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Abstract: This paper deals with a geophysical survey carried out in some critical urban areas of
the historical city of Matera (Southern Italy). Matera has a very complex shallower stratigraphy
characterized by both anthropic and natural “targets” and is affected by geological instability.
Therefore, Matera represents an ideal and very challenging outdoor laboratory for testing novel
approaches for near-surface explorations in urban areas. Here, we present the results of a near-surface
survey carried out by jointly applying Ground Penetrating Radar (GPR) and Electrical Resistivity
Tomography (ERT) methods. The survey was implemented in three different critical zones within the
urban area of Matera (Piazza Duomo, Piazza San Giovanni, Villa dell’Unità d’Italia). These test sites
are of great interest for archaeological and architectonical studies and are affected by ground instability
phenomena due to the presence of voids, cavities and other anthropic structures. The effectiveness
of the survey was enhanced by the exploitation of advanced 3D tomographic approaches, which
allowed to achieve 3D representation of the investigated underground and obtain information in
terms of both the location and the geometry of buried objects and structures and the characterization
of shallow geological layers. The results of the surveys are now under study (or have attracted the
interest) of the Municipality in order to support smart cities programs and activities for a better
management of the underground space.

Keywords: near-surface geophysics; electromagnetic sensing; 2D and 3D tomography; smart and
resilient cities

1. Introduction

Today, there is an increasing awareness about the necessity of smart management and protection
of the urban areas, which is one of the main elements ensuring the Smart City paradigm. The latter
one considers the good and reliable behaviour of the urban areas as strictly affected by the functioning
of the service networks interacting one to each other and mutually dependent. In fact, a Smart City can
behave in a reliable way only when the good functioning of the critical infrastructures/services, such as
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energy, ICT, mobility and so on, is ensured. Therefore, the concept of smartness is strongly linked to
resilience, which has to be ensured during ordinary situations and crisis events [1–3].

The risk scenarios of urban areas and of their infrastructures are the result of the combination
of their vulnerability (dictated by their condition and resilience capabilities) with the hazards due to
the different environmental and anthropic causes. In this frame, it is worth underlying that urban
areas, when characterized by a degraded condition, could be damaged seriously even by events whose
impact would be negligible in “normal situations”. These considerations bring the necessity to carry
out a long-term monitoring and assessment of the status of cities and of the embedded infrastructures
in view of enabling “risk-scenario analysis” tools [4–6].

In this general context, it is crucial to ensure the monitoring and the management of the
underground environment, which has to be seen not only in terms of the mitigation of risks factors
but even as the search for and exploitation of resources generating economic, social and cultural
value [7–9]. Indeed, the shallower layers of the subsoil represent the “reservoir” of economic and
cultural resources (structures and foundations, archaeological assets, subservices: pipes, cable ducts,
networks, etc.) and the “physical space” in which to build strategic underground infrastructures
(networks energy, networks for urban mobility, sub-services of the aqueduct, etc.). This dual aspect
also entails the necessity to plan the actions impacting the underground on the basis of a trade-off

between different needs. As an example, the underground environment of the urban area is often a
“cultural heritage asset”, where buried archaeological remains can be a factor of social and economic
growth. At the same time, the archaeological remains also represent an “obstacle” for the execution of
the urban management activities, because their preservation entails stringent constraints about the
planning and execution of engineering works.

Accordingly, one of the main scientific and technological challenges is the development and
the cooperative application of non-invasive diagnostic methodologies in order to obtain 2D and
3D high-resolution imaging of the urban subsoil [10]. The combination ensures the overcoming of
applicability drawbacks of a single methodology in urban area and allows the achievement of useful
information on the subsurface at different depths and with different spatial resolutions.

Here, we present the first results of a geophysical survey carried out in several critical urban areas of
the historical city of Matera (Basilicata Region, Southern Italy), potentially affected by hydrogeological
instability phenomena. The research activities were planned and carried out under the frame of the
CLARA Smart Cities project “CLoud plAtform and smart underground imaging for natural Risk
Assessment in urban areas” and was funded by the Italian Ministry of Education, University and
Research (MIUR). Matera was designated European Capital of Culture in 2019 and its historical center
of the Sassi is recognized as an UNESCO World Heritage Site. According to the UNESCO declaration
“Matera is the most outstanding, intact example of troglodyte settlement in the Mediterranean region,
perfectly adapted to its terrain and ecosystem. The first inhabited zone dates from the Paleolithic,
while later settlements illustrate a number of significant stages in human history”. The urban area
of Matera is characterized by an underground scenario that is very rich in terms of the presence of
environmental features such as cavities, voids and anthropic structures related to pre-existing urban
assets [11]; this is also due to the particular nature of the material in the shallower underground.

In this paper, we focus on geophysical surveys carried out at three of the most interesting and
fascinating squares of the historical center of Matera, which are “Piazza Duomo”, “Piazza S. Giovanni”
and “Villa dell’Unità di Italia” (Figure 1). These sites are important for their presence in the same
area of cavities, tanks and archaeological remains. The underground investigation in Matera was
specifically carried out in order to identify and characterize the presence of cavities, but even to detect
areas affected by micro-subsidence and hydrogeological risks.
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World Heritage Sites with the location of the three test sites. (Image modified from Google Earth).

Herein, we present the results of a geophysical approach based on the joint application of Ground
Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods for the 2D and 3D
imaging of the underground space. GPR surveys were applied for exploring the shallower layers of
the subsurface with very high resolution (tens of centimeters), mostly for the detection and geometric
characterization of buried ancient structures. Furthermore, GPR surveys were crucial for characterizing
the presence of anthropic elements, such as subservices pipes and metallic reinforcement structures.
The ERT method allowed to extend the investigation depth up to a few tens of meters and it was
deployed to gain information not only about large anthropic elements, but more importantly, about
the lithological-structural elements of the underground, with a resolution of a few meters.

The results consisting of 2D and 3D subsurface images allowed the reconstruction of the subsoil
geological setting and the identification of buried cavities and archaeological remains. The results
have highlighted the potentiality of the proposed approach that can be considered a useful tool to
support the planning of possible maintenance interventions respecting the social and cultural value of
the investigated site.

2. Materials and Methods

2.1. The Test Site

The city of Matera is located in the Basilicata Region, Southern Italy. Since 1993, it has been
defined as a World Heritage Site by UNESCO thanks to the presence of the “Sassi” historical center and
the “Park of the Rupestrian Churches”, which are prehistoric settlements comprising houses, churches,
monasteries and hermitages built into the natural caves of the Murgia. Due to its richness of cultural
heritage and historical values, Matera was designated the European Capital of Culture in 2019 [12].

From a geological perspective, the territory of the urban area of Matera falls within a
geological-structural transition context between the Apulian Foreland and Bradanic trough. The city of
Matera arises at the eastern edge of the Bradanic trough, a large depression set in the Middle Pliocene
in the Mesozoic substrate formed by Altamura Limestones and characterized by the presence of two
structural highs, one in the south-west area of the city, called Horst di Zagarella [13,14] and the other
to the south-east, called Horst of Matera (Figure 2). On the calcareous substrate, calcarenitic deposits
(Calcarenites of Gravina) have settled and in succession, there are fine clastic materials represented
by Pleistocene marine clays. Superimposed on the latter ones, sandy and terraced conglomeratic
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deposits are found as closure of the Pliocene-Pleistocene sedimentary cycle. The morphology of the
territory, characterized by deep gorges (gravine) and bare highland plateaus, integrated with ancient
cave churches, shepherd tracks marked by wells and fortified farmhouses, forms one of the most
evocative landscapes of the Mediterranean area [15].
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et al. 2018).

The geophysical survey was carried out at three different test sites representing the most important
squares of the city. The first area under investigation is Piazza Duomo and is located close to the
ancient district of the Sassi, where calcarenitic deposits crop out, reaching thicknesses of about 40 m.
In particular, Piazza Duomo is located on the highest spur of the Civita, considered the oldest part of
the Matera town located between the Sasso Barisano and the Sasso Caveoso. The cathedral of Madonna
della Bruna and Sant’Eustachio, built in the Apulian Romanesque style in the 13th century, stands in
the square and represents the main place of Catholic worship in the city of Matera, the mother church
of the archdiocese of Matera-Irsina. This area has an enormous historical and architectural significance
and represents an extraordinary factor of tourist attraction.

The second area under investigation, Piazza San Giovanni, is located outside the walls of the
ancient city. The square under study houses the Church of San Giovanni Battista, a cult building
dating back to medieval times and considered an architectural jewel due to its refined architectural
composition and fine decoration. This monument has an enormous historical and architectural value
that represents an extraordinary factor of tourist attraction and that, as such, must be preserved and
handed over to future generations. Considering the historical and architectural significance of both
squares, as well as the role they play for tourism in the city, an in-depth study of the subsoil, focusing
on the identification of cavities and hypogeum and on the delimitation of potential areas affected by
instability phenomena, assumes a strategic importance.

