. In this paper, we propose a novel multi-sensor
fusion framework for the fusion of diverse remote sensing data sources. The novelty of this paper
is grounded in three important design innovations: 1- a unique adaptation of the coupled residual
networks to address multi-sensor data classification; 2- a smart auxiliary training via adjusting the
loss function to address classifications with limited samples; and 3- a unique design of the residual
blocks to reduce the computational complexity while preserving the discriminative characteristics of
multi-sensor features. The proposed classification framework is evaluated using three different remote
sensing datasets: the urban Houston university datasets (including Houston 2013 and the training portion
of Houston 2018) and the rural Trento dataset. The proposed framework achieves high overall accuracies
of 93.57%, 81.20%, and 98.81% on Houston 2013, the training portion of Houston 2018, and Trento
datasets, respectively. Additionally, the experimental results demonstrate considerable improvements in
classification accuracies compared with the existing state-of-the-art methods.

Keywords: deep learning; data fusion; hyperspectral image classification; residual learning; multi-sensor
fusion; convolutional neural networks (CNNs); auxiliary loss function

1. Introduction

Multi-sensor image analysis of remotely sensed data has become a growing area of research in recent
years. Space and airborne remote sensing data streams are providing increasingly abundant data suited
for earth observation and environmental monitoring [1]. The spatial, temporal and spectral capabilities
of optical remote sensing systems are also increasing over time. Besides the evolution of multispectral
imaging (MSI), hyperspectral imaging (HSI) [2–4] and light detection and ranging (LiDAR) observation
platforms have also gained relevance [5–7]. An increasing diversity of platforms of HSI and LiDAR
acquisition systems are available for terrestrial, space and airborne-based data collection. While MSI and
HSI rely on solar radiance as a passive illumination source, LiDAR devices emit their own source of active
radiance for measurement. MSI and HSI systems produce pixels representing two-dimensional bands
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of their respective wavelengths while LiDAR systems measure structure via point clouds organized in
a three-dimensional sphere for their respective wavelengths. Combining such data at image or feature
level yields both opportunities and challenges. For instance, fusion of HSI and LiDAR data of the same
event in space offers a rich feature space allowing distinct separation of observed objects based on
their spectral signature and elevation characteristics [8,9]. Meanwhile, multi-sensor datasets can contain
sophisticated heterogeneous data structures and different data formats or characteristics (e.g., asymptotic
properties, spatial and spectral resolutions etc.). Given the increasing availability and complexity of
multi-sensor data, fusion techniques are evolving to address meaningful data exploitation to cope with
multi-source inputs. This paper is addressing the large potential volume of existing combined multi-sensor
data on classification algorithms. Depending on the study site and classification scheme, multi-sensor
feature spaces can possess unique hybrid properties introducing new challenges for the production and
deployment of appropriate training data. Sources of accurate training data are often scarce, and the
production is expensive, particularly for novel hybrid multi-sensor feature spaces. Therefore, conventional
classification systems and networks often become less efficient for such diverse and complicated datasets.
Hence, the effective fusion of heterogeneous multi-sensor data for classification applications is essential to
our remote sensing research.

A wide variety of multi-sensor data fusion methods have been developed to leverage the use
of heterogeneous data sources, most prominently for HSI and LiDAR data fusion [10–17]. In [10],
morphological-level features, specifically attribute profiles (APs), were embedded with a subspace
multinominal logistic regression model for the fusion of HSI and LiDAR data. The capability of APs in
extracting discriminating spatial features was again confirmed in [11], where extended attribute profiles
(EAPs) were used to extract features from HSI and LiDAR data, respectively. Moreover, morphological
extinction profiles (EPs) have been proposed to overcome the threshold determination difficulties of APs
and further boost the performance of feature extraction [12]. EPs have been successfully applied to fuse
HSI and LiDAR data with a total variation subspace model in [13]. Regarding various supervised fusion
algorithms, a high number of research works have been dedicated towards the development of more robust
models, for instance, a generalized graph-based fusion model in [14]; a spare and low-rank component
model in [15]; a multi-sensor composite kernel model in [16]; a decision-level fusion model based on
a differential evolution method in [17]; semi-supervised graph-based fusion in [18]; and discriminant
correlation analysis in [19]. One mutual objective of these fusion algorithms is to simultaneously determine
the optimized classification decision boundary by considering heterogeneous feature spaces. Nevertheless,
their success often requires a comprehensive understanding of sensor systems and individual domain
expertise, and hand-crafted morphological features are naturally redundant and may still suffer from
problems such as the curse of dimensionality, which is also termed as Hughes phenomenon [20].

More recently, the rapid development of deep learning techniques has led to an explosive growth
in the field of remote sensing image processing, especially the classification of HSI [21]. Deep learning
models, especially convolutional neural networks (CNNs), open up a new possibility for invariant feature
learning of HSI data, from hand-crafted to end-to-end, from manual configurations to fully automatic,
from shallow to deep [22].

