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Abstract: Recently, deep learning methods based on three-dimensional (3-D) convolution have been
widely used in the hyperspectral image (HSI) classification tasks and shown good classification
performance. However, affected by the irregular distribution of various classes in HSI datasets, most
previous 3-D convolutional neural network (CNN)-based models require more training samples to
obtain better classification accuracies. In addition, as the network deepens, which leads to the spatial
resolution of feature maps gradually decreasing, much useful information may be lost during the
training process. Therefore, how to ensure efficient network training is key to the HSI classification
tasks. To address the issue mentioned above, in this paper, we proposed a 3-DCNN-based residual
group channel and space attention network (RGCSA) for HSI classification. Firstly, the proposed
bottom-up top-down attention structure with the residual connection can improve network training
efficiency by optimizing channel-wise and spatial-wise features throughout the whole training process.
Secondly, the proposed residual group channel-wise attention module can reduce the possibility of
losing useful information, and the novel spatial-wise attention module can extract context information
to strengthen the spatial features. Furthermore, our proposed RGCSA network only needs few
training samples to achieve higher classification accuracies than previous 3-D-CNN-based networks.
The experimental results on three commonly used HSI datasets demonstrate the superiority of
our proposed network based on the attention mechanism and the effectiveness of the proposed
channel-wise and spatial-wise attention modules for HSI classification. The code and configurations
are released at Github.com.

Keywords: hyperspectral image classification; convolutional neural network; attention mechanism;
channel-wise attention; spatial-wise attention

1. Introduction

With the rapid development of remote sensing hyperspectral imaging technology, hyperspectral
image has been studied and applied in more and more practical applications, including ocean
research [1], vegetation analysis [2], road detection [3], geological disaster detection [4], and
environmental analysis [5], etc. A hyperspectral image (HSI) contains abundant spectral and
spatial information, which makes the HSI supervised classification task a hot research topic in
the remote sensing analysis field. However, owing to the diversity of ground materials and the Hughes
phenomenon coming from the increasing number of spectral bands [6], how to make full use of and
extract the most discriminative features from spectral and spatial dimensions is a crucial issue in the
HSI classification task.

In the past, traditional machine learning (ML)-based HSI classification methods mainly contain
two steps, i.e., feature engineering and classifier training [7]. These methods usually focus on feature

Remote Sens. 2020, 12, 2035; doi:10.3390/rs12122035 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-6651-7921
https://orcid.org/0000-0001-9699-3040
http://dx.doi.org/10.3390/rs12122035
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/12/2035?type=check_update&version=2


Remote Sens. 2020, 12, 2035 2 of 27

selection and classifier design, which requires lots of manual design based on specific HSI data.
For example, [8] divided bands into several sets by the cluster method and selected useful bands to
construct tasks. Manifold ranking was introduced to eliminate the drawbacks of traditional salient
band selection methods [9]. In [10], the Markov random field (MRF) was used in combination with
band selection. However, inappropriate dimensionality reduction in the spectral domain from the
manual design may lead to the loss of much useful spectral information. Therefore, while adopting
SVM as the final classifier like [11], many papers also suggested to explore input data with more
spatial information in the feature engineering to improve the classification performance [12,13].
For instance, [14] developed a region kernel to measure the region-to-region distance similarity and
extract spectral-spatial combined features. A common problem among these methods is that traditional
ML-based methods usually cannot make full use of ground material feature expression due to the
difficulty in designing feature extraction methods. Therefore, traditional ML-based methods usually
cannot achieve a high classification performance.

In recent years, deep learning (DL) has shown a powerful ability to extract hierarchical and
nonlinear features, and DL methods based on the convolutional neural network (CNN) have been
widely used in HSI classification tasks. So far, many works based on CNN have demonstrated that
the end-to-end approach can reduce the possibility of the information loss during data preprocessing
and improve the classification accuracy by learning deep features. For example, a unified framework
combining CNN with a stacked autoencoder (SAE) was proposed to adaptively learn weight features
for each pixel by one-dimensional (1-D) convolutional layers [15,16]. In [17], SAE was also used to
capture the representative stacked features. However, the input data of these 1-D-CNN-based methods
must be flattened into 1-D vectors, which means that they cannot make full use of the spatial contextual
relationship between pixels from raw HSI data.

To solve the above problems, the two-dimensional convolution neural network (2-D-CNN) was
introduced to extract spectral and spatial features at the same time in many papers. For example, [18]
proposed a multiscale covariance maps (MCMs)-based feature extraction method, and combined it with
the 2-D-CNN model to integrate the spectral and spatial information. However, the proposed method
required specific hand-crafted feature extraction for different HSI datasets, which was difficult to design
precise and complete artificial features. Then, a contextual deep CNN was introduced in [19] to explore
local contextual interactions. It used 2-D-CNN to extract spectral and spatial information separately.
However, in these methods, when the network is deep, the rapid increase of network parameters will
cause these 2-D-CNN-based models to be difficult to train. It may cause a degradation problem and
finally lead to low classification accuracies. Therefore, residual connections were used to alleviate this
phenomenon. The authors of [20] adopted residual learning to optimize several convolutional layers
as the identity mapping, and constructed a very deep network to extract spectral and spatial features.
Since HSIs have both spectral and spatial information, [21] proposed an end-to-end spectral-spatial
residual network (SSRN), which consists of spectral and spatial residual blocks consecutively, to learn
spectral and spatial features, respectively. In addition, to obtain a lower training cost and parameter
scale, inspired by the densely connected convolutional network [22], an end-to-end spectral-spatial
dual-channel dense network (SSDC-DenseNet) was proposed to reduce the model scale and explore
high-level features [23]. Due to the densely connected structure, each layer will accept feature maps
from all previous layers as its additional input data. Though these HSI classification methods based on
2-D-CNN could utilize the spatial context information, they separated spectral-spatial joint features
into two independent learning parts. Since HSI is a 3-D data cube, it means that these methods neglect
the close correlations between spectral information and spatial information.

Therefore, some three-dimensional convolution neural networks (3-D CNNs) models were
proposed to learn spectral-spatial joint features directly from raw HSI data. With the help of residual
connections, [24] constructed a three-dimensional residual network (3-D-ResNet) to improve the
classification performance. The experimental results demonstrated that 3-D-ResNet could mitigate
the declining accuracy effect and achieved promising classification performance with few training
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samples. The authors of [25] further studied 3-D CNNs to extract spectral-spatial combined features
by using input cubes of HSIs with a smaller spatial size. Based on 3-D CNN and the densely connected
convolutional network [23], [26] proposed the three-dimensional densely connected convolutional
network (3-D-DenseNet) for HSI classification. The network could become very deep and extract more
representative spectral-spatial combined features. To further reduce the training time, [27] proposed
an end-to-end fast dense spectral-spatial convolution (FDSSC) by using a dynamic learning rate and
parametric rectified linear units. To reduce the number of the parameters and solve the imbalance of
classes, [28] used 3-D-ResNeXt and the label smoothing strategy to simultaneously extract spectral
and spatial features, and achieved obvious classification performance improvement. To extract the
spectral-spatial features of different scales, [29] designed a multiscale octave 3-D CNN with channel
and spatial attention (CSA-MSO3-DCNN). 3-D-CNN convolution kernels of different sizes could
capture diverse features of HSI data. These 3-D-CNN-based methods can indeed make full use of the
original characteristics of raw HSI data and the correlation between spectral and spatial information.
Furthermore, the graph convolutional network [30] was applied to alleviate the deficient labeled
samples in [31]. The spatial information was added into the approximate convolutional operation on
the graph signal. So, the features obtained by the graph convolutional network made full use of both
the adjacency nodes in the graph and neighbor pixels in the spatial domain. However, the features
processed by the convolutional layers may contain much useless or disturbing information. If these
useless features are sent directly to the next layer without any process, as the network is going deeper,
the learning efficiency of the network will be lower, and will finally affect the classification performance.
Therefore, how to deal with the feature maps after convolutional layers and pay more attention on
those features with a large amount of useful information is another key for HSI classification tasks.