The third area interested by the geophysical investigations is Villa dell’Unità d’Italia. This square
is located in the modern area of the city where silty-clayey soils, belonging to the alluvial deposits and
the formation of Sub-Apennine Clays overlay calcarenitic deposits. The Villa occupies a triangular area
of about 3.850 m2, oriented with the vertices to the north-west, south-east and south-west, generated
by the intersection of three road axes. It was built around the 1930s, to make up for the old abandoned
botanical garden for the construction of the Palazzo della Provincia, at the intersection of Via D. Ridola
and Via Lucana. The Villa presents various monumental works and is a space for citizenship social
aggregation. For these reasons, the geophysical investigations were planned for mapping the water
saturated zones potentially responsible for micro subsidence and for investigating the geometrical
boundaries between the silty-clayey layers and the calcarenite materials.
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2.2. Ground Penetrating Radar

One of the key sensing technologies usually deployed for underground prospections is Ground
Penetrating Radar (GPR), which is commonly used for high-resolution diagnostics of the shallower
layers of the underground (till a few meters). GPR is a “friendly” technology only when applied in very
simple cases. Indeed, when complex scenarios (such as the ones arising in underground inspection) are
faced, the interpretability of GPR data is rather challenging and it is necessary to perform an advanced
data processing [16]. One of the most used data processing techniques is Microwave Tomography (MT)
that states that GPR imaging is the more general framework of an electromagnetic inverse problem.
For this inverse problem, one aims at achieving the detection, localization and geometry estimation of
hidden targets starting from the backscattered field collected by probing the scenario under test by
means of a known incident field [17].

The effectiveness of the GPR survey in Matera was not only enhanced by using MT but also thanks
to the deployment of a prototype GPR system, namely the IDS Stream-X (Subsurface Tomographic
Radar Equipment for Assets Mapping) equipped with a 16 channel 200 MHz array, which works at the
single nominal frequency of 200 MHz.

As usual in surface penetrating radar, a reflection configuration is adopted and the offset between
the transmitting and receiving antennas is negligible in terms of the probing wavelength. Accordingly,
a monostatic measurement configuration is adopted. The peculiarity of the system is its capability of
collecting simultaneously 16 radargrams (or B-scans) evenly spaced at 12 cm, so that, for each radar
passage, a swathe of 1.80 m is investigated. The dimension of the antenna system is 2.4 m × 0.92 m and
the weight is about 36 kg. The system can collect data by moving at a speed of 15 km/h.

At Matera each B-scan has been acquired by fixing a spatial offset of 0.017 m between two
consecutive A-scans (radar traces); for each A-scan, the acquisition time window was set equal to
127 ns (fast time) and discretized by means of 512 samples. To achieve a complete coverage of the
survey area, multiple passes are controlled through sophisticated positioning systems and a dedicated
navigation software.

GPR results were obtained by means of a microwave tomographic approach specifically tailored
for the Stream-X system and able to provide 3D images of the underground under the form of constant
depth slices. More in detail, the data were elaborated by using a dedicated data processing strategy
made by three main key phases: (i) pre-processing; (ii) data inversion; (iii) pseudo 3D representation of
the scene.

Pre-processing is a sequence of standard time-domain (TD) procedures, which aim at extracting the
useful signal from raw data by removing direct antenna coupling, reducing noise and emphasizing the
presence of the target. It begins with the zero-timing correction and involves procedures, such as time
gating (TG) and background (BKG) removal, which help to remove or mitigate the signal contributions
due to the antenna coupling, the air-material interface and (undesired) horizontal reflectors [18,19].
Herein, the zero-timing is used to cut the first part of the signal, up to the reflection of the air-medium
interface, which is hypothesized to be flat.

In this way, the zero-time of the B-scan is fixed in correspondence of the air-medium interface
and, accordingly, B-scan accounts only for the signal propagation and scattering inside the probed
underground. The TG procedure is used to erase the signal due to the direct antenna coupling and
to select the portion of the observation time window wherein the useful signal is expected to occur.
The BKG removal procedure is applied to reduce the signal portion due to the interfaces present in the
data and usually provides a cleaner image of buried targets, but for extended flat material interfaces.