At the same time, there are various research efforts developing novel multi-sensor fusion approaches
based on deep learning [23–28]. Among the first studies, in [23], a deep fusion model was designed for the
fusion of HSI and LiDAR data, where CNNs performed as both feature extractor and classifier. In [24],
the joint use of HSI and LiDAR data was further explored by combining morphological EPs and high-level
deep features via a composite kernel (CK) technique. In [25], a dual-branch CNN was proposed to learn
spectral-spatial and elevation features from HSI and LiDAR, respectively, then all features were fused
via a cascaded network. Besides the fusion of HSI and LiDAR data, the similar superior performance of
deep learning models was also confirmed in [26], where Landsat-8 and Sentinel-2 satellite images were fed
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into a two branched residual convolutional neural networks (ResNet) for local climate zone classification.
However, the training of such deep learning fusion models might be challenging, with problems arising
from the fact that deep fusion models mostly require sophisticated network designs with more parameters
to simultaneously handle multi-sensor inputs, while the network training will become more difficult when
the network becomes deeper [29].

Fortunately, these issues can be mitigated using the residual learning technique, where low-level
features are successively passed to deeper layers via identity mapping [30]. Based on this approach,
we propose a novel multi-sensor fusion framework via designing multi-branched coupled residual
convolutional neural networks, namely CResNet. Moreover, the proposed framework is designed to be a
generalized deep fusion framework, where the inputs are not limited to specific sensor systems. To this
end, the proposed framework is designed to automatically fuse different types of multi-sensor datasets.

The proposed CResNet mainly consists of three individual ResNet branches along with coupled
fully connected layers for data fusion. Different to [24], which requires a separate training step of CK
classifiers, the proposed CResNet is trained in an end-to-end manner which lowers the computational
complexity during data fusion. To highlight the generalized fusion capability of CResNet, we test the
proposed framework on three distinct multi-sensor datasets with inputs ranging from HSI, RGB to LiDAR
feature spaces, and various land cover classes. The major contributions of this paper are summarized
as threefold:

1. The proposed CResNet adopts novel residual blocks (RBs) with identity mapping to address
the gradient vanishing phenomenon and promotes the discriminant feature learning from
multi-sensor datasets.

2. The design of coupling individual ResNet with auxiliary loss enables the CResNet to simultaneously
learn representative features from each dataset by considering an adjusted loss function, and fuse
them in a fully automatic end-to-end manner.

3. Considering that CResNet is highly modularized and flexible, the proposed framework leads to
competitive data fusion performance on three commonly used multi-sensor datasets, where the
state-of-the-art classification accuracy are achieved using limited training samples.

Section 2 describes the concept of residual feature learning and introduces the detailed architecture of
the CResNet. The data descriptions and experimental setups are reported in Section 3. Then, Section 4 is
devoted to the discussion of experiment results on three multi-sensor datasets. The main conclusions are
summarized in Section 5.

2. Methodology

We present the structure of the proposed CResNet as shown in Figure 1. The fusion framework can
be divided into three main components: feature learning via residual blocks, multi-sensor data fusion via
coupled ResNet, and auxiliary training via an adjusted loss function. Although there is no limit in the
number of datasets being fused using the proposed method, we evaluate the framework by applying it on
three co-registered datasets for multi-sensor data fusion and classification.
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Figure 1. The illustration of the proposed framework in training and testing phases.

2.1. Feature Learning via Residual Blocks

Recently, ResNet has become a popular deep learning technique [29], and has achieved significant
classification performance on heterogeneous remote sensing datasets [31,32], where multi-sensor data
sources (e.g., HSI, MSI, LiDAR) have been intensively investigated. Residual blocks (RBs), as the
characterized architecture of ResNet, are proposed to alleviate the gradient vanishing and explosion
issues of CNNs during training [29]. By solving the optimization degradation issue, such blocks are found
to be helpful in terms of training accuracy, which is a prerequisite for testing and validation accuracies.
In this paper, ResNet with multiple RBs are selected as the base feature learning networks, which are
lately aggregated together as a generalized multi-branched data fusion network. As shown in Figure 2,
a residual block can be considered to be an extension of several convolutional layers, where gradients in
the deeper layers could be intuitively propagated back to the lower layers via identity mapping. To be
noticed, identity mapping was proposed in [30] to further improve the training and regularization of
origin design of ResNet in [29].

Within each RB, we follow the design in [30] and have three successive convolutional layers with
kernel sizes of 1× 1×m, 5× 5×m, and 1× 1×m, respectively, where m refers to the number of feature
maps. In addition, such successive layers are also named bottleneck designs consisting of a 1× 1×m layer
for dimension reduction, a 5× 5×m convolution layer, and a 1× 1×m layer for restoring dimension,
with which we can optimize the model complexity, thus lead to a more efficient model due to computational
consideration [29]. Xk and Xk+1 refer to the input and output feature spaces of RBs, respectively, and their
feature sizes are kept unchanged via a valid padding strategy. More importantly, by applying the identity
mapping with full pre-activation feature spaces into deeper layers [30], the functionality of RBs is further
formulated as follows:

Xk+1 = Xk + F (Xk, Wk) (1)
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where Xk refers to feature maps of (k)th layer, and the Wk are the weights and biases of (k)th layer in the
RBs. The function (F) is the pre-activation function, which combines the batch normalization function
(BN) [33] and the nonlinear activation function (ReLUs) [34] in order to improve the speed and stability of
the proposed CResNet.

Figure 2. The network architecture of full pre-activation RBs.

Figure 2 shows how the full pre-activation shortcut connection is a direct channel for the gradient
to propagate in both directions, forward and backward. Hence, the training process of such RBs is
simplified and leads to improved generalization capabilities. One of the key characteristics of the full
pre-activation shortcut would become more obvious, when multiple RBs are trained successively, thus we
could recursively formulate the feature spaces as follows:

Xk+2 = Xk+1 + F (Xk+1, Wk+1) ,

= Xk + F (Xk, Wk) + F (Xk+1, Wk+1) ,
(2)

where Wk are the weights and biases of (k)th layer in the RBs. Next, based on these recursive feature
spaces, Equation (1) evolves as follows:

XL = Xk +
L−1

∑
l=k

F (Xl , Wl) (3)

Hence, the feature space of any deeper layers (L) can be formulated as the feature space of any lower
layers (k) plus a collection of convolutional functions ∑L−1

l=k F. Moreover, this characteristic ensures the
backward propagation of model gradients into lower layers as well, benefitting the overall feature learning
with heterogeneous remote sensing datasets. For more detailed description of full pre-activation identity
mapping, please refer to [30].

Here, the ResNet consisting of RBs with identity mapping is able to learn discriminative multi-sensor
features from heterogeneous data sets due to their simplified training process, which further leads to
better generalization capabilities. In this work, heterogeneous deep features are then fused with a coupled
fully connected layer and a SoftMax layer (shown in Figure 3) for classification purpose. Regarding
comprehensive investigations of deep learning feature extraction technique (i.e., HSI), one can further
refer to [22,35].
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2.2. Multi-Sensor Data Fusion via Coupled ResNets

In this paper, multi-sensor datasets are fused via coupled three-branched ResNets as shown in Figure 3.
Given a set of heterogeneous input datasets Ya ∈ <n×m×a, Yb ∈ <n×m×b, and Yc ∈ <n×m×c, for which
various combination of HSI, RGB, (multispectral) LiDAR, and features generated by morphological
methods (e.g., extinction profiles [12,36]) are considered in this paper in order to validate the performance
of the proposed framework. More in detail, n and m refer to the spatial dimensions of image height and
width, and a to c are the number of spectral bands of the input datasets.

Figure 3. Network design of the proposed coupled residual convolutional neural networks.

As illustrated in Figure 1, for each pixel of inputs, a set of image patches ya ∈ <s×s×a, yb ∈ <s×s×b,
and yc ∈ <s×s×c centered at the chosen pixel are extracted from Ya, Yb, and Yc, individually. Here, s refers
to the neighboring window size, for which we empirically selected 24 according to [24,35]. Then the
three multi-sensor image patches are fed into separate ResNets for residual feature learning, where each
ResNet consists of three RBs. Regarding the classification tasks of HSI, two major challenges identified
when applying supervised deep learning classification methods: the high heterogeneity and nonlinearity
of spectral signatures and the few training samples against the high dimensionality of HSI [21]. In this
context, the nonlinear spectral signature of corresponding ground surfaces can be better captured by
coupling networks with multi-sensor inputs (e.g., LiDAR, HSI, and RGB) [1]. By connecting the lower
features through the networks to the deeper layers, the design of such RBs provides an efficient way to
train the deep learning classification networks even with limited training samples.

Between each of the RBs of ResNet, a 2D max-pooling layer is attached with a kernel size and a stride
of 2 in order to reduce the feature variance as well as the computational complexity, with which the spatial
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dimension of deep feature from the previous layer is halved. In addition, since we empirically selected 24 as
the neighboring window size, each individual ResNet consists of three RBs. With such a design, three RBs
are trained successively to learn discriminative multi-sensor features. In addition, we increased the number
of feature maps towards deeper blocks, which is doubled after each block. Here, the number of feature maps
for all three RBs ranges from {32, 64, 128}. Next, a coupled fully connected layer with the SoftMax function
is adopted to fuse the learned feature according to the total amount of classification categories. We use the
element-wise maximization to keep the feature number unchanged even after data fusion.

2.3. Auxiliary Training via Adjusted Loss Function

Besides the coupled ResNets, an auxiliary training strategy is proposed to compensate the major
loss function according to the training progress of each branch during the framework training stage.
The auxiliary loss is a common technique used in other deep learning architecture (e.g., Inception
network [37]). In our case, given a set of training samples {yi

a, yi
b, yi

c} together with ground-truth labels ti

and predicted labels t̂i, where {i = 1, 2, . . . N} and N is the number of training samples, the main model
loss could be computed by the categorical cross-entropy loss function.

L = (−1)× 1
N

N

∑
i=1

[
ti log

(
t̂i
)
+
(

1− ti
)

log
(

1− t̂i
)]

(4)

Besides the main categorical cross-entropy loss, individual auxiliary loss functions specified for
different input branches {yi

a, yi
b, yi

c} are computed in a similar manner, where La, Lb, and Lc are designed
to guide the training process of each input dataset respectively. Moreover, our auxiliary training strategy
further adjusts the main loss using these auxiliary losses as follows:

LAUX = L+ εa ×La + εb ×Lb + εc ×Lc (5)

where {εa, εb, εc} are the weights of auxiliary losses in the overall loss function. To set up the weights,
there are two main considerations: first, the auxiliary losses should help in passing information through
different branches and prevented from disturbing the overall training process; second, the main loss
should be the most important, thus the weights of auxiliary losses should be smaller than the main loss.
In this paper, we empirically set {εi = 10−4 | i = a, b, c}.

The auxiliary loss function LAUX could be considered to be an intelligent regularization that helps
to make features from individual branches more accurate. More importantly, LAUX only provides
complementary information during the training phase of our framework, not affecting the testing phase.

3. Experiment

3.1. Data Descriptions

3.1.1. Houston 2013

The Houston 2013 dataset is from an urban area of Houston, USA, which was originally distributed
for the 2013 GRSS Data Fusion Contest [38]. The image size of the HSI and LiDAR-derived data are
349 × 1905 with a spatial resolution of 2.5 m. The HSI data includes 144 spectral bands, which range from
0.38 to 1.05 µm. Here, the HSI data are cloud-shadow removed. The Houston 2013 dataset has in total
15 classes in the scheme, which range from different vegetation types to highway features. Figure 4 shows
the false color HSI, the LiDAR-derived DSM together with the corresponding training and testing samples.
The detailed number of training and test samples are listed in Table 1.
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Table 1. Houston University 2013: The number of training samples, testing samples, and the total number
of samples per class.

Class No. Class Name Training Testing Samples

1 Healthy grass 198 1053 1251
2 Stressed grass 190 1064 1254
3 Synthetic grass 192 505 697
4 Tree 188 1056 1244
5 Soil 186 1056 1242
6 Water 182 143 325
7 Residential 196 1072 1268
8 Commercial 191 1053 1244
9 Road 193 1059 1252

10 Highway 191 1036 1227
11 Railway 181 1054 1235
12 Parking Lot 1 192 1041 1233
13 Parking Lot 2 184 285 469
14 Tennis court 181 247 428
15 Running track 187 473 660

Total 2832 12,197 15,029

Figure 4. Houston 2013: From top to bottom, the LiDAR-derived DSM image, the false color HSI image,
the training samples, and the testing samples.
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3.1.2. Houston 2018

The Houston 2018 dataset (identified as GRSS_DFC_2018 dataset) captured over the area of the
University of Houston, contains HSI, multispectral LiDAR, and very high resolution (VHR) RGB images.
This dataset was originally distributed for the 2018 GRSS Data Fusion Contest [39]. In this paper, we used
the training portion of the dataset. The HSI dataset was captured using an ITRES CASI 1500 in 48 bands
with spectral range 380–1050 nm at a 1 m ground sampling distance (GSD). The multispectral LiDAR data
were acquired using an Optech Titam MW (14SEN/CON340), which include point cloud data at 1550,
1064, and 532 nm, intensity raster, and DSMs at a 50 cm GSD. The RGB was acquired with a VHR RGB
imager (DiMAC ULTRALIGHT) with a 70 mm focal length. The VHR color image includes Red, Green,
and Blue bands at a 5 cm GSD. This co-registered dataset contains 601 × 2384 pixels. Twenty classes of
interest were extracted for Houston data and corresponding training and test samples are given in Figure 5.
Figure 5 also depicts the LiDAR-derived DSM and the VHR RGB image (downsampled). The number of
training and testing samples used in this study are given in Table 2.

Table 2. Houston University 2018: The number of training samples, testing samples, and the total number
of samples per class.

Class No. Class Name Training Testing Samples

1 Healthy grass 1458 8341 9799
2 Stressed grass 4316 28,186 32,502
3 Synthetic grass 331 353 684
4 Evergreen Trees 2005 11,583 13,588
5 Deciduous Trees 676 4372 5048
6 Soil 1757 2759 4516
7 Water 147 119 266
8 Residential 3809 35,953 39,762
9 Commercial 2789 220,895 223,684

10 Road 3188 42,622 45,810
11 Sidewalk 2699 31,303 34,002
12 Crosswalk 225 1291 1516
13 Major Thoroughfares 5193 41,165 46,358
14 Highway 700 9149 9849
15 Railway 1224 5713 6937
16 Paved Parking Lot 1179 10,296 11,475
17 Gravel Parking Lot 127 22 149
18 Cars 848 5730 6578
19 Trains 493 4872 5365
20 Seats 1313 5511 6824

Total 34,477 470,235 504,712
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Figure 5. Houston 2018: From top to bottom, the LiDAR-derived DSM image, the VHR RGB Image
(downsampled), the training samples, and the testing samples.

3.1.3. Trento

The Trento dataset was captured over a rural area in the south of the city of Trento, Italy. LiDAR and
HSI data were acquired by the Optech ALTM 3100EA and the AISA Eagle sensor, respectively. This data
has a spatial resolution of 1 m. The size of data is of 600 × 166 pixels in 63 bands ranging from 402.89 to
989.09 nm with the spectral resolution of 9.2 nm. Six classes of interest were extracted for this dataset,
including Buildings, Wood, Apple trees, Roads, Vineyard, and Ground. A false color composite of the HSI
data and the corresponding training and testing samples are shown in Figure 6. The number of training
and testing samples for different classes of interest are given in Table 3.

Table 3. Trento: The number of training samples, testing samples, and the total number of samples per class.

Class No. Class Name Training Testing Samples

1 Apple trees 129 3905 4034
2 Buildings 125 2778 2903
3 Ground 105 374 479
4 Wood 154 8969 9123
5 Vineyard 184 10,317 10,501
6 Roads 122 3052 3174

Total 819 29,395 30,214
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Figure 6. Trento: From top to bottom, the LiDAR-derived DSM image, the false color HSI image, the training
samples, and the testing samples.

3.2. Experimental Setup

To evaluate generalized performance of the proposed data fusion framework, the aforementioned
three datasets, consisting of two or three co-registered multi-sensor inputs are explored in different ways.
In detail, as for the Houston 2013 and Trento datasets, the morphological EPs features of HSI and LiDAR
are generated to extract the corresponding spatial and elevation information [12], then a single branch
ResNet is used to classify HSI, LiDAR, EPs-HSI, and EPs-LiDAR, respectively. As for the Houston 2018
dataset, instead of using morphological features, HSI, LiDAR, and RGB are directly classified with a single
branch ResNet, respectively. Next, the combinations of EPs features and HSI are fused with the proposed
CResNet for the Houston 2013 and Trento datasets, while a distinct combination of RGB, LiDAR, and HSI
are considered with the Houston 2018 dataset in order to validate the proposed framework’s generalized
capability in handling highly heterogeneous input datasets.

The implementation of CResNet is based on the Tensorflow framework together with the Keras
functional API. The Nesterov Adam optimizer is selected as the optimization algorithm for our ResNet due
to its faster convergence performance compared with the stand stochastic gradient descent algorithm [26],
where default parameters β1 = 0.9, β2 = 0.999 are used. The learning rate, training epochs and batch size
are set to 0.001, 200, 64, respectively.

We evaluated the classification accuracy of our proposed framework with respect to the overall
accuracy (OA), the average accuracy (AA), the Kappa coefficient, and individual class accuracy. Since the
Houston 2013 dataset is intensively used in the state-of-the-art data fusion research, we thus compared the
performance of our proposed framework with previous analyses on this dataset.
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4. Discussion

4.1. Classification Results

4.1.1. Fusion Performance of Morphological EPs and HSI

Tables 4 and 5 give the results of the fusion of morphological EPs and HSI using CResNet for the
Houston 2013 and Trento datasets, respectively. CResNet-AUX denotes to CResNet trained with adjusted
auxiliary loss function. The results are compared with the results obtained from EPs-LiDAR-ResNets,
EPs-HSI-ResNets, LiDAR-ResNets, and HSI-ResNets.

• First, it is observed that HSI-ResNet considerably outperforms LiDAR-ResNet for both datasets,
which also supports that the redundant spectral-spatial information of HSI has higher discriminative
capability than the elevation information of LiDAR data. However, we notice that such discriminative
capability of morphological feature (EPs-HSI and EPs-LiDAR) may become relatively uniform, for
which EPs-HSI outperforms by 1.24% in the Houston 2013 and EPs-LiDAR outperforms by 2.88% in
the Trento dataset. The reason behind this could be that morphological features consist of low-level
features based on hand-crafted feature engineering, which not only extracts informative features but
also bring high redundancy into feature space, thus the integration of low-level hand-crafted features
and high-level deep features can further boost the classification performance [24].

• Second, the fusion of EPs and HSI with CResNet+AUX achieves the best OA (93.57% and 98.81%),
AA (93.44% and 94.50%) in both datasets, again confirming the capability and effectiveness of the
proposed framework in invariant feature learning from both low-level morphological features and
high-level deep features.

• Finally, we observe a common improvement of classification accuracy by training ResNet with
adjusted auxiliary loss function. In the Houston 2013 dataset, CResNet-AUX outperforms the original
CResNet by producing the highest OA (93.57%) and AA (93.44 %) as well as kappa value of 0.9302.
Similar findings are also discovered in the Trento dataset. As explained in Section 2.3, the performance
boosting can be attributed to the design of our auxiliary training strategy, where the overall loss
function is regularized with the complementary losses from each individual dataset.

Table 4. Houston 2013: Classification accuracies for per class, OA, AA (in %), kappa coefficient (is of
no unit). The bold refers to the best OA, AA, and Kappa performance.

# Class HSI-ResNet LiDAR-ResNet EPs-HSI-ResNet EPs-LiDAR-ResNet CResNet CResNet-AUX
Number of features (144) (1) (225) (71) (144+225+71) (144+225+71)

1 Healthy grass 77.68 51.76 74.83 54.13 83.00 86.51
2 Stressed grass 98.59 47.09 76.60 56.77 99.81 98.01
3 Synthetic grass 86.53 87.33 87.33 94.06 84.36 87.87
4 Tree 86.46 51.52 51.89 68.09 96.69 85.52
5 Soil 89.11 43.56 93.94 52.37 99.91 87.02
6 Water 81.12 78.32 91.61 79.02 95.80 99.81
7 Residential 93.75 67.07 74.07 75.93 90.11 100.00
8 Commercial 81.86 75.12 80.53 83.57 95.73 95.72
9 Road 88.67 58.55 55.71 59.87 90.65 96.68

10 Highway 74.52 73.84 54.05 72.78 70.46 100.00
11 Railway 95.64 90.32 68.98 98.29 94.68 85.54
12 Parking Lot 1 85.78 68.20 73.20 78.10 97.50 95.80
13 Parking Lot 2 82.81 75.44 68.07 72.28 79.30 94.05
14 Tennis court 100.00 90.28 93.12 88.66 100.00 95.10
15 Running track 68.92 39.32 41.23 15.43 89.85 93.87

OA(%) 86.60 63.82 70.63 69.39 91.42 93.57
AA(%) 86.10 66.51 72.34 69.96 91.19 93.44
Kappa 0.8545 0.6074 0.6809 0.6676 0.9068 0.9302
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Table 5. Trento: Classification accuracies for per class, OA, AA (in %), kappa coefficient (is of no unit).
The bold refers to the best OA, AA, and Kappa performance.

# Class HSI-ResNet LiDAR-ResNet EPs-HSI-ResNet EPs-LiDAR-ResNet CResNet CResNet-AUX
Number of Features (63) (1) (225) (71) (63+225+71) (63+225+71)

1 Apple trees 98.21 0.00 96.67 98.39 98.10 99.74
2 Buildings 93.12 15.77 87.83 97.52 97.77 99.60
3 Ground 77.54 39.84 77.01 64.71 77.01 75.40
4 Wood 98.99 98.27 99.74 100.00 99.90 100.00
5 Vineyard 99.96 97.00 94.92 97.77 100.00 100.00
6 Roads 60.52 2.62 75.75 83.65 92.46 92.27

OA (%) 94.40 66.30 93.74 96.62 98.43 98.81
AA (%) 88.06 42.25 88.65 90.34 94.21 94.50
Kappa 0.9250 0.5178 0.9166 0.9548 0.9790 0.9841

Figures 7 and 8 show classifications corresponding to the aforementioned methods for the Houston
2013 and Trento datasets, respectively. The Houston 2013 dataset is characterized as complex urban
structures and mixed residential and commercial areas. From Figure 7a–d, it is shown that single
input features are insufficient in distinguishing categories like Highway and Parking lot, for which
the multi-sensor fusion methods (Figure 7e,f) are able to produce accurate classification results. In this
context, the similar visualization patterns in a rural region of Trento can be obtained, where homogeneous
Vineyard is successfully depicted.

It is suggested that deep learning methods need to go deeper in order to learn discriminative
features [21], while the training of such methods can become even more challenging, especially with
limited training samples. In this paper, we tackle this problem by construing a novel arrangement of RBs
with identity mapping that successively pass the low-level features through the entire networks.

Figure 7. The Houston 2013 dataset: Classifications generated from different features and
models. (a) HSI-ResNet, (b) LiDAR-ResNet, (c) EPs-HSI-ResNet, (d) EPs-LiDAR-ResNet, (e) CResNet,
and (f) CResNet-AUX.
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Figure 8. The Trento dataset: Classifications generated from different features and models. (a) HSI-ResNet,
(b) LiDAR-ResNet, (c) EPs-HSI-ResNet, (d) EPs-LiDAR-ResNet, (e) CResNet, and (f) CResNet-AUX.

4.1.2. Fusion Performance of RGB, MS LiDAR, and HSI

In this scenario, we do not use EPs. However, we rely on the deep network developed to extracted
the spatial, spectral, and elevation features from RGB, HSI, and multispectral LiDAR. Table 6 demonstrates
the performance of CResNet for the fusion of HSI, multispectral LiDAR, and RGB. The proposed CResNet
fusion framework leads to substantial improvements with respect to HSI (OA: 12.79%), LiDAR (OA:
10.36%), and RGB (OA: 11.09%). Additionally, the results show that the auxiliary training could further
improve the OA by 0.58%. To be noticed here, the degradation of individual accuracy in Water class can be
potentially attributed to the high imbalance of training sample numbers as listed in Table 2.

Table 6. Houston 2018: Classification accuracies for per class, OA, AA (in %), kappa coefficient (is of
no unit). The bold refers to the best OA, AA, and Kappa performance.

# Class HSI-ResNet LiDAR-ResNet RGB-ResNet CResNet CResNet-AUX
Number of features (48) (7) (3) (48+7+3) (48+7+3)

1 Healthy grass 46.35 24.25 41.54 18.77 75.90
2 Stressed grass 79.64 74.80 79.37 90.43 67.79
3 Synthetic grass 82.72 100.00 100.00 100.00 100.00
4 Evergreen Trees 93.59 90.02 93.05 94.74 95.24
5 Deciduous Trees 46.27 43.62 44.26 59.54 59.47
6 Soil 36.17 31.39 86.48 43.82 36.82
7 Water 42.02 0.00 22.69 30.25 1.68
8 Residential 89.86 87.51 91.08 90.79 88.00
9 Commercial 71.24 70.89 66.35 92.71 92.75

10 Road 54.44 61.35 65.97 64.14 72.77
11 Sidewalk 63.14 73.80 75.18 62.26 71.27
12 Crosswalk 3.95 2.40 2.87 3.02 3.95
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Table 6. Cont.

# Class HSI-ResNet LiDAR-ResNet RGB-ResNet CResNet CResNet-AUX
Number of features (48) (7) (3) (48+7+3) (48+7+3)

13 Major Thoroughfares 47.50 62.67 56.97 65.15 57.62
14 Highway 31.82 34.97 37.22 42.34 44.82
15 Railway 77.58 84.75 84.74 63.77 63.96
16 Paved parking Lot 85.60 97.31 94.80 83.64 89.48
17 Gravel parking Lot 100.00 100.00 100.00 100.00 100.00
18 Cars 32.24 37.24 50.89 29.91 34.57
19 Trains 93.49 99.36 98.75 92.44 97.74
20 Seats 63.49 99.84 98.42 61.13 73.42

OA (%) 67.83 70.26 69.53 80.62 81.20
AA (%) 62.16 63.81 69.53 64.47 66.36
Kappa 0.5944 0.6287 0.6253 0.7416 0.7506

Figure 9 shows the classifications obtained by different techniques for the Houston 2018 dataset.
There are relatively well-mapped ground-truth samples extracted from the original GRSS_DFC_2018
training dataset as shown in Figure 9a. By comparing Figure 9e,f with Figure 9b–d, the improved
classifications using CResNet can be observed compared to the other techniques, especially for categories
like healthy grass and commercial, where large commercial blocks and grassland are well delineated.

Figure 9. The Houston 2018 dataset: (a) Ground-truth label map; (b–f) classification maps generated
on different features and models. (b) HSI-ResNet, (c) LiDAR-ResNet, (d) RGB-ResNet, (e) CResNet,
and (f) CResNet-AUX.

To summarize, based on the results obtained on the Houston 2018 dataset, we can validate the
generalized capability of the proposed multi-sensor fusion framework. Although we use a uniform
network architecture, the CResNet-AUX can automatically extract informative features via RBs and
simultaneously regularize the data fusion via auxiliary loss fusion. The reason could be due to the fact
that our CResNet actually consists of much deeper CNNs layers as shown in Figure 3, which can be fitted
to different datasets, and trained through residual learning. In this context, we believe that the proposed
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CResNet presents a new possibility in developing flexible end-to-end fusion methods even with multiple
inputs from different sensor systems.

4.2. Comparison to State-of-the-Art

The Houston 2013 dataset is one of the most widely used datasets, comprising a challenging mixture
of urban structures. In this context, we compare the classification performance of our proposed framework
with the following state-of-the-art methods listed in Table 7: The multiple subspace feature learning
method (MLRsub) in [10], the total variation component-based method (OTVCA) in [13], the sparse and
low-rank component-based method (SLRCA) in [15], the deep fusion method (DeepFusion) in [23], the
extinction profiles fusion via CNNs and graph-based feature fusion method (EPs-CNN) in [8], and the
composite kernel-based three-stream CNNs method (CK-CNN) in [24]. All these methods including the
proposed method in this paper use the benchmark sets of training and testing samples published with the
dataset for the classification purpose and therefore, the classification results are fully comparable.

Table 7. Houston 2013: Performance comparison with the state-of-the-art models. The bold refers to the
best OA, AA, and Kappa performance.

Methods MLRsub [10] OTVCA [13] SLRCA [15] DeepFusion [23] EPs-CNN [8] CK-CNN [24] CResNet CResNet-AUX

OA (%) 92.05 92.45 91.30 91.32 91.02 92.57 91.42 93.57
AA (%) 92.85 92.68 91.95 91.96 91.82 92.48 91.19 93.44
Kappa 0.9137 0.9181 0.9056 0.9057 0.9033 0.9193 0.9068 0.9302

In general, these methods can be classified into two main categories: conventional shallow methods
and deep learning-based methods. The highest OA, AA, and Kappa for each of those categories are
92.45%, 92.68%, and 0.9181 obtained by OTVCA and 92.57%, 92.48%, and 0.9193 obtained by CK-CNN,
for which the CResNet-AUX improves both methods by around 1% in terms of OA. This performance
improvement over the state-of-the-art methods further validates the effectiveness of the proposed
multi-sensor framework. In addition, the superior performance compared to existing deep learning-based
methods confirmed the effectiveness of the proposed CResNet in mitigating the gradient vanishing
phenomenon and discriminant feature learning from heterogeneous datasets. More importantly, with
the proposed multi-sensor fusion framework, the data fusion results can be achieved automatically in an
end-to-end manner.

4.3. The Performance with Respect to the Number of Training Samples

To evaluate the performance of the proposed framework with respect to the number of training
samples, we randomly selected 10, 25, 50, or 100 training samples per class and repeat the experiment
10 times on the Houston 2018 dataset. In Figure 10, the means and standard deviations of OA are depicted
with respect to different numbers of training samples using CResNet and CResNet+AUX, respectively.
In the case of 10 samples, the OAs are less than 50%, which reveals the dependency of the deep learning
techniques to the adequate amount of training samples. However, the high achievements of almost 20%
in terms of OA for both techniques in the case of 25 samples per class demonstrates the efficacy of the
proposed deep learning-based fusion framework in the case of a limited number of samples. Additionally,
the steady increase in the slope of the CResNet+AUX’s graph compared with the CResNet’s graph confirm
that the auxiliary training loss function provides robustness in the performance of the CResNet with
respect to the number of samples. Moreover, CResNet+AUX outperforms CResNet for all four cases,
which supports the advantage of the CResNet+AUX.
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Figure 10. Analysis of the classification OA w.r.t the number of training samples on the Houston 2018
dataset. We select 10, 25, 50, or 100 training samples per each class.

4.4. Sensitivity Analysis of OA with Respect to the Weights of Auxiliary Losses

As mentioned in Section 2.3, the general network training can benefit from considering auxiliary
losses from individual branches. Here, we analyzed the sensitivity of CResNet-AUX with respect to εi
in terms of OA. To test the effect of different {εi | i = a, b, c}, we compared the classification OA for the
Houston 2018 dataset by selecting εi in the range of {10−1, 10−2, 10−3, 10−4, 10−5}. In addition, the weights
of individual branches are set to be identical, since we assume that no prior knowledge of multi-sensor
inputs is available. Figure 11 shows that εi ≥ 10−4 is a confident region for the selection of εi. To this end,
we empirically used 10−4 in this paper.

Figure 11. Analysis of classification OA w.r.t the weights of auxiliary losses on Houston 2018 dataset.



Remote Sens. 2020, 12, 2067 18 of 21

4.5. Computational Cost

In addition to the classification accuracy, Table 8 reports the computational cost for the proposed
framework, where training and testing times were given in minutes and seconds, respectively.
All experiments were implemented on a workstation with 2 GeForce RTX 2080Ti graphical processing
units (GPUs), each with 12 GB memory.

Table 8. Computational time for three multi-sensor datasets. The bold refers to the best OA, AA, and
Kappa performance.

Houston 2013 HSI-ResNet LiDAR-ResNet EPs-HSI-ResNet EPs-LiDAR-ResNet CResNet CResNet-AUX

Train (min) 8.84 5.837 8.61 5.67 16.11 16.61
Test (s) 4.38 3.04 5.53 3.61 8.15 16.25

Trento HSI-ResNet LiDAR-ResNet EPs-HSI-ResNet EPs-LiDAR-ResNet CResNet CResNet-AUX

Train (min) 5.69 5.04 6.88 5.79 11.73 13.66
Test (s) 6.28 5.62 9.15 7.13 13.57 14.06

Houston 2018 HSI-ResNet LiDAR-ResNet RGB-ResNet CResNet CResNet-AUX

Train (min) 82.50 63.11 58.13 159.9 168.33
Test (s) 53.64 35.84 38.38 102.91 107.79

As shown in Table 8, CResNet consumes up to three times more processing time than the individual
branches since networks are simultaneously learning from multiple inputs. Compared to the sum of
individual branches reveals that the training of CResNet is more efficient and faster, saving up to 35% of
training time. However, this computational efficiency may slightly decrease through the application of
the auxiliary training strategy because the adjusted loss function can lead to additional computation cost.
As shown in Figures 10 and 12, by compromising the training time to some extent, the adjusted auxiliary
loss function leads to further accuracy improvement for all three datasets. Therefore, the additional
computational cost is justified for our proposed framework. More importantly, although the training
time may take up to several hours for the feeding forward of testing samples (measured in seconds), the
additional cost is negligible. To summarize, the auxiliary training design can improve general multi-sensor
fusion accuracy by adjusting the training time within affordable ranges.

Figure 12. Comparison of classification accuracy with and without auxiliary loss functions for three datasets.



Remote Sens. 2020, 12, 2067 19 of 21

5. Conclusions

In this paper, we presented the development of a novel multi-sensor data fusion framework, which is
capable of fusing heterogeneous data types either captured by different sensor systems (e.g., HSI, LiDAR,
RGB) or generated by feature extraction algorithms (e.g., extinction profiles). The designed coupled
residual neural networks with auxiliary training (i.e., CResNet-AUX) consists of highly modularized
residual blocks with identity mapping and an intelligent regularization strategy with adjusted auxiliary loss
functions. Extensive experiments were applied on three multi-sensor datasets (i.e., Houston 2013, Trento,
and Houston 2018) and based on classification accuracies the following outcomes have been achieved:

• The proposed CResNet fusion framework outperforms all the single sensor-based scenarios in the
experiments for all three datasets.

• Both CResNet and CResNet-AUX outperform the state-of-the-art methods for the Houston
2013 dataset.

• The auxiliary training function boosts the performance of CResNet for all the datasets even for the
case of limited training samples.

• The proposed CResNet fusion framework shows effective performance when the number of training
samples is limited, which is of great importance in the case of applying deep learning techniques for
remote sensing datasets.

• The experiments regarding the computational cost justifies the efficiency of the proposed algorithm
considering the achievements in the classification accuracies.

More importantly, the proposed CResNet-AUX is designed to be a fully automatic generalized
multi-sensor fusion framework, where the network architecture is largely independent from the input
data types and not limited to specific sensor systems. Our framework is applicable to a wide range of
multi-sensor datasets in an end-to-end, wall-to-wall manner.

Future works in developing intelligent and robust multi-sensor fusion methods may benefit from the
insights we have produced in this paper. In further research we propose to test the performance of our
framework on a large-scale application (continental and/or planetary) and include additional types of
remote sensing data.
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