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Abstract: In this study, we investigated the utility of Himawari-8 Advanced Himawari Imager (AHI),
one of third-generation geostationary satellite sensors, for mapping landslides caused by torrential
rain that hit the northern Kyushu area in Japan in the summer of 2017. AHI normalized difference
vegetation index (NDVI) time series data had distinctive temporal signatures over landslide areas
where the NDVI abruptly decreased after the rain event. The observed changes in the NDVI were
linearly correlated with the percent landslide area, the percentage of landslide areas within the
AHI pixel footprint, obtained with aerial survey (r = 0.78). AHI 10 min resolution data obtained
near cloud-free coverage of the landslide region by the 8th day after the disaster event. This was
comparable to the amount of time it took to obtain near cloud-free image coverage with aerial survey,
and better than those with the polar-orbiting satellite sensors of Suomi National Polar-orbiting
Partnership Visible Infrared Imaging Radiometer Suite, Landsat-8 Operational Land Imager, and
Sentinel-2A/B MultiSpectral Instrument. These results suggest that third-generation geostationary
satellite data can serve as another useful resource for post-event, region-wide initial assessment of
landslide areas after a heavy rain event.
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1. Introduction

Extreme weather and climate events, such as heavy precipitation, have increased in frequency
and are projected to continue increasing in this century [1,2]. These events can impact humans and
ecosystems extremely, which can be conceptualized as disasters or emergencies and include major
destruction of assets, loss of human lives, and loss of and impacts on plants, animals, and ecosystem
services [3–5]. In Japan, typhoons and heavy rains can often result in disasters. Typhoon Hagibis, the
latest typhoon that made landfall in Japan, for example, caused significant casualties and damage to
housing and buildings (Table 1), leading the country to form a panel of experts to study remediation
options and call for more attention to evacuation planning [6].

Remote sensing has been shown useful in various phases of disaster response, starting from
early situational assessment to long-term recovery monitoring, and even to pre-event monitoring and
mitigation planning [7]. A variety of remotely sensed data acquired from a range of platforms (drones,
aircrafts, and satellites) have been utilized with the purpose of obtaining the information about the
severity and spatial extent of impacts, or the “Area of Impact (AOI).” Chung et al. [8] used synthetic
aperture radar (SAR) data and successfully mapped inundated areas within 24 hours after a flash
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flood event caused by Typhoon Soulik in July 2013. Visible Infrared Imaging Radiometer Suite (VIIRS)
Day/Night Band (DNB) image data were used to rapidly assess the spatial extent of typhoon-affected
areas and populations, and also to monitor their recovery [9,10]. Boschetti et al. [11] developed a rapid
assessment approach based on SAR and Moderate Resolution Imaging Spectroradiometer (MODIS)
data that provided pre-event, in-season information on the status of rice and other field crops, and
their damage risk posed by tropical storms for food security.

Optical remote sensing data have widely been used to map the spatial extent and distribution
of landslides [12,13]. The most frequently used approach has been to exploit the changes in the
normalized difference vegetation index (NDVI) between pre- and post-events. The NDVI abruptly
decreases over landslide areas due to the loss of vegetative cover. Various polar-orbiting satellite data
have been employed, including MODIS [14], the Landsat series [15], and SPOT-5 [16]. Methodologies
based on polar-orbiting optical satellite data have effectively been used for inventorying landslides
and long-term recovery monitoring, but can be of limited use for early situational assessment because
post-event image data are often unavailable immediately after heavy rain events due to persistent
cloud cover.

Table 1. Summary of 2019 Weather Disasters in Japan [17].