Data inversion, instead, performs target reconstruction and exploits microwave tomography
to face the imaging problem. In particular, the imaging problem is formulated into the frequency
domain by considering a homogeneous 2D scalar model of the underling scattering phenomenon.
The inverse scattering problem is tackled by exploiting the Born approximation in order to define
the mathematical relationship describing the interactions between microwaves and electromagnetic
features of the investigated scenario [20].
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Finally, pseudo 3D representation merges the 2D microwave tomographic images provided by
the data inversion in order to obtain a 3D representation of the investigated areas and the results are
presented as constant-depth slices.

Coming back to the data inversion procedure, it processes a single GPR profile (B-Scan) by
assuming as a reference scenario a 2D homogeneous, non-dispersive, and non-magnetic medium
characterized by a constant relative dielectric permittivity, εb. The scattering phenomenon is activated
by means of antennas, which are modelled as filamentary sources polarized along the invariance axis
and fed by a unitary current. The transmitting and receiving antennas are located at the air-medium
interface and their horizontal offset is negligible. Hence, the scattering model is defined under a
multi-monostatic/multi-frequency reflection measurement configuration.

Let Ω be the probed domain, i.e., the spatial region where the targets to be imaged are located,

r the generic point in Ω and χ(r) =
ε(r)
εb
− 1 the contrast function accounting for the variations of

the equivalent permittivity with respect to that of the investigated medium. According to these
assumptions, the scattering phenomenon is described, at each angular frequency, by a linear integral
equation [20]:

Es(xs, x0,ω) = k2
b

∫
Ω

G(x0,ω, r)Einc(xs,ω, r)χ(r)dr (1)

where Es denotes the scattered field measured in x0 when the probing source is at xs = x0, Einc is the
incident field in Ω, i.e., the field into the probed region in the absence of any target, kb is the wave
number into the background medium and G is the known Green’s function referred to the scenario
at hand.

The integral equation (Equation (1)) is discretized according to the Method of Moments by using
a pixel based representation for the unknown contrast function. Accordingly, the imaging is faced as
the solution to the following matrix problem:

Es = L[χ] (2)

In Equation (2), Es is the K = M × F dimensional data vector, M being the number of spatial
measurement points and F the number of frequencies, χ is the N-dimensional unknown vector, N being
the number of points in Ω; L is the K×N dimensional matrix obtained by discretizing Equation (1).
It is worth noting that the matrix L depends on the adopted measurement configuration as well as on
the reference scenario.

Accordingly, the position of the measurement points as well as the electromagnetic parameters of
the probed medium need to be known to define L, properly. Moreover, due to the fact that the linear
system in Equation (2) derives from the discretization of an ill-posed integral equation, its solution,
i.e., the inversion of the matrix L, is an ill-conditioning problem [21]. Hence, its solution is very sensitive
to measurement uncertainties and noise in the data. In order to obtain a stable approximate solution,
a regularization scheme has to be applied and the Truncated Singular Value Decomposition (TSVD)
scheme [21] is herein adopted. Accordingly, an approximated solution of Equation (2) is given by:

χ̃ =
∑H

n=1

〈Es, un〉

σn
vn (3)

where 〈, 〉 denotes the scalar product in the data space, H is the truncation index, {σn}
Q
n=1 is the set of

singular values of the matrix L ordered in a decreasing way, {un}
Q
n=1 and {vn}

K
n=1 are the sets of the

singular vectors in the data and unknown spaces, respectively. The threshold H ≤ Q (Q = min{K, N})
defines the “degree of regularization” of the solution and is chosen as a trade-off between the accuracy
and resolution requirements from one side (which suggest a larger H value) and solution stability from
the other side (which is required to keep a low H). The imaging result is given as the spatial map of
the modulus of the retrieved contrast vector χ̃ normalized to its maximum value in the scene. Hence,
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the regions of Ω where the modulus of χ̃ are significantly different from zero indicate the position and
geometry of the targets [19,20].

2.3. Electrical Resistivity Tomography

To date, the Electrical Resistivity Tomography (ERT) represents a robust geophysical method for
the near-surface investigations. It is applied in a wide spectrum of geological, environmental and
engineering problems [22–25]. A DC electrical current is injected in the subsoil using an energising
multi-electrode system deployed along a profile and the generated voltage signals are detected on
the surface with a receiving electrode system. Many different electrode layouts can be used, however,
dipole-dipole, Schlumberger and Wenner configurations are the most common ones. Taking into
account the geometry of the electrode systems, from the analysis of the voltage signals it is possible to
obtain 2D or 3D electrical pseudo-section, in which the spatial distribution of the apparent resistivity is
represented. Finally, by means of algorithms performing the data inversion it is possible to obtain an
electrical resistivity tomographic map.

At Matera, the geoelectrical surveys were performed with a Syscal Pro Switch 96 (Iris Instruments)
equipped with a transmitter capable of delivering currents up to 2.5 A and by applying voltages up to
800 V (250 W). The tool allows the simultaneous management of a maximum number of 96 electrodes,
automatic execution of the measurement sequence and the compensation of the spontaneous potential.
Considering the logistic conditions (size of the square and passage of pedestrians and cars during the
acquisition), it was not possible to use a very dense acquisition grid. The electrodes used at the same
time were 2 m apart. The acquisition with dipole-dipole and pole-dipole devices, with transmitter (TX)
and receiver (RX) diffused over the whole grid, allowed us to compensate for the lack of sensitivity
due to the basic electrode step and to avoid strong local effects. The geoelectric data were subsequently
processed and inverted with the ERT Lab software, developed by Geostudi Astier, which uses a
finite-element (FEM) approach to model the subsoil. Throughout the inversion iterations, the effect of
non-Gaussian noise was appropriately managed using a robust data weighting algorithm [26,27].

3. Results

This section aims to describe the results obtained by processing GPR and ERT data acquired
during the survey carried out in Matera by means of the strategies described in Section 2. In particular,
Piazza Duomo was investigated by using both GPR and ERT methods, whereas on Piazza San Giovanni
and Villa dell’Unità d’Italia only GPR and ERT were used, respectively.

As far as the GPR data is concerned, the raw data, collected in both test sites, were processed by
using the same filtering parameters. Specifically, the zero time of the radargram was set at 7 ns and the
time gating procedure was also applied in order to select the signal portion between 12 ns and 57 ns.
By doing so, the direct coupling between the antennas, which completely overwhelms the backscattered
signal due to buried targets, is erased; in addition, the signal portion after 57 ns, which is characterized
only by noise, is filtered out. As a consequence, by assuming that the surveyed medium is characterized
by a relative permittivity whose average value is equal to εb = 9, the maximum investigation depth
is z =2.50 m. After, the fast Fourier transform was performed to obtain the frequency domain data
needed as input to the data inversion. In this frame, the effective frequency range of the data was
estimated by means of a spectral analysis and it ranged from 100 MHz up to 600 MHz and was sampled
by 26 evenly spaced frequencies. All the presented results have been obtained by setting the TSVD
threshold in such a way to filter out all the singular values that are 25 dB lower than the maximum one.

3.1. Piazza Duomo

The GPR and ERT surveys carried out on Piazza Duomo were planned in order to obtain
information on the possible presence of buried structures, as cisterns for water storage and ducts.
The area has a surface of approximately 534 m2, whose length is 13.45 m along the North direction
(later referred as x-axis) and 39.80 m along the East direction (later referred as y-axis) in Figure 3.
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Figure 3. Limits of the investigated area within the “Piazza Duomo”, survey lines and location of the
old cistern (Image modified from Google Earth).

In order to achieve its complete coverage, 8 GPR passages were carried out by means of the
Stream-X, hence 120 B-scans were gathered after being processed according to the tomographic
approach described in Section 2.2. Figure 4a–f show the depth slices of the investigated area obtained
by cutting the 3D reconstruction at the depths z = 0.15 m, z = 0.69 m, z = 0.96 m, z = 0.99 m, z = 1.23 m,
z = 1.50 m, z = 1.77 m. These images reveal the presence of several buried structures used to direct
and store the water. Specifically, the structures having an elongated shape may be ascribed to ducts,
while those of circular and rectangular shape could represent the cisterns. An interpretation of
the most representative depth slices is given in Figure 5, where the dashed white lines depict the
recognized structures. In particular, the manhole visible on the stone pavement of Piazza Duomo
(see Figure 3) is clearly visible in the tomographic image at z = 0.15 (see Figure 5a); while a circular
cistern, whose diameter is about 10 m, begins at z = 0.69 m (see Figure 5b). The water was directed
into this circular cistern by means of an oblique duct, which starts to appear at z = 0.69 m and it is
reconstructed completely in the image at depth z = 0.96 m (see Figure 5c). This phenomenon is due to
the slope given to the duct in order to conduct the water into the cistern. In Figure 5c, two furthers
ducts are visible. One is on the left side of the image and is about 10 m long; while a small duct appears
around y = 16 m and it is connected with the duct going towards the circular cistern.
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Moreover, the image at depth z = 1.5 m (see Figure 5d) reveals the presence of a rectangular
shaped structure, which seems to be made up by two rooms and start to appear at shallower depths.
This structure is connected with the duct appearing completely on the left side of the image at z = 0.96 m.
In Figure 5d, another oblique duct appears and seems to be connected with the rectangular structure
and the duct going towards the circular cistern. Finally, two further anomalies are localized in the area
of the circular cistern and they could be related to some inhomogeneity of the roof and a portion of the
perimeter wall of the cistern. In order to clarify how these anomalies are located in the cistern area,
the manhole representation was repeated in Figure 5b,c.

In order to investigate the deeper layers of the subsurface, an ERT survey was carried out using a
Syscal Pro Swich 96 with 96 electrodes regularly distributed on the surface. To avoid logistic problems
and local effects, we used the dipole-dipole and pole-dipole configurations with a distance between the
electrodes of 2 m. The 3D ERT model obtained using the ERT Lab software reached a maximum depth
of 8 m (see Figure 6a). The resistivity pattern highlighted the stratigraphic boundary between the
resistive zone (ρ > 300 Ωm) related to the Calcarenite di Gravina with the more superficial conductive
material (ρ < 300 Ωm) that could be attributed to the anthropogenic infill. The low resistivity values
of the shallower layers might be due to the lithological nature (e.g., clays, silt) or to unconsolidated
material with a higher water content. The contact between the conductive shallower (surface) material
and the resistive one placed deeper is clearly visible in the 2D vertical section of electrical resistivity
(see Figure 6b) crossing the center of the square. The representation of the resistivity values with
horizontal slices at increasing depths (see Figure 7) allows the localization of the cistern, positioned
in the first 3 m of subsurface in the western zone of the square. Finally, the sharp transition from
conductive to resistive material is clearly visible at the depth of 5 m
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3.2. Piazza San Giovanni

The geophysical survey at San Giovanni square was planned to investigate an area of 586 m2,
whose lateral extensions were 35 m and 18 m respectively (see Figure 8a). The investigated area was
close to the San Giovanni Battista church and its portion covered an area that was the matter of an
archaeological survey, which allowed the discovery of tombs and ancient walls (see Figure 8b,c) [28].
The entrance of the San Giovanni Battista church corresponds to the position (x = 0 m; y = 7 m) on the
tomographic images.

The GPR Stream-X measurements were performed along 17 profiles and 255 B-scans were collected,
covering the area depicted in Figure 8. In Figure 9a–d the main results obtained from the processing of
the GPR data are displayed by using slices at depths: z = 0.18 m, z = 0.24 m, z = 0.30 m and z = 0.87 m.
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Figure 9. Visualization of the pseudo-3D GPR tomographic model by means of constant slices at
different depths: (a) 0.18 m, (b) 0.24 m; (c) 0.3 m; (d) 0.87 m The tomographic images show the
normalized intensity of the obtained contrast.

The tomographic reconstruction at depth z = 0.18 m shows the degree of anthropization of the
shallow part of the subsurface, while several scatterers, widespread in the investigated area, appear
at a depth of z = 0.24 m and z = 0.3 m. An interpretation of the tomographic image at z = 0.3 m is
given in Figure 10a, where the white dashed lines represent the detected masonry structures. Such an
interpretation was limited to the cemetery area, which was retrieved in front of the church during an
archaeological survey carried out in the past years [28]. In Figure 10a, the hypogeum is also denoted
in the down right corner, at y ranging from about 25 m to 30 m. Finally, a square shaped structure
covering an area of about 16 m2 appears at depth z = 0.87 m (see Figure 10b).

The high level of the anthropization, the presence of the wire meshes and the poor electrode
ground contacts made the processing of the ERT images impossible and unreliable. In fact, the
geoelectric data acquired in Piazza San Giovanni were particularly noisy and proved to be dominated
by the effects produced by the interventions carried out during 2007 for the refurbishment of the
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pavement and the rearrangement of the underground structures [28,29]. Then, by taking into account
the GPR results and the first field tests for the resistivity measurements, the ERT survey was not carried
out in this area.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 18 
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3.3. Villa dell’Unità d’Italia

Villa dell’Unità di Italia falls, from a lithological point of view, within an urban area affected by
alluvial silt with the presence of coarser material; these alluvial deposits rest on the sub-Apennine
clays which, in turn, are overlapped with calcarenite deposits (see Figure 11). The presence of the clay
materials in the shallow subsurface suggested a plan of only the ERT investigations. In fact, the high
conductivity of the clay layers (ρ < 10 Ωm) strongly reduces the penetration depth of microwaves.

The ERT survey was carried out using a Syscal Pro Swich 96 with 96 electrodes regularly distributed
on the surface. The measurements were carried out along three profiles selected to minimize the
effect of the anthropic noise and to avoid the presence of the obstacles to install the electrode sensors.
For each profile 2D ERT images was obtained using the ERT Lab software (Figure 11a). To have a spatial
representation of the resistivity patterns, a pseudo-3D map was obtained with a simple interpolation
(Figure 11b).

The analysis of the ERT images with the constrains of the geological field survey, highlights four
main aspects:

• The presence of a 2–3-m thick shallow resistive layer (100–200 Ωm), that could be associated to
filling material, locally affected by underground services;
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• In all the ERTs, the occurrence of a very conductive layer (2–3 Ωm), probably related to alluvial
silt deposits with remarkable water content;

• The existence at the bottom of a moderate resistivity layer (2–25 Ωm) correlated with the
sub-Apennine clays;

• The identification, on the right of all the ERT images, of a sector with electrical resistivity values
ranging in the interval 30–50 Ωm related to the calcarenite substratum in heteropic contact with
the sub-Apennine clays, as reported in the geological map [30].
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Figure 11. Results of the ERT investigation at Villa d’Unità di Italia. (a) 2D ERT images obtained
along three different profiles are reported. (b) A map of the resistivity at depth = 10 m is displayed.
The presence of a conductive zone associated to the presence of alluvial deposits with high water
content and a sharp resistivity contrast on the right side of the square is quite evident. (Image modified
from Google Earth).

4. Conclusions

Three test sites located in the urban area were selected: Piazza Duomo; Piazza San Giovanni and
Villa d’Unità d’Italia. The complexity of the geological setting and the presence of large and diffuse
anthropic structures in the near subsurface allowed us to have challenging and interesting test sites for
the application of novel electrical and electromagnetic tomographic methods.

The interpretation of the results discloses the way to discuss the potentiality and the limitations of
GPR and ERT methods as referred to the general context of urban geophysics. Indeed, the historical
areas of Matera represents an ideal outdoor laboratory for testing the capacity of GPR and ERT
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methods to illuminate and reconstruct the geometry of buried structures, being its urban subsurface a
complex geological environment that was continuously modified by the anthropic activities during the
millenarian history of the city.

The use of the tomographic approach for GPR data inversion was the key for obtaining a 3D
geometrical reconstruction of the underground structures in a complex geological environment.
The results obtained in Piazza Duomo are remarkable, where the geometry of a cistern for the water
storage was fully reconstructed. At the same time, the ERT is a powerful method for exploring the near
surface without any limitation about the depth of investigation, but with a spatial resolution lower
than the GPR method. However, the application of the ERT method provides information even in the
presence of extremely conductive layers, when the propagation of the GPR signals is strongly limited.
The results of the geophysical survey carried out in the test site of Villa dell’Unità di Italia confirm the
key role of the ERT method in exploring conductive underground environment.

To date, the joint application of GPR and ERT methods, the use of novel tomographic approaches
for data inversion and ICT techniques for data visualization can be considered a powerful tool for
obtaining 3D imaging of the subsurface in urban areas.

As it concerns future research directions, the combination of GPR and ERT methods with other
non-invasive and cost-effective sensors (i.e., MEMS, Fiber Optics) and ICT tools for geospatial data
sharing and visualization will play a key role in urban planning. This approach responds to the scientific
challenges of urban geophysics by integrating the latest enabling technologies for the geophysical
exploration of the subsurface.

Finally, the case-study of Matera represents an extraordinary “Living Lab” to transform historic
centers into urban laboratories where researchers, technicians of innovative companies, technicians
of public institutions and citizen associations (quadruple-helix model of innovation) can actively
participate in developing new strategies for smart and resilient cities.
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