Recently, many classical and effective computer vision methods have been embedded in CNN
to improve the performance of DL models. Among them, the CNN model fused with the attention
mechanism delivers promising outcomes in improving HSI classification performance. The goal of
the attention mechanism is to focus on salient features or regions with a large amount of information.
Through a series of weight coefficients, the CNN model with the attention mechanism could improve
the quality of feature maps after convolutional layers. For example, to extract more discriminative
spectral and spatial features, [32] combined FDSSC [27] and the convolutional block attention module
(CBAM) [33], and proposed a double-branch multi-attention mechanism network (DBMA) for HSI
classification, which consists of two parallel branches using channel-wise and spatial-wise attention
separately. The experimental results demonstrated the effectiveness of channel-wise and spatial-wise
attention. However, the parallel branching method did not take the correlation between spectral and
spatial information into consideration, so DBMA did not obtain a satisfactory classification accuracy.
In order to introduce global spatial information and solve the locality of the convolution operation,
the self-attention mechanism [34] was introduced to construct the non-local neural network. In [35],
this attention module was attached to the spectral-spatial attention network (SSAN). This attention
module, which only focuses on spatial information, cannot globally optimize feature maps processed
by convolutional layers. The authors of [36] adopted the squeeze-and-excitation network (SENet) [37]
to adaptively recalibrate channel feature responses by explicitly modelling interdependencies between
channels. In addition, [38] also constructed a spatial-spectral squeeze-and-excitation (SSSE) module
based on SENet. There was a problem that the channel features processed by the SSSE module
contain much redundant information, which may affect the classification performance. To generate
high-quality samples containing a complex spatial-spectral distribution, [39] proposed a symmetric
convolutional GAN based on collaborative learning and the attention mechanism (CA-GAN). The
joint spatial-spectral attention module could emphasize more discriminative features and suppress
less useful ones. However, although these methods based on the attention mechanism can play a role
in optimizing features, they all have limitations: For one thing, the network can only be optimized in a
specific spectral or spatial dimension; for another thing, as the network deepens, the channel attention
module may lose much useful information because the optimization is operated on the whole channels.
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Our motivation was to construct a 3-DCNN-based network using an efficient attention module
to solve the problem mentioned above. Inspired by the principle of SENet [37] and the bottom-up
top-down structure that has been applied to image segmentation [40], we proposed a 3-DCNN-based
residual group channel and space attention network (RGCSA) for HSI classification (The code and
configurations are released at https://github.com/Lemon362/RGCSA-master). The framework consists
of several building blocks with the same topology. Each block contains a convolutional layer for
learning features, a residual group channel-wise attention module, and a residual spatial-wise attention
module. According to the principle of bottom-up top-down, we unified the channel attention module
and space attention module into the same structure, but their implementation methods of up-sampling
are different. To optimize features in the channel dimension to the greatest extent and reduce the loss
of useful information, we introduced the principle of grouping into the channel-wise attention module
to realize the group channel attention mechanism. Compared with 3-D-ResNeXt [28], we only need
fewer training samples to achieve a better classification accuracy by using the attention mechanism.
When compared with DBMA [32] and SSAN [35], our network has fully optimized the feature maps
processed by each convolutional layer in the channel dimension and spatial dimension, and shows an
effective improvement for HSI classification.

In short, the three major contributions of this paper are listed as follows:

1. Combining the bottom-up top-down attention structure with the residual connection, we
constructed residual channel and space attention modules without any additional manual
design, and proposed a 3-DCNN-based residual group channel and space attention network
(RGCSA) for HSI classification. On the one hand, residual connection can accelerate the flow of
information, making the network better training. On the other hand, the structure of channel-wise
attention first and then spatial-wise attention could strengthen important information and weaken
unimportant information during the training process, and compared to the previous methods,
RGCSA can achieve a higher HSI classification accuracy with fewer training samples.

2. We applied the principle of group convolution to the channel attention structure to construct a
residual group channel attention module, which aims to emphasize each piece of useful channel
information. Compared with the previous channel attention methods, it can reduce the possibility
of losing useful channel information during attention optimization.

3. We proposed a novel spatial-wise attention module, which utilized transposed convolution as
an up-sampling method. It ensures the mapping relationship of spatial pixels in the attention
optimization process, and makes full use of context information to optimize the features in the
spatial dimension to focus on the most informative areas.

The remaining sections of this paper are organized as follows. Section 2 illustrates the related work
about our proposed network for HSI classifications. Section 3 presents a detailed network configuration
of the overall framework and individual modules. Then, Section 4 illustrates experimental datasets
and the parameter setting, and then shows the experimental results and analyses. Finally, in Section 5,
we summarize some conclusions and introduce future work.

2. Related Work

In this section, we first introduce the proposed end-to-end pixel-level HSI classification framework
and some basic knowledge, including ResNeXt and SeNet, and then introduce the architecture of our
proposed residual group channel and space attention mechanism in detail.

2.1. Pixel-Level HSI Classification Framework

The proposed end-to-end pixel-level HSI classification architecture explores spectral-spatial
combined information by 3-D-CNN, which can make full use of the close correlation between these
two dimensions. To fully utilize the whole spatial information, we adopted zero padding in the four
directions of the spatial dimension of the raw HSI data. Therefore, the raw HSI data cube is converted
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into X ∈ Rw×w×b, where w represents the spatial width and height, and b represents the number of
spectral bands. In this framework, all available labeled data are divided into three groups: Training
dataset, validation dataset, and testing dataset for each HSI dataset. Firstly, the network is fed into a
small batch of data to train the model for hundreds of epochs. During the training process, the label
smoothing strategy is used in the cross-entropy loss function to alleviate the problem of the imbalance
of classes. Then, at the same time, the validation dataset monitors the whole training process by
computing the classification accuracy every few epochs; in this way, the network can choose the best
model with the highest accuracy. Finally, the testing dataset is adopted to evaluate the classification
performance of proposed network.

2.2. Three-Dimensional ResNeXt Network

In the HSI classification task, in order to mitigate the decreasing-accuracy phenomenon and
reduce the huge number of parameters caused by 3-D-CNN, 3-D-ResNeXt was first proposed in [28]
and achieved high classification accuracy.

As shown in Figure 1, with the growing number of hyperparameters (width, filter sizes, strides,
etc.), 3-D-CNN will lead to a dramatic increase in computational cost, especially when there are multiple
layers. Therefore, with the split-transform-merge strategy, [41] split the CNN layer of ResNet into
several groups, so that each feature learning process was performed in a low-dimensional embedding,
and each output feature map was aggregated by summation performing in a high-dimensional
embedding. From Figure 1, we can find that the ResNeXt with cardinality = 8 has roughly the same
complexity as the ResNet. This operation makes it possible to reduce the number of parameters to a
large extent when building a deep network through 3-D convolutional layers. Therefore, 3-D-ResNeXt
is a suitable choice in the HSI classification networks based on 3-D-CNN.

Figure 1. A block of ResNet (Left) and ResNeXt with cardinality = 8 (Right). A layer is shown as (# in
channels, filter size, # out channels).

However, there is a problem with the 3-D-ResNeXt network proposed in [28] that 3-D-ResNeXt
could not optimize the output feature maps of each convolutional layer during the training process.
It may cause lots of useless information to be sent to the next layer, which seriously affects the
efficiency of network training. Therefore, in this paper, on the basis of using 3-D-ResNeXt to extract
spectral-spatial features, we will pay more attention on how to optimize the feature maps extracted by
3-D-ResNeXt in the channel dimension and spatial dimension by the attention mechanism.
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2.3. Squeeze-and-Excitation Network

As we all know, the convolution operation is the core of convolutional neural networks (CNNs),
which enables networks to extract informative features from different dimensions. Now, many
researchers focus on how to strengthen the representational power of a CNN, and [37] proposed a novel
architectural unit focusing on the channel relationship, named the squeeze-and-excitation (SE) block.

The structure of the SE block is shown in Figure 2. The SE block consists of a global pooling
layer, two fully connected (FC) layers, and two activation function layers (one is ReLU, and the
other is Sigmoid). The principle of the SE block is to enhance the important features and weaken the
unimportant features by controlling the weight coefficient of each channel. First, the global average
pooling (GAP) layer implements the squeeze process. To take advantage of the correlation of channels,
GAP averages the spatial dimension of feature maps with a size of H ×W ×C (H and W represent the
two dimensions in space, and C represents the number of channels) to form 1× 1×C feature maps,
which can shield the spatial distribution information and integrate global spatial information to obtain
the importance of the feature channel. Then, the excitation process contains two FC layers. The first FC
layer is used to compress C channels into C/r channels and the second one restores the compressed
feature map to the original size of 1 × 1 × C. Finally, by multiplying the weight coefficients limited
by Sigmoid to the [0, 1] range with the original output feature maps, it can be ensured that the input
features of the next layer are optimal in the channel-wise dimension.

Figure 2. The structure of the SE block inserted into the ResNet.

2.4. Proposed Attention Mechanism

In general, the purpose of the attention mechanism is to strengthen important information and
weaken unimportant information by certain methods. Inspired by the principle of SENet [36], we used
the bottom-up top-down structure to construct the attention mechanism based on CNN. Our proposed
channel-wise and spatial-wise attention modules have the same architecture, but the implementation
methods of up-sampling are different. In addition, due to the superposition of attention modules, the
network becomes deeper and some feature maps may be weakened, which may destroy the original
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features of input and result in a declining accuracy effect. Therefore, to alleviate this problem, we also
introduced the residual connection to the attention module to form the residual attention module.

The basic structure of the proposed residual attention module is shown in Figure 3. The whole
residual attention module consists of two parts: One is the attention module and the other is the
residual connection part. In the attention module, the down-sampling layer compresses the features
extracted by 3-D-CNN in the corresponding dimension to learn the compact features. Then, these
feature maps are sent to the up-sampling layer to restore the original size by some methods. It ensures
that the subsequent calibration feature process can accurately assign the weight coefficient to the
corresponding position. Finally, the Sigmoid function is used to limit the optimized feature attention
maps to [0, 1] to obtain the weight coefficient corresponding to each position. The coefficients tending
to 0 indicate that the amount of information at this position is small, while those tending to 1 show
that this position has more important information. Therefore, we only need to multiply the output
with the feature maps from 3-D-CNN to rescale the final output of the attention module. In this way,
these weights are assigned to each feature map to achieve adaptively recalibrating features. With the
superposition of attention modules, more important features can be strengthened and become clearer
while unimportant features will be gradually weakened to 0 so as not to affect the network training
process. Furthermore, to allow this attention module to be inserted into deep networks, we add
the residual connection and an extra convolutional layer to prevent the original features from being
destroyed and accelerate the flow of information.

Figure 3. The basic structure of the proposed residual attention module.

In our proposed RGCSA, the network has two attention modules based on the above residual
attention structure: Residual group channel-wise attention module (RGCA) and residual spatial-wise
attention (RSA) module. These two attention modules are all based on CNN operation and the
bottom-up top-down attention structure. The specific implementation details of the attention module
will be presented in the following paragraphs.

2.4.1. Residual Group Channel-Wise Attention Module

The channel-wise attention module mainly refines the channel weights of the feature maps. Since
each channel of the feature maps is considered as a feature detector, channel attention focuses on the
meaningful channels and decreases the meaningless channels. Figure 4 shows the structure of the
proposed residual group channel-wise attention (RGCA), which consists of G residual channel-wise
attention (RCA) blocks, where G is the number of groups. Therefore, we will give a detailed introduction
to the structure of the RCA block.

In our proposed residual channel-wise attention (RCA) module, which is shown in Figure 5, we
first use global average pooling (GAP) and reshape the operation to shield the information of the
spectral and spatial dimensions to obtain feature maps with a size of 1× 1× 1, C, where C represents
the number of channels. Then, the feature tensors are sent to a 1× 1× 1, C/r 3-D convolutional layer
instead of fully connected layer to reduce the channel dimensionality and extract abstract features
with more important information. After convolution operation, the number of channels becomes C/r,
where r is a reduction ratio. Then, a ReLU layer is used to strengthen the nonlinear relationship of
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channel responses. Next is the up-sampling process. Here, we still use a 1× 1× 1, C 3-D convolutional
layer to increase the channel dimension and finally generate C feature maps. As mentioned above, a
Sigmoid function is applied to limit the range of features, and the output is multiplied with the feature
maps from 3-D-CNN to obtain the channel-refined features.

Figure 4. The structure of the residual group channel-wise attention (RGCA) module.

Figure 5. The structure of the residual channel-wise attention (RCA) module.

In addition, if we directly optimize the whole channel, as the network deepens, the weight
coefficients of some originally useful channel features may decrease, so that this part of important
information is lost. Therefore, we introduce the principle of group convolution of 3-D-ResNeXt to
the RCA module to construct the final residual group channel-wise attention (RGCA) module. From
Figure 4, we can see that the feature maps are divided into G groups, and then sent to each RCA
module respectively. In this way, we can ensure that each channel of the feature maps in the deep
network is rescaled to the optimal value, and reduce the possibility that useful features may be lost
during the optimization process.

The residual group channel-wise attention module is added after the 3-D-CNN layer of
3-D-ResNeXt but before the summation operation for residual connection, which is shown on the left
side of Figure 6. In this paper, to simplify the complexity of the network module design, we set the
group number G of RGCA to the same value as the parameter cardinality of 3-D-ResNeXt. In this way,
we can conveniently and effectively combine the grouping operation of RGCA with 3-D-ResNeXt to
form the structure on the right side of Figure 6, which greatly simplifies the complexity of the network.
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Figure 6. The structure of the residual group channel-wise attention (RGCA) module before
simplification (left) and after simplification (right).

2.4.2. Residual Spatial-Wise Attention Module

Compared with the channel-wise attention module, the spatial-wise attention pays attention
to the informative region of the spatial dimension. To optimize the spatial features, we proposed a
novel spatial attention module, and the structure of the proposed residual spatial-wise attention (RSA)
module is shown in Figure 7.

Figure 7. The structure of the residual spatial-wise attention (RSA) module.

In the residual spatial-wise attention (RSA) module, we also use 3-D-CNN with stride = (2, 2, 1)
as the down-sampling layer to reduce the spatial dimension of features while keeping the spectral
dimension unchanged. After two down-sampling layers, we obtain the feature maps containing
important spatial information. Then, we introduce a novel way (transposed convolution) to restore
the original size. Transposed convolution is a special kind of forward convolution: First, the size of
the input feature map is expanded by zero-filling operation according to a certain ratio; then, the
convolution kernel is rotated by 180◦, which is equivalent to transposing the convolution kernel matrix;
finally, the normal convolution operation is performed by this new convolution kernel. Transposed
convolution can maintain the mapping relationship of spatial positions before and after operation
when restoring the size, which is important for the subsequent weight optimization process.

Inspired by the structure of CBAM [33], the residual spatial-wise attention module is added after
the residual group channel-wise attention module to form an optimized structure of the channel first
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and space second. Additionally, the experiment proves that this sequential attention mechanism can
obtain a higher classification accuracy with fewer training samples than 3-D-ResNeXt.

3. Network Configuration and Experimental Setup

In this section, taking the Indian Pines (IN) dataset as an example, we give an introduction of
the overall framework and present the network configuration of each module and experiment setup
in detail.

3.1. Overall Framework of the Proposed Network

Figure 8 shows the network structure of the proposed residual group channel and space attention
(RGCSA) network. In Figure 8, we take the Indian Pines (IN) dataset with 16× 16 patch as the input to
illustrate the size of the feature maps used in our network. It consists of three major modules: The
first is the initialization module, which is used to initially reduce the spectrum dimension by a 3-D
convolutional layer; the second is the residual group channel and space attention module; and the
third is the classification module.

Figure 8. Overall HSI classification structure of the proposed residual group channel and space attention
(RGCSA) network.

The residual group channel and space attention module contains four of the same building
blocks, whose filters numbers are {64, 128, 256, 512}, respectively. We use 3-D-ResNeXt to extract
the spectral-spatial features, and insert the proposed RGCSA into the 3-D-ResNeXt to optimize the
features. In addition, in block 4, we did not use the residual spatial-wise attention module because
the spatial dimension in block 4 is too small to perform a good dimensionality reduction operation.
In short, the features of the first three modules are optimized by RGCSA and the last module only
contains RGCA. In the classification module, we use the global average pooling (GAP) layer to replace
the fully connected layer (FC) to greatly reduce the number of parameters and improve the network
training efficiency. Furthermore, we also introduced the label smoothing strategy proposed in [28] to
solve the imbalance of classes.
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Next, we will introduce the specific network configuration of each module.

3.2. Network Configuration of the Proposed Network

First, we introduce the network configuration of the overall RGCSA, and the network
configurations and parameter settings of the RGCA and RCA module are introduced later. Taking the
IN dataset as an example, the detailed network parameter setting of the proposed RGCSA network for
three HSI datasets is shown in Table 1.

Table 1. The network configuration of the proposed RGCSA network.

Layer Output Size RGCSA Connected to

Input 16× 16× 200

CONVBN 16× 16× 100, 32 3× 3× 7, 32 conv
s = (1, 1, 2) Input

Block1 16× 16× 100, 64 3× 3× 3, 64 conv
same CONVBN

Block2 8× 8× 50, 128 3× 3× 3, 128 conv
s = (2, 2, 2) Block1

Block3 4× 4× 25, 256 3× 3× 3, 256 conv
s = (2, 2, 2) Block2

Block4 2× 2× 13, 512 3× 3× 3, 512 conv
s = (2, 2, 2) Block3

GAP 512 Block4
Dense (SoftMax) 16 16 GAP

Here, taking block 1 as an example, Figure 9 shows the structure of the building block. First, the
1× 1× 1 convolutional layer changes the dimensionality of the feature channel. Then, the input tensor
is transformed to G groups through the splitting operation. These feature maps of each group are sent
to the 3-D-CNN layer with 3 × 3 × 3 convolutional kernel to extract spectral-spatial features. Then,
the RGCA is used to focus on the important channel features of each group, which are aggregated
into a high-dimensional feature vector again through a concatenate layer. The feature maps optimized
by RGCA are fed into RSA to pay attention to the spatial dimension to strengthen the important
information region and weaken unimportant region information. Finally, the residual connection
allows the original input features to be fused with the processed features at the same size.
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Figure 9. General structure of the building block in RGCSA (taking block 1 as an example).

3.2.1. Network Configuration of the Residual Group Channel-Wise Attention Module

Since RGCA consists of G group RCA, according to the structure of RCA shown in Figure 5,
we only select one group to introduce the network configuration of the residual channel-wise attention
module which is shown in Table 2. First of all, followed by the 3-D-CNN layer of 3-D-ResNeXt,
a convolutional layer with a size of 3× 3× 3, 8 and the ‘same’ padding method is used to further extract
abstract features. After the first ReLU activation layer, feature maps with the shape of 16× 16× 100, 8
are obtained. Then, the global average pooling layer and reshape operation are used to flatten the
spectral and spatial dimensions to obtain 1× 1× 1, 8 feature maps. Setting the reduction ratio r = 4,
1× 1× 1, 2 3-D-CNN is used to reduce the number of channels. To perform the up-sampling operation,
feature maps are processed by 1 × 1 × 1, 8 3-D-CNN again. Finally, the optimized feature vectors
ranging from 0 to 1 are multiplied by the features processed by 3× 3× 3, 8 3-D-CNN, and the residual
connection is used to add the original input from 3-D-ResNeXt and these optimized features. After
the channel attention module, the important channel is highlighted while the unimportant channel
is suppressed.
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Table 2. The network configuration of the residual group channel-wise attention (RGCA) module.

Layer Output Size RGCA Connected to

CONV3D 16× 16× 100, 8 Group1

CONVBN 16× 16× 100, 8 3× 3× 3, 8 conv
same CONV3D

ReLU1 16× 16× 100, 8 CONVBN
GAP (Reshape) 1× 1× 1, 8 ReLU1

CONV3D 1× 1× 1, 2 1× 1× 1, 2 GAP
ReLU2 1× 1× 1, 2 CONV3D

CONV3D 1× 1× 1, 8 1× 1× 1, 8 ReLU2
Sigmoid 1× 1× 1, 8 CONV3D
Multiply 16× 16× 100, 8 Sigmoid, ReLU1

Add 16× 16× 100, 8 Multiply, CONV3D

3.2.2. Network Configuration of the Residual Spatial-Wise Attention Module

The network configuration of the residual spatial-wise attention module in block 1 is described in
Table 3. First, like the residual channel-wise attention module, we use 3× 3× 1, 64 3D-CNN with the
‘same’ padding method to learn spatial features while keeping the spectral dimension unchanged. Then,
two convolutional layers with a size of 3× 3× 1, stride = (2, 2, 1), and {64, 128} filters, respectively,
are used to focus on the important spatial information and reduce the spatial dimension. Then, two
3× 3× 1, 64 transposed convolutional layers with stride = (2, 2, 1) realize the up-sampling operation.
Finally, the layer implement optimization and fusion operations are multiplied and added, respectively.
In addition, in block 3 of the RGCSA network, since the feature dimension becomes 4 × 4 × 25, we
set the size of 3-D-CNN, which is used to focus on the important spatial information, to 1 × 1 × 1.
Additionally, in block 4, we do not add this residual spatial-wise attention module to optimize the
spatial information.

Table 3. The network configuration of the residual spatial-wise attention (RSA) module.

Layer Output Size RSA Connected to

BN 16× 16× 100, 64 Concat

CONVBN 16× 16× 100, 64 3× 3× 1, 64 conv
same BN

ReLU1 16× 16× 100, 64 CONVBN

CONV3D 8× 8× 100, 64 3× 3× 1, 64 conv
s = (2, 2, 1) ReLU1

ReLU2 8× 8× 100, 64 CONV3D

CONV3D 4× 4× 100, 128 3× 3× 1, 128 conv
s = (2, 2, 1) ReLU2

ReLU3 4× 4× 100, 128 CONV3D

Transposed Conv 8× 8× 100, 64 3× 3× 1, 64 conv
s = (2, 2, 1) ReLU3

ReLU4 8× 8× 100, 64 Transposed Conv

Transposed Conv 16× 16× 100, 64 3× 3× 1, 64 conv
s = (2, 2, 1) ReLU4

Sigmoid 16× 16× 100, 64 Transposed Conv
Multiply 16× 16× 100, 64 Sigmoid, ReLU1

Add 16× 16× 100, 64 Multiply, BN

3.3. Experimental Setup

We tested the factors that affect the HSI classification performance of the proposed network (i.e.,
the ratios of the training, validation, and test datasets for different HSI datasets, and the number of
groups G), and the experimental results compared with several widely used methods are illustrated in
Section 4. Finally, the most suitable ratios were 3 : 1 : 6 for the Indian Pines (IN) dataset, and 2 : 1 : 7
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for the Pavia University (UP) and Kennedy Space Center (KSC) datasets. The number of groups G
in RGCA was 8, and the reduction ratio r of RCA was 4. RMSProp was adopted as the optimizer to
minimize the cross-entropy loss function. The initial learning rate was set to 0.0003. All the training
and testing results were obtained on the same computer, with the configuration of 32GB of memory,
NVIDIA GeForce GTX 1070 8GB, and Intel i7 7820HK.

4. Experiments and Results

In this section, we first introduce three HSI datasets used in this paper, i.e., the Indian Pines
(IN) dataset, the Pavia University (UP) dataset, and the Kennedy Space Center (KSC) dataset. Then,
we discuss the two main factors affecting the classification performance. Finally, we compare the
proposed RGCSA network with several representative HSI classification models, which are introduced
in Section 1, i.e., SVM [11], SSRN [21], 3-D-ResNeXt [28], DBMA [32], and SSAN [35]. The overall
accuracy (OA), average accuracy (AA), and kappa coefficient (Kappa) are used as the indicators to
measure HSI classification performance. OA refers to the ratio of the number of correct classifications
to the total number of HSI pixels in the test datasets. AA refers to the average accuracy of all classes.
The kappa coefficient is an indicator used for the consistency test between the classification results
and ground truth, and it can also be used to measure the classification accuracy. In short, the higher
values of these three indicators represent the better classification results. Let M ∈ RN×N represent the
confusion matrix of classification results, where N is the number of land-cover categories. According
to [35], the values of OA, AA, and kappa can be calculated as follows:

OA = sum(diag(M))/sum(M), (1)

AA = mean(diag(M))/sum(M, 2), (2)

Kappa =
OA− (sum(M, 1) × sum(M, 2))/(sum(M))2

1− (sum(M, 1) × sum(M, 2))/(sum(M))2 , (3)

where diag(M) ∈ RN×1 is a vector of the diagonal elements of M, sum(·) ∈ R1 represents the sum
of all elements of the matrix, sum(·, 1) ∈ R1×N represents the sum of elements in each column
sum(·, 2) ∈ RN×1 represents the sum of elements in each row, mean(·) ∈ R1 represents the mean of all
elements, and ./ represents the elementwise division.

To obtain a statistical evaluation, we repeated each experiment 5 times, and calculated the mean
value as the final result.

4.1. Experimental Datasets

We used three available commonly used HSI datasets [42] in our experiment to evaluate the
classification performance of the proposed RGCSA model.

The Indian Pines (IN) dataset [20] was collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) in 1992 from Northwest Indiana. It contains 16 classes with the size of
145× 145 pixels and a spatial resolution of 20 m by pixel. There are 220 bands in the wavelength range
of 0.4 to 2.5 um. Since 20 bands are corrupted by water absorption effects; the remaining 200 bands can
be adopted for HSI experiments.

The Pavia University (UP) dataset [20], gathered by Reflective Optics System Imaging Spectrometer
(ROSIS) in 2001 in the Pavia region of northern Italy, has 610× 340 pixels with a resolution of 1.3 m by
pixel, and contains 9 vegetation classes. Since 12 bands with strong noise and water vapor absorption
were removed, 103 bands ranging from 0.43 to 0.86 um were adopted for analysis.

The Kennedy Space Center (KSC) [43] was firstly acquired by AVIRIS in 1996 in the Kennedy
Space Center, containing 224 bands with center wavelengths in the range of 0.4 to 2.5 um. The
image has 512× 614 pixels with a spatial resolution of 18 m and 13 types of geographic objects. Since
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water absorption and low signal-to-noise ratio (SNR) bands were removed, 176 bands were adopted
for analysis.

Tables 4–6 list the total number of samples of each class in each dataset and the number of
training, validation, and test samples of three datasets under the optimal ratios, which obtained the
best classification performance, i.e., 3 : 1 : 6 for the IN dataset, and 2 : 1 : 7 for the UP and KSC datasets.

Table 4. The number of training, validation, test, and total samples in the IN dataset.

No. Class Train Val Test Total Samples

1 Alfalfa 14 1 31 46
2 Corn-notill 429 131 868 1428
3 Corn-mintill 249 83 498 830
4 Corn 72 22 143 237
5 Grass-pasture 145 42 296 483
6 Grass-trees 220 69 441 730
7 Grass-pasture-mowed 9 3 16 28
8 Hay-windrowed 144 55 279 478
9 Oats 6 4 10 20

10 Soybean-notill 292 94 586 972
11 Soybean-mintill 737 264 1454 2455
12 Soybean-clean 178 56 359 593
13 Wheat 62 26 117 205
14 Woods 380 136 749 1265
15 Buildings-Grass-Trees-Drives 116 34 236 386
16 Stone-Steel-Towers 28 5 60 93

Total 3081 1025 6143 10,249

Table 5. The number of training, validation, test, and total samples in the UP dataset.

No. Class Train Val Test Total Samples

1 Asphalt 1327 670 4634 6631
2 Meadows 3730 1810 13,109 18,649
3 Gravel 420 241 1438 2099
4 Trees 613 333 2118 3064
5 Painted metal sheets 269 134 942 1345
6 Bare Soil 1006 500 3523 5029
7 Bitumen 266 133 931 1330
8 Self-Blocking Bricks 737 363 2582 3682
9 Shadows 190 97 660 947

Total 8558 4281 29,937 42,776
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Table 6. The number of training, validation, test, and total samples in the KSC dataset.

No. Class Train Val Test Total Samples

1 Scrub 153 78 530 761
2 Willow swamp 49 29 165 243
3 CP hammock 52 28 176 256
4 Slash pine 51 31 170 252
5 Oak/Broadleaf 33 18 110 161
6 Hardwood 46 22 161 229
7 Swamp 21 4 80 105
8 Graminoid marsh 87 45 299 431
9 Spartina marsh 104 39 377 520
10 Cattail marsh 81 40 283 404
11 Salt marsh 84 39 296 419
12 Mud flats 101 61 341 503
13 Water 186 87 654 927

Total 1048 521 3642 5211

4.2. Experimental Parameter Discussion

We focused on two main factors that affect the classification performance of our proposed network,
i.e., the ratio of the training dataset, and the number of groups G of the residual group channel-wise
attention (RGCA) module. Finally, according to the results of experiments, the ratios of the training,
validation, and test datasets for the IN, UP, and KSC datasets are {3 : 1 : 6, 2 : 1 : 7, 2 : 1 : 7}, respectively.
Additionally, we set the number of groups of RGCA for three datasets to 8. Furthermore, the spatial
input size of the network was constantly set to 16× 16 for all experiments.

4.2.1. Effect of Different Ratios of the Training, Validation, and Test Datasets

According to the experiment of the effect with different ratios of training samples in [28], we also
divided the HSI datasets into four different rations (2 : 1 : 7, 3 : 1 : 6, 4 : 1 : 5, 5 : 1 : 4), and tested the
impact of different numbers of training samples on our proposed model. To obtain accurate results
with different training samples, we set the epochs of different ratios to {100, 100, 60, 60}, respectively.
At the same time, the number of groups G was 8. Finally, the training time, test time, and results of the
three indicators (i.e., OA, AA, and kappa) with different ratios of the proposed model for three HSI
datasets are list in Tables 7–9.

Table 7. Training time, test time, and OA under different ratios on the IN dataset by the proposed method.

Ratios Training Time (s) Test Time (s) OA (%) AA (%) Kappa × 100

2:1:7 10,861.78 99.90 99.52 99.22 99.53
3:1:6 15,769.93 85.99 99.87 99.88 99.85
4:1:5 12,320.78 72.52 99.86 99.77 99.84
5:1:4 15,138.30 59.03 99.86 99.74 99.82

Table 8. Training time, test time, and OA under different ratios on the UP dataset by the
proposed method.

Ratios Training Time (s) Test Time (s) OA (%) AA (%) Kappa × 100

2:1:7 25,837.94 235.55 100.0 99.99 99.99
3:1:6 37,310.21 205.73 99.97 99.98 99.96
4:1:5 29,345.04 171.84 99.98 99.97 99.97
5:1:4 36,296.38 135.85 99.98 99.98 99.98
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Table 9. Training time, test time, and OA under different ratios on the KSC dataset by the
proposed method.

Ratios Training Time (s) Test Time (s) OA (%) AA (%) Kappa × 100

2:1:7 5142.95 47.34 100.0 100.0 100.0
3:1:6 7292.39 39.70 100.0 99.99 99.98
4:1:5 5779.27 33.82 99.98 99.98 99.99
5:1:4 7094.23 28.22 99.99 99.98 99.98

From Tables 7–9, we can find that in general, only with few training samples can our proposed
network obtain high OA indicators in all three HSI datasets. Specifically, for the IN dataset, when
the ratio changed from 2 : 1 : 7 to 3 : 1 : 6, the OA indicator showed a clear and large increasing
trend from 99.52% to 99.87%, and in contrast, the training time increased less. When the number of
training samples further increased, as the epochs of the training process were reduced from 100 to
60, the OA decreased slightly. Therefore, we chose the ratio of 3 : 1 : 6 for the IN dataset. For the
UP and KSC datasets, with the increasing number of training samples, the training time rose rapidly,
whereas the accuracy decreased a little because of the epoch decreasing. Especially for the UP dataset,
when the ratio was 2 : 1 : 7, it had taken a long time to train the model. Additionally, when the
ratio changed to 3 : 1 : 6, the training time showed a dramatic jump from 25,837.94 s to 37,310.21 s,
which nearly doubled. Additionally, with the further increase of the ratio, the corresponding training
times were all longer than 2 : 1 : 7. While for the KSC dataset, since it has fewer samples than the
other two datasets, the training times of the different ratios were all lower, and when the ratio was
2 : 1 : 7, the proposed model had already classified the KSC categories with a classification accuracy
OA close to 100%. Therefore, for the UP and KSC datasets, we chose 2 : 1 : 7 as the most suitable
ratios. Furthermore, compared with the previous methods, our proposed network reached the highest
classification accuracy; the detailed results will be shown later.

In addition, we may notice that the training time and training samples did not show a linear
growth relationship. The reason is that the epochs of the four ratios were different, as mentioned
above. Considering that when the ratio is 2 : 1 : 7 or 3 : 1 : 6, the number of the training samples is
small, we therefore increased the epochs of 2 : 1 : 7 and 3 : 1 : 6 to 100 epochs to obtain the best results.
While when the ratio came to 4 : 1 : 5 or 5 : 1 : 4, more training samples in each epoch could make the
network achieve a high classification performance with fewer epochs.

4.2.2. Effect of the Number of Groups

In the proposed RGCSA network, in order to better optimize the channels, we divided the channels
to G groups and then used RCA module for each group, and finally merged the optimized channels of
each group. Therefore, the number of groups is the other key factor for our proposed network. At the
same time, since we utilized 3-D-ResNeXt to extract spectral-spatial features, for the convenience of
the experiment, we set the cardinality (i.e., the size of the set of transformations) and G to the same
value. We evaluated the classification performance of the proposed RGCSA network with different
numbers of groups G and the results are shown in Table 10. In this experiment, we set the spatial input
size to 16× 16, and the ratio to 3 : 1 : 6 for the IN dataset and 2 : 1 : 7 for the UP and KSC datasets.

From the table, we can find that as the number of groups G increases, the number of parameters
and training time all gradually increase, while the OA indicators for the three HSI datasets fluctuate a
little. It means that the reasonable division of the number channel groups is key to the influence on the
classification performance of the network. If the number of groups G is small, some channels may not
be optimized, and even some useful channel information may be gradually discarded due to the deep
network. If G is too large, each group has fewer channels to be optimized, and the network cannot
accurately extract useful channel information. Finally, we chose the number of groups G = 8 for three
HSI datasets.
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Table 10. Params, training time, test time, and OA for different numbers of groups G on the IN, UP,
and KSC datasets.

Datasets G Params Training Time (s) Test Time (s) OA (%)

IN
6 2,974,912 11,923.85 64.96 99.54
8 4,489,120 15,769.93 85.99 99.87

10 6,264,960 21,401.03 113.47 99.87

UP
6 2,972,224 20,087.09 183.93 99.97
8 4,485,536 25,837.94 235.55 100.0

10 6,260,480 34,160.93 299.13 99.94

KSC
6 2,973,760 3887.32 36.16 99.97
8 4,487,584 5142.95 47.34 100.0

10 6,263,040 6734.43 58.56 99.97

4.3. Classification Results Comparison with State-of-the-Art

To verify the effectiveness of our proposed RGCSA network, we compared RGCSA with several
classic methods, i.e., SVM [11], SSRN [21], 3-D-ResNeXt [28], DBMA [32], and SSAN [35]. To obtain
fair comparison results, our proposed RGCSA network and compared methods adopted the same
spatial input size of 16× 16× b (b represents the number of spectral bands), the ratio of 3 : 1 : 6 for the
IN dataset, and 2 : 1 : 7 for the UP and KSC dataset for all methods.

Tables 11–13 report the OAs, AAs, kappa coefficients, and the classification accuracy for each class
for three HSI datasets. From the tables, we can see that the proposed RGCSA achieved the highest
classification accuracy than other methods for all three HSI datasets. First of all, SVM achieved the
lowest classification accuracy in the three HSI datasets among all the methods. Secondly, since the
training samples of class 1, 7, and 9 (alfalfa, grass-pasture-mowed, and oats, respectively) in the IN
dataset are lower than 50 and SSRN divided the network into spectral and spatial feature learning parts,
2-D-CNN-based SSRN showed a lower classification accuracy on these classes, especially class 9, than
other 3-D-CNN-based methods, such as 3-D-ResNeXt, DBMA, SSAN, and RGCSA. Though DBMA
and SSAN used 3-D-CNN to extract features, these two models separated the spectral dimension and
spatial dimension. It means that these models cannot make use of the close correlation between these
two dimensions, and the results of DBMA and SSAN in Tables 11–13 proved it. Thirdly, we find that
the models combined with the attention modules can achieve high classification accuracy, especially for
the UP and KSC datasets. It means that channel-wise attention and spatial-wise attention can indeed
optimize the features extracted by CNN and improve the classification performance. Furthermore,
compared with these methods, our proposed RGCSA network could classify all classes for the three
datasets more accurately, with classification accuracies higher than 99.80%. It means that our proposed
network only needs fewer training samples to obtain higher classification performance through our
proposed group-channel and space joint attention mechanism.

Figures 10–12 show the visualization maps of all classes of all methods based on CNN (i.e., SSRN,
3-D-ResNeXt, DBMA, SSAN, and our proposed RGCSA), along with the false color images of the HSI
datasets and their corresponding ground-truth maps. In the IN dataset, the visualization maps of
SSRN, DBMA, and SSAN did not show class 9 (oats, labeled in dark red). However, our proposed
RGCSA network could classify class 9, which is completely displayed in Figure 10g. In the UP and
KSC datasets, we find that the edge contours of each class of our proposed network are clearer and
smoother than others. In addition, the prediction effect of our proposed RGCSA network on unlabeled
parts is also significantly better than other methods. For example, on the right of class 1 (labeled by
bright red) in the IN dataset, it can be seen from the false color map in Figure 10a that this unlabeled
part should belong to class 6. None of the comparison methods can accurately predict this part. In
contrast, it can be clearly seen from Figure 10g that our proposed RGCSA network can predict this
part and fully visualize it. Similarly, in the lower middle of the UP dataset, the part marked in dark
blue belongs to class 3 (gravel), and our proposed network can visualize it more completely than other
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methods. In summary, our proposed RGCSA network can clearly visualize all the labeled classes, and
can predict and visualize the unlabeled parts more accurately than other methods.

Table 11. Classification results of different methods for the IN dataset.

SVM SSRN 3D-ResNeXt DBMA SSAN RGCSA

OA (%) 81.67 99.46 99.79 98.19 98.64 99.87
AA (%) 79.84 93.05 99.71 96.31 97.45 99.92

Kappa × 100 78.76 99.39 99.70 97.94 97.50 99.85

1 96.78 100.0 100.0 100.0 100.0 100.0
2 78.74 100.0 100.0 97.10 97.65 100.0
3 82.26 99.00 99.80 99.03 98.69 99.80
4 99.03 98.59 98.59 92.20 96.95 99.29
5 93.75 99.65 99.30 99.26 99.15 100.0
6 85.96 100.0 100.0 98.20 98.95 100.0
7 40.00 100.0 100.0 81.25 97.65 100.0
8 91.80 100.0 100.0 100.0 100.0 100.0
9 0 0 100.0 85.71 89.94 100.0

10 96.00 97.44 100.0 98.00 99.14 100.0
11 70.94 99.73 99.59 98.46 99.12 99.79
12 74.73 99.72 99.72 98.15 98.95 99.87
13 99.04 100.0 100.0 100.0 100.0 100.0
14 94.29 99.74 100.0 99.74 99.96 100.0
15 85.11 100.0 100.0 96.12 98.14 100.0
16 96.78 95.00 98.31 97.67 97.33 100.0

Table 12. Classification results of different methods for the UP dataset.

SVM SSRN 3D-ResNeXt DBMA SSAN RGCSA

OA (%) 90.58 99.97 99.93 98.88 99.05 100.0
AA (%) 92.99 99.96 99.91 98.71 98.91 99.99

Kappa × 100 87.21 99.96 99.91 98.50 98.64 100.0

1 87.24 99.85 99.85 99.37 99.45 99.98
2 89.93 100.0 99.99 99.73 99.84 100.0
3 86.48 100.0 99.59 99.16 98.68 100.0
4 99.95 99.95 100.0 98.21 99.21 100.0
5 95.78 99.89 100.0 100.0 98.16 100.0
6 97.69 99.97 100.0 97.45 98.36 100.0
7 95.44 100.0 100.0 1000 99.11 100.0
8 84.40 100.0 99.77 95.12 98.26 100.0
9 100.0 100.0 100.0 99.36 99.12 100.0
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Table 13. Classification results of different methods for the KSC dataset.

SVM SSRN 3D-ResNeXt DBMA SSAN RGCSA

OA (%) 80.29 99.97 99.67 99.72 99.62 100.0
AA (%) 65.64 99.95 99.30 99.42 99.53 99.99

Kappa × 100 77.98 99.97 99.63 99.50 99.58 99.99

1 92.16 100.0 100.0 100.0 100.0 100.0
2 86.16 99.40 99.38 97.16 98.41 100.0
3 42.55 100.0 97.40 98.45 97.65 100.0
4 67.69 100.0 99.40 100.0 99.45 99.99
5 0 100.0 95.76 1000 100.0 100.0
6 54.71 100.0 100.0 99.58 99.69 100.0
7 0 100.0 100.0 100.0 100.0 100.0
8 65.12 100.0 100.0 99.56 100.0 100.0
9 67.82 100.0 100.0 100.0 100.0 99.99

10 93.4 100.0 100.0 100.0 100.0 100.0
11 100.0 100.0 100.0 99.89 99.42 100.0
12 83.75 100.0 100.0 100.0 100.0 100.0
13 100.0 100.0 100.0 97.75 99.29 100.0

(b) (c) (d) 
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Figure 10. Classification results of the models in comparison with the IN dataset. (a) False color image.
(b) Ground-truth labels, (c–g) Classification results of SSRN, 3-D-ResNeXt, DBMA, SSAN, and RGCSA.
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Figure 11. Classification results of the models in comparison with the UP dataset. (a) False color image.
(b) Ground-truth labels, (c–g) Classification results of SSRN, 3D-ResNeXt, DBMA, SSAN, and RGCSA.

Figure 12. Classification results of the models in comparison with the KSC dataset. (a) False color image.
(b) Ground-truth labels, (c–g) Classification results of SSRN, 3D-ResNeXt, DBMA, SSAN, and RGCSA.

Table 14 and Figure 13 show the comparison results of the 3D-ResNeXt (without the channel-wise
and spatial-wise attention modules), RGCA (only with the group channel-wise attention RGCA
module), RSA (only with the spatial-wise attention RSA module), and RGCSA (both with the RGCA
module and RSA module). Except for the different attention modules, we set these four models to the
same structure. The ratios of the three HSI datasets are {3 : 1 : 6, 2 : 1 : 7, 2 : 1 : 7}, respectively, and the
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epochs were all set to 100. Table 14 shows the corresponding network parameters, training time, and
test time and Figure 13 shows the OAs of four different attention mechanisms on the three HSI datasets.
We find that the models with attention modules need more time to train, and the proposed RGCSA
has the longest training time. Although RGCA, RSA, and RGCSA all generate more computational
costs and consumption, from the figure, we can see that 3-D-ResNeXt without any attention modules
achieved the lowest accuracies on the three HSI datasets, which proves the effectiveness of the attention
mechanism. The OAs of RGCA with only the group channel-wise attention module in the three
datasets are all higher than those of RSA with only the spatial-wise attention module, but the gap
between RGCA and RSA is not obvious. It means that the proposed attention mechanisms in these
two dimensions have optimized the channel and spatial features. Furthermore, when combining these
two attention modules, the proposed RGCSA obtained the highest classification accuracies. It fully
demonstrated that the proposed channel space joint attention mechanism plays an important role in
HSI classification and is suitable for HSI classification tasks.

Table 14. Params, training time, and test time for different attention mechanisms on the IN, UP, and
KSC datasets.

Datasets Methods Params Training Time (s) Test Time (s)

IN

3D-ResNeXt 1,554,288 3054.29 20.68
RGCA 2,736,992 10,629.34 55.43
RSA 3,290,400 12,593.92 71.47

RGCSA 4,489,120 15,769.93 85.99

UP

3D-ResNeXt 1,550,704 6077.30 54.85
RGCA 2,733,408 18,297.08 155.33
RSA 3,286,816 18,801.38 184.43

RGCSA 4,485,536 25,837.94 235.55

KSC

3D-ResNeXt 1,552,752 1253.42 10.33
RGCA 2,735,456 3584.96 30.23
RSA 3,288,864 4044.99 38.97

RGCSA 4,487,584 5142.95 47.34

Figure 13. OAs of four different attention mechanisms on the three HSI datasets.

To test the robustness and generalizability of the proposed RGCSA under different ratios of
training datasets, three models, i.e., SSRN based on 2-D-CNN, 3-D-ResNeXt based on 3-D-CNN,
and the proposed RGCSA based on 3-D-CNN and attention mechanism, were selected to do this
experiment. Figures 14–16 illustrate the overall accuracies (OAs) of these models using different ratios
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of training datasets. When the number of training samples is small, such as the ratios of 2 : 1 : 7 and
3 : 1 : 6 in the three HSI datasets, the proposed RGCSA network obtained the highest OA indicators
among the three methods. Especially for the IN and KSC datasets, the OAs of our proposed network
always maintain a high level under different ratios. It means that we can achieve better classification
results by the proposed RGCSA network with fewer training samples. It is important that when the
total number of samples is small, or when there are few samples of some classes, such as class 1, 7,
and 9 in the IN dataset, the proposed RGCSA can still generate a superior classification performance.
As the training samples increase, the OAs of the proposed network in the three HSI datasets show a
slight fluctuation but can still maintain over 99%. Since SSRN divided the network into the spectral
learning part and spatial learning part, it cannot make full use of the relationship between the spectral
and spatial dimensions. Therefore, in the three HSI datasets, the OAs of SSRN are the lowest among
the three methods. It means that 3-D-CNN can extract spectral-spatial features with more useful
information than 2-D-CNN. When compared with 3-D-ResNeXt, which needs more training samples
to achieve high classification accuracies, our proposed network benefits from the residual attention
mechanism to obtain the same high OA indicators with fewer training samples, and the classification
accuracies are all higher than 3-D-ResNeXt under different ratios. In summary, it is obvious that the
proposed channel-wise and spatial-wise attention modules, which can pay attention to the informative
features, strengthen the representation of these features, and suppress the interference of useless
information, are more suitable for HSI classification tasks. It can be demonstrated that our proposed
RGCSA network has strong robustness and stability under different ratios of training datasets.

Figure 14. OAs of the SSRN, 3-D-ResNeXt, and RGCSA with different ratios of training samples for the
IN dataset.

Figure 15. OAs of the SSRN, 3-D-ResNeXt, and RGCSA with different ratios of training samples for the
UP dataset.
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Figure 16. OAs of the SSRN, 3-D-ResNeXt, and RGCSA with different ratios of training samples for the
KSC dataset.

At the same time, Tables 15–17 show the training time and test time of the above three models
under different ratios. The epochs of the corresponding ratios are {100, 100, 60, 60 }, respectively. From
the tables, we can see that our proposed network needs more training time and test time in the three
HSI datasets. The reason is that the proposed RGCA and RSA completely use 3-D-CNNs instead of FC
layers to extract channel information and spatial context information. The proposed network is much
deeper than the other networks, which results in more time to train the model. However, from the
perspective of the classification results, it is feasible to exchange more computational costs for higher
classification accuracies.

Table 15. Training time and test time for different networks in the IN dataset.

Method 2:1:7 3:1:6 4:1:5 5:1:4

Training Time
(s)

SSRN 942.89 1059.21 1110.62 1262.90
3D-ResNeXt 2966.77 3054.29 2974.87 4035.33

RGCSA 10,861.78 15,769.93 12,320.78 15,138.30

Test Time
(s)

SSRN 9.63 8.36 7.25 5.51
3D-ResNeXt 25.87 20.68 16.65 14.75

RGCSA 99.90 85.99 72.52 59.03

Table 16. Training time and test time for different networks in the UP dataset.

Method 2:1:7 3:1:6 4:1:5 5:1:4

Training Time
(s)

SSRN 2469.97 2821.26 2750.48 3282.24
3D-ResNeXt 6077.30 7095.93 6857.42 8410.72

RGCSA 25,837.94 37,310.21 29,345.04 36,296.38

Test Time
(s)

SSRN 25.01 23.24 17.83 13.41
3D-ResNeXt 54.85 52.18 39.32 36.74

RGCSA 235.55 205.73 171.84 135.85

Table 17. Training time and test time for different networks in the KSC dataset.

Method 2:1:7 3:1:6 4:1:5 5:1:4

Training Time
(s)

SSRN 447.09 643.90 498.93 610.44
3D-ResNeXt 1253.42 1384.68 1345.30 1632.73

RGCSA 5142.95 7292.39 5779.27 7094.23

Test Time
(s)

SSRN 4.62 4.06 3.31 2.55
3D-ResNeXt 10.33 8.66 7.22 5.75

RGCSA 47.34 39.70 33.82 28.22
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5. Conclusions

In this paper, we proposed a supervised 3-D deep learning framework for HSI classification, using
the bottom-up top-down attention structure with the residual connection. Compared with the previous
traditional ML-based methods, the end-to-end deep learning methods can make full use of the GPU
performance to accelerate network training and avoid complex artificial design of feature extraction.
Compared with the deep learning methods based only on CNN, the proposed attention mechanism
could strengthen important information and weaken unimportant information.

The above experiments verify the effectiveness of the proposed residual group channel and space
attention module in the HSI classification tasks. In summary, the three major differences between our
proposed RGCSA classification model and other deep learning-based models are as follows: First, the
designed residual group channel-wise attention module and spatial-wise attention module have the
same basic structure, which is easily inserted into any networks. Additionally, the residual connection
can accelerate the flow of information for better training. Second, the group channel-wise attention
module can reduce the possibility of losing useful information during the attention optimization.
Additionally, the novel spatial-wise attention module can learn the context information and maintain
the mapping relationship of spatial pixels before and after the optimization process. Third, the most
important point is that in the face of poorly distributed HSI datasets, we can use the proposed RGCSA
to optimize the learning process and obtain a higher classification performance with fewer training
samples. In summary, the above advantages enable our RGCSA network to gain higher classification
results than previous models, whether it is a CNN-based network or an attention-based network.

From the perspective of network complexity, the future work will focus on how to effectively reduce
the number of network parameters and computational costs while maintaining high classification
accuracy through the attention mechanism.
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