Date Weather Event
Casualty

Housing Damage
Deaths Missing Injuries

18−20 May Heavy rain 0 0 5 48

up to 31 May Heavy snow 40 0 650 24

20−24 July Typhoon Danas + Baiu 0 1 6 852

27−28 July Typhoon Nari 0 0 0 2

5−6 August Typhoon Francisco 1 0 5 10

9−10 August Typhoon Lekima 0 0 6 1

15 August Typhoon Krosa 2 0 57 20

6 September Typhoon Lingling +
Heavy Rain 0 0 7 1

9 September Typhoon Faxai 1 0 151 57792

21−23 September Typhoon Tapah 2 0 68 648

3 October Typhoon Mitag 0 0 10 89

12−13 October Typhoon Hagibis 93 7 468 85983

14–20 November Snow storm 0 0 0 2

A new generation of geostationary satellite sensors has been launched during the last decade. They
include Advanced Baseline Imager (ABI) on Geostationary Environmental Satellites (GOES)-16 and
-17 [18], and Advanced Himawari Imager (AHI) on Himawari-8 and -9 [19], and are characterized by
very high frequency imaging (~10 min or less) and narrow spectral bands suitable for land monitoring
(Table 2). Himawari-8 AHI, for example, has a red and near-infrared (NIR) bands similar to those of
Suomi-National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS),
one of the latest polar-orbiting satellite sensors, from which spectral vegetation index time series data
can be generated for vegetation phenology studies [20].

Although moderate/low in spatial resolution (0.5–1 km at nadir), these sensors have the potential
for disaster response applications, such as near real-time to short-term initial assessment of the spatial
extent and severity of impacts (e.g., near real-time wildfire monitoring [21,22]). Geostationary satellite
data have operationally been used for the monitoring and forecasting of extreme weather events,
including the evolution, landfall, and passage of typhoons and heavy rains. The high frequency
observation capability of new generation geostationary satellite sensors nearly guarantees to capture
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the first and any sunny moments after the passing of typhoons and heavy rains. Therefore, these
sensors can serve as another resource to obtain post-event land surface imagery for initial impact
assessment, in coordination with other remote sensing platforms, including drones, aircrafts, and
polar-orbiting satellites, or possibly sooner than any of these platforms.

In this study, we investigated the utility of Himawari-8 AHI data for mapping the spatial extent
of landslide-affected areas caused by a torrential rain event that hit the southern part of Japan in the
summer of 2017. A primary objective of this study was to determine how well Himawari-8 AHI
moderate/low spatial resolution data detected vegetation cover changes due to landslides. A secondary
objective of this study was to assess how soon AHI 10 min resolution data could observe the disturbances
after the rain event. We compared AHI latency results with those from other polar-orbiting satellite
sensors, including VIIRS, Landsat-8, Sentinel-2, and aerial surveys.

Table 2. Select Characteristics of Himawari-8 AHI Compared to Himawari-7 Imager and
Suomi-NPP VIIRS.

Himawari-8 AHI Himawari-7 Imager Suomi-NPP VIIRS

Band Center (µm) & Nadir
Resolution (km)

0.470 1 - - 0.488 0.75

0.510 1

0.68 1

0.555 0.75

0.640 0.5 0.640 0.375

0.857 1 0.865 0.375

Temporal Resolution 10 min (Full Disk)
2.5 min (Japan) 30 min (Full Disk) 1 or 2 per day

2. Materials and Methods

2.1. Study Area

Our study area was located on a mountainous region that encompassed the eastern part of
Asakura-shi, Fukuoka Prefecture and the northern part of Hita-shi, Oita Prefecture on the northern
Kyushu in Japan (Figure 1). The topography of the study area is variable, ranging from 50 to 600 m
in elevation [23]. The region is in the warm temperate climate zone. Monthly mean temperatures
range from 4.5 ◦C in January to 27.1 ◦C in August, whereas the lowest and highest monthly rainfall
amounts are 54.4 mm in December and 354.1 mm in July (Figure 2), based on 30 year measurements
(1981 to 2010) at the Asakura weather station (33◦24.4′N, 130◦41.7′E, 38 m ASL) of the Automated
Meteorological Data Assimilation System (AMeDAS).

The study area is underlain mainly by high-pressure schists and pelitic schists metamorphosed in
Late Triassic time, and Late Cretaceous granodiorites [26]. Evergreen needleleaf forests cover the area
with the dominant overstory species being Japanese cedar (Cryptomeria japonica), Japanese cypress
(Chamaecyparis obtusa), and sawara cypress (Chamaecyparis pisifera) [27]. Small patches of Japanese red
pine (Pinus densiflora) communities and orchards are found throughout the forests.
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Figure 1. Map of study area encompassing the eastern part of Asakura-shi, Fukuoka and the northern
part of Hita-shi, Oita, Japan. The vector layer delineating landslide areas, damaged roads, and flooded
areas along with unassessed areas was obtained from the Geospatial Information Authority of Japan
(GSI) [24] (see Section 2.3). The Himawari-8 AHI smoothed and gap-filled NDVI image of 21 June 2017
was used in the upper-left and lower-left frames. The coastline vector dataset used in those two frames
was obtained from the GSI [25]. The map was created with ArcGIS® software (ArcGIS® Pro 2.4.1, Esri,
Redlands, CA, USA, http://www.esri.com).

Figure 2. Monthly mean temperature (filled circles and lines) and monthly precipitation (bars) at
Asakura station (N 33◦24.4′, E 130◦41.7′, 38m ASL), Fukuoka, Japan. These are 30 year mean values
(from 1981 to 2010).

2.2. Torrential Rain and Landslides

The study area was hit by torrential rain on 5 July 2017. After the passing of Typhoon Nanmadol,
a linear rainband formed over the northern Kyushu area, which brought about the torrential rain [28].
During the event, the maximum one hour precipitation amounts of 129.5 and 87.5 mm were observed,
respectively, at the Asakura and Hita (33◦19.3′N, 130◦55.7′E, 83 m ASL) weather stations, which are
also part of AMeDAS [29]. The maximum 24 hour precipitation amounts were 545.5 mm and 370 mm
at Asakura and Hita, respectively, for the event. Kato et al. [30] and Ozaki et al. [31] describe the
characteristics of the rain event in more detail.

http://www.esri.com
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The torrential rain caused landslides on many slopes of the mountainous region [32] (see Figure 1).
The rainwater also flooded the riverine system in the region, causing riverbank and riverbed erosions.
Debris and mud flows and fallen trees due to the landslides and erosions struck and damaged roads,
railways, and houses in Asakura and Hita Cities. The death tolls were 37 in Asakura City and three in
Hita City, and the two cities together had 336 and 1096 completely and partially destroyed houses,
respectively [33].

Murakami and Yasuda [34] reported that landslides occurred in a 5 km (North–South) by 15 km
(East–West) area, where it rained more than 500 mm during a 12 hour period from 10:00 a.m. to
10:00 p.m. on 5 July 2017. Furthermore, landslides were concentrated in an area where 3 hour total
rainfall amounts exceeded 200 mm during the torrential rain event [35]. This area corresponded to the
region bounded by 33◦22′N–33◦25′N and 130◦44′E–130◦32′E (Figure 1). No significant correlations
between the occurrences of landslides and underlying rock types were found, according to the National
Research Institute for Earth Science and Disaster Resilience (NIED) of Japan [36].

2.3. Landslide Data

A vector dataset of the study area delineating landslide areas along with damaged roads and
flooded areas, was obtained from the Geospatial Information Authority of Japan (GSI) [24] (see Figure 1).
The vector layer was derived by digitizing landslide areas, flooded areas, and damaged roads identified
visually on orthophoto mosaics. The orthophoto mosaics were created from aerial photos acquired by
GSI with an airplane on 13, 30, and 31 July 2017, and by the Ministry of Land, Infrastructure, Transport
and Tourism with a helicopter on 8 July 2017. The aerial survey of 13 July 2017 acquired photos
with near complete coverage of the impacted areas [37]. Portions of the mosaics affected by clouds
and/or cloud shadows were not inspected for landslides and indicated as “unassessed areas” in the
vector dataset. No ground-based validation of this landslide map was made due to the emergency
situation [24].

The landslide polygons were spatially aggregated into 0.02◦ by 0.02◦ grid cells as the percentage
of landslide areas for direct pixel-to-pixel comparisons with AHI NDVI data. A 0.01◦ by 0.01◦ linear
latitude–longitude grid was overlaid onto the landslide polygon dataset. For every 0.01◦ by 0.01◦ grid
cell, we applied a 0.005◦ buffer to increase the cell dimension to 0.02◦ by 0.02◦, resulting in 0.02◦ by
0.02◦ grid cells spaced at 0.01◦ intervals. The percentage of landslide areas was computed for each
grid by dividing a total of landslide areas found within a 0.02◦ by 0.02◦ grid cell by the area of the
corresponding grid cell. The 0.02◦ by 0.02◦ grid size was used by following Yan et al. [20] that used the
0.02◦ by 0.02◦ grid cells, considering the effective resolution of AHI off-nadir pixel observations.

2.4. Himawari Data

Himawari-8 AHI precisely geolocated apparent reflectance data covering Japan (N 50◦–N 20◦

and E 120◦–E 150◦) were obtained for a period of 1 January 2016 to 31 December 2017 from the Center
for Environmental Remote Sensing (CERES) at Chiba University, Japan (http://www.cr.chiba-u.jp/

databases/GEO/H8_9/FD/index.html). These data were on a 0.005 degree (red band) and 0.01 degree
(blue, green, and NIR bands) linear latitude-longitude grid. The red band images were spatially
aggregated into 0.01 degree pixels by taking arithmetic means of 2-by-2 pixels. The apparent reflectance
data were converted to top-of-atmosphere (TOA) reflectance:

ρTOA
b,i =

ρ∗b,i·d
2

cosθi
(1)

where

ρTOA
b,i TOA reflectance for band b at pixel i;

ρ∗b,i Apparent reflectance for band b at pixel i;

http://www.cr.chiba-u.jp/databases/GEO/H8_9/FD/index.html
http://www.cr.chiba-u.jp/databases/GEO/H8_9/FD/index.html
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d Earth-Sun distance (AU);
θi Solar zenith angle at pixel i.

The Earth-Sun distance was calculated on a daily basis whereas the solar zenith angle was
calculated on a per scene, per pixel basis using an algorithm described in Reda and Andreas [38].
With Himawari-8 being a geostationary satellite, the illumination geometry of AHI observations
constantly changed throughout the year. The NDVI was computed from the derived red and NIR
TOA reflectances:

NDVI =
ρTOA

NIR − ρ
TOA
red

ρTOA
NIR + ρTOA

red

(2)

AHI NDVI data collected between 9:00 and 15:00 Japan standard time (± 3 hours of local noon)
were retained for analysis as TOA NDVI were shown to change little during this time period [39].
For our study sites, the solar zenith angle (SZA) of AHI observations ranged from 10◦ to 73◦ with 42◦

being the annual average. Diurnally, they varied from 10◦ to 44◦ on the summer solstice, from 33◦ to
58◦ on the equinoxes, and from 57◦ to 73◦ on the winter solstice. AHI observations with SZA greater
than 70◦ were only found close to 9:00 in the winter period (the end of November to the beginning of
February). AHI view zenith and azimuth angles calculated by assuming negligible temporal variation
of the Himawari-8 satellite position [40] were 40◦ and 162◦ degrees, respectively, for the study area.

2.5. VIIRS, Landsat-8, and Sentinel-2 Data

In order to compare the latency of obtaining cloud-free data among different sources, we obtained
VIIRS data from the NOAA Comprehensive Large Array-data Stewardship System (CLASS, https:
//www.class.noaa.gov/), Landsat-8 Operational Land Imager (OLI) data from the USGS EarthExplorer
(https://earthexplorer.usgs.gov/), and Sentinel-2A/B MultiSpectral Instrument (MSI) data from the
Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/) over the study area for a period
from 5 July 2017 to 31 July 2017. VIIRS red and NIR (I1 and I2, respectively) TOA reflectances, and
sun and view zenith and azimuth angles were stitched and remapped onto a 0.00375 degree linear
latitude–longitude grid and reduced into TOA NDVI using Equation (2). Stitching and remapping were
made on a per orbit basis as VIIRS ground swaths from two adjacent orbits overlapped significantly
(~30%). All OLI and MSI scenes acquired for the one month period were obtained and their true-color
composites were visually inspected to estimate the degree of cloud contamination over the study area.
These data were all open access data, distributed free of charge.

2.6. Sunshine Duration Data

We also obtained hourly sunshine duration data (decimal hour units) for a period of 1 July 2017
to 31 August 2017 for the Asakura weather station as an independent measure of sky conditions.
Sunshine duration is defined as “the period during which direct solar irradiance exceeds a threshold
value of 120 W/m2” [41]. In practice, this threshold can be associated with the appearance of shadows
behind illuminated objects.

3. Results

3.1. Landslide Areas and AHI NDVI

The derived percent landslide areas are shown as a map in Figure 3. At this spatial resolution, the
percent landslide area values were 20% or less. The areas with >5% landslide areas were concentrated
and only found in approximately a 4 km (North–South) by 12 km (East–West) region, corresponding to
the most heavily rained region [34,35].

https://www.class.noaa.gov/
https://www.class.noaa.gov/
https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/
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Figure 3. Percent landslide areas derived from the landslide polygon dataset. The damaged roads [24]
are shown as black lines for reference. The circled letters (a, b, c, and d) correspond to the locations
where AHI NDVI temporal signatures in the next figure (Figure 4) were extracted. The map was created
with ArcGIS® software (ArcGIS® Pro 2.4.1, Esri, Redlands, CA, USA, http://www.esri.com).

AHI NDVI temporal profiles of landslide-affected areas with various degrees are shown in Figure 4.
These NDVI temporal profiles had a number of data gaps associated with persistent cloud cover, from
January 2016 to April 2016, for June–July of the years 2016 and 2017, and in October 2017. All of the
NDVI profiles also had one long peak growth period for the year 2016, starting in May and ending in
October (Figure 4). For the year 2017, whereas the NDVI temporal profile from an unaffected area
by landslides had a similar long peak growth (Figure 4a), the NDVI for the other landslide-affected
areas abruptly dropped after the torrential rain event (Figure 4b–d). The degree of the NDVI changes
appeared proportional to the percent landslide areas.

To quantify the NDVI change due to landslides, NDVI difference (∆NDVI) was computed by
subtracting post-event smoothed NDVI values from pre-event smoothed NDVI values on a per pixel
basis. Five day local means centered on 8 June 2017 and 23 August 2017 were used as the pre-event and
post-event NDVI values, respectively, based on the quality of the smoothed NDVI profiles. A smoothing
algorithm sometimes removed clear-sky observations when they were bounded by consecutive cloudy
observations, resulting in a concave shape in the NDVI profile (e.g., the small concave feature after the
torrential rain in Figure 4a). The smoothing algorithm is described in detail in Appendix A.

http://www.esri.com
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Figure 4. AHI NDVI temporal profiles of landslide-affected pixels with varying degrees: (a) 0%,
(b) 18%, (c) 15%, and (d) 11% landslide areas. The filled squares are AHI NDVI values, whereas the red
lines are the smoothed NDVI profiles (see Appendix A). The extraction locations of these profiles are
shown in Figure 3.

The derived ∆NDVI is shown in a map form in Figure 5. The spatial distribution of high ∆NDVI
occurrences was very similar to that of the landslide areas, particularly for the region that had greater
than 5% landslide areas (the white line boxed region in Figure 5). Those pixels with negative ∆NDVI
were rice paddy fields or grasslands whose vegetation (and NDVI) peaked during the month of August.

Using the observation pairs in the boxed region in Figure 5, the percent landslide area was
regressed against ∆NDVI with a simple linear model. The relationship was statistically significant
(p-value < 0.01, R2 = 0.61, and r = 0.78) (Figure 6). The regression results (the 95% prediction interval)
indicated that, for a pixel with ∆NDVI greater than 0.005, we could be 95% confident that landslides
occurred on that pixel and the areas impacted by landslides were ~7% on average (Figure 6).
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Figure 5. ∆NDVI (bottom) compared to percent landslide areas (top). The white line boxes on the maps
represent the region used for subsequent correlative analysis (see the text and Figure 6). The damaged
roads [24] are shown as black lines for reference. The map was created with ArcGIS® software (ArcGIS®

Pro 2.4.1, Esri, Redlands, CA, USA, http://www.esri.com).

Figure 6. Percent landslide area vs. ∆NDVI crossplot. The C.I. and P.I. are, respectively, the confidence
and prediction intervals.

3.2. Comparison of AHI to VIIRS, Landsat-8, and Sentinel-2

In Figure 7a, the same AHI NDVI temporal profile as plotted in Figure 4b is plotted along with
one hour sunshine duration data for a period of 4 July 2017 to 31 July 2017. The extraction location of

http://www.esri.com
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the AHI NDVI profile and the Asakura weather station were ~6.5 km apart (see Figure 3). AHI NDVI
temporal changes were very similar to those of the sunshine duration. AHI NDVI was greater than
0.6 when the sunshine duration was longer than one hour. Based on the NDVI values supported by
the sunshine duration data, the very first clear-sky observations of AHI were obtained over the site
on 13 July, 8 days after the torrential rain event (Figure 7a). AHI was also able to acquire clear-sky
observations on 15 July. The weather conditions apparently deteriorated and the next favorable sky
conditions occurred on 21 July. It was then 29 and 30 July when additional clear-sky observations were
acquired with AHI. We conducted the same analysis on AHI NDVI temporal profiles for other pixels
inside the boxed region in Figure 5, which indicated that AHI accomplished cloud-free observation
coverage over the whole region with those acquired by 12:30 p.m. Japan Standard Time (JST) on
13 July 2017, 8 days after the rain event.

Figure 7. AHI NDVI (a) and VIIRS NDVI (b) plotted along with sunshine durations at Asakura station
(N 33o24.4′, E 130o41.7′, 38 m ASL), Fukuoka, Japan.

Plotted in Figure 7b are VIIRS NDVI values extracted over a 2 pixel by 2 pixel window
corresponding to the AHI NDVI extraction location (i.e., four pixels). As a wide-swath sensor
in near-polar sun-synchronous orbit, VIIRS acquired one or two observations per day. Based on
the NDVI values supported by the sunshine duration data, VIIRS also acquired the first clear-sky
observations on 13 July and all of the four pixel observations were cloud-free. The next clear-sky
observations were acquired on 27, 28, and 29 July where two, one, and one observations out of the four
were cloud-free, respectively (Figure 7b). In contrast to AHI, no cloud-free observations were acquired
with VIIRS on 15, 21, and 30 July.

AHI NDVI and natural-color composite image pairs at select observation times for 13 July 2017
are shown in Figure 8. The landslide-affected region was covered by thick clouds at 9:00 a.m. JST
(Figure 8a,b) which broke up and were dissipating at 9:50 a.m. JST (Figure 8c,d). At 10:50 a.m. JST
(~Landsat-8 overpass time), the region was contaminated by several thick and thin clouds (Figure 8e,f).
At 12:20 p.m. JST, there were apparently little or no clouds over the region (Figure 8g,h). A number of
patchy clouds, including one in the middle of the most severely impacted region, were seen in the
area at 12:50 p.m. (Figure 8i,j). VIIRS NDVI and natural-color composite images of 13 July 2017 are
shown in Figure 9. A number of patchy clouds, including one in the lower middle of the most severely
impacted region, were seen on the VIIRS scene. The VIIRS scene was more cloud-contaminated than
the 12:20 p.m. AHI scene, but less cloud-contaminated than the 10:50 a.m. AHI scene.
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Figure 8. AHI NDVI and natural-color composite image pairs at select observation times for 13 July
2017: (a) NDVI and (b) color composite at 9:00 a.m. JST; (c) NDVI and (d) color composite at 9:50 a.m.
JST; (e) NDVI and (f) color composite at 10:50 a.m. JST; (g) NDVI and (h) color composite at 12:20 a.m.
JST; and (i) NDVI and (j) color composite at 12:50 p.m. JST. The white line boxes represent the region
used for the correlative analysis (see Section 3.1 and Figure 6). The map was created with ArcGIS®

software (ArcMapTM 10.6.1, Esri, Redlands, CA, USA, http://www.esri.com).

http://www.esri.com
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Figure 9. VIIRS images over the study area for 13 July 2017: (a) NDVI and (b) natural-color composite.
The VIIRS overpass time was ~12:50 p.m. JST on the date. The white line boxes represent the region
used for the correlative analysis (see Section 3.1 and Figure 6). The map was created with ArcGIS®

software (ArcMapTM 10.6.1, Esri, Redlands, CA, USA, http://www.esri.com).

Landsat-8 OLI and Sentinel-2A/B MSI acquired three images each during the 5 July 2017 to
31 July 2017 period (Table 3). The study area happened to be located on an overlapped region of two
neighboring paths of the World Reference System-2 and, thus, OLI images were available every ~8 days.
Landsat-8 OLI acquired the first fair-sky condition image after the event on 13 July, the same as AHI
and VIIRS as the date happened to coincide with a Landsat overpass date (Figure 10b). The second
OLI image acquired on 20 July was heavily cloud-contaminated (Figure 10c). The third OLI image was
acquired on 29 July and was another fair-sky image (Figure 10d). On the first and third OLI images,
landslides were seen as light brown color objects due to the loss of vegetative cover.

Unlike Landsat-8, the three Sentinel-2A/B MSI images were acquired over the study area at
irregular intervals on 6, 21, and 26 July 2017. The first MSI image was heavily cloud-contaminated and
no surface was visible (Figure 11a). The second image was acquired over fair-sky conditions and ~80%
of the heavily-landslide region was visible (Figure 11b). More than a half of the impacted region was
covered by patchy clouds on the third image (Figure 11c). On the 21 July and 26 July MSI images, the
areas outside patchy clouds were actually covered by optically thin clouds, but landslides could still be
seen and recognizable after applying contrast stretching owing to MSI’s 10m spatial resolution.

Table 3. Landsat-8 OLI and Sentinel-2A/B MSI Images Acquired during 5 July 2017 to 31 July 2017 and
Their Cloud Cover Condition Estimates.

Sensor Image Date (JST) Cloud Cover Viewable Area

Landsat-8 OLI

2017-07-13 (10:47 am) Fair ~80% of the impacted region visible

2017-07-20 (10:53 am) Cloudy <5% of the impacted region visible

2017-07-29 (10:47 am) Fair ~80% of the impacted region visible

Sentinel-2A/B MSI

2017-07-06 (10:56 am) Cloudy 0% of the impacted region visible

2017-07-21 (10:56 am) Fair ~80% of the impacted region visible

2017-07-26 (10:56 am) Fair 40–50% of the region visible

http://www.esri.com
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Figure 10. Landsat-8 OLI true-color composite images acquired in the month of July 2017 after the
torrential rain event. The extent of the images corresponds to the white line boxed region in Figure 5.
The landslide areas are shown as red polygons in (a) and the damaged roads are shown as black lines
in (a–d) for reference (the GSI, https://www.gsi.go.jp/common/000194860.zip). The map was created
with ArcGIS® software (ArcMap™ 10.6.1, Esri, Redlands, CA, USA, http://www.esri.com).

https://www.gsi.go.jp/common/000194860.zip
http://www.esri.com
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Figure 11. Sentinel-2A/B MSI true-color composite images acquired in the month of July 2017 after the
torrential rain event. The extent of the images corresponds to the white line boxed region in Figure 5.
The landslide areas are shown as red polygons in (a) and the damaged roads are shown as black lines in
(a–c) for reference Sentinel-2A/B MSI (the GSI, https://www.gsi.go.jp/common/000194860.zip). The map
was created with ArcGIS®software (ArcMapTM 10.6.1, Esri, Redlands, CA, USA, http://www.esri.com).

Lastly, we determined the time at which very first clear-sky observations were obtained with AHI
for the boxed region in Figure 5 on 13 July 2017, the first sunny day after the rain event (Figure 12).
The analysis of AHI NDVI temporal profiles with the sunshine duration data indicated that the NDVI
slightly varied over time even over clear-sky conditions (i.e., Figure 7). Thus, we considered those
observations whose NDVI values were greater than 0.95 times the maximum NDVI of that date
confidently clear and recorded the time of first such observations found in AHI 10 min resolution data
for every pixel. As seen in Figure 12, the first clear observations were acquired at various times from
9:20 a.m. JST to 12:30 p.m. JST, or a ~3 hour period. For the lower-left corner pixel, the first clear-sky
observation was acquired at 12:40 p.m., but there occurred no landslide at this location (see Figure 5).

https://www.gsi.go.jp/common/000194860.zip
http://www.esri.com
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Figure 12. AHI first clear-sky observation time on 13 July 2017. The first sunny conditions after the
torrential rain event of 5 July 2017 occurred over this region on that date. The damaged roads [24] are
shown as black lines for reference. The map was created with ArcGIS® software (ArcGIS® Pro 2.4.1,
Esri, Redlands, CA, USA, http://www.esri.com).

4. Discussions

4.1. AHI Landslide Detection and Latency

The study results have shown that Himawari-8 AHI NDVI, while moderate/low in spatial
resolution, successfully detected landslides where the percent impacted areas were 7% or greater.
Likewise, AHI NDVI 10 min temporal resolution data acquired cloud-free observations on the first
sunny day (8th day) after the disaster event and also obtained cloud-free observation coverage of the
whole landslide region by 12:30 p.m. JST on that day. This timing was comparable to aerial survey,
which obtained near complete airphoto coverage of the region on the same 8th day [37], slightly better
than SNPP VIIRS and Landsat-8 OLI, and better than Sentinel-2A/B MSI. The first near cloud-free
VIIRS and OLI images were also acquired on the same 8th day after the rain event, but some part of
the images were covered by patchy clouds. The first fair-sky MSI image was acquired on the 16th day
after the event, 8 days later than AHI.

For this particular study, we were able to obtain a near cloud-free OLI image of the region with
more landslides on the first sunny day after the torrential rain event simply because the first sunny
day happened to coincide with a Landsat-8 overpass date. Sentintel-2 MSI did not have the claimed
5 day temporal resolution for the study area and, even if it had acquired image data every 5 days
(i.e., on 11 and 16 July 2017), it would still have been the same date of 21 July 2017 on which MSI had
acquired its first fair-sky image after the rain event. Based on the sunshine duration data and AHI
NDVI temporal profiles, it was apparently cloudy on 11 and 16 July 2017. These results indicate that
the chance of obtaining cloud-free imagery from Landsat- and Sentinel-type satellites may largely vary
geographically. It should be noted, however, that OLI and MSI images were found still very useful
for visual assessment of impacted areas even when they were covered by clouds as long as clouds
were transparent to semi-transparent (e.g., cirrus clouds), owing to their high spatial resolution. Basic,
conventional image enhancement techniques such as contrast stretching, easily improved the visibility
of surface features well enough to observe and delineate landslides on the enhanced images. This
would not be an applicable approach for the AHI or VIIRS moderate/low spatial resolution NDVI-based
landslide detection method, as semi-transparent clouds lower the NDVI.

The study results also indicated that AHI had a higher chance of obtaining cloud-free observations
than VIIRS due to its 10 min temporal resolution. There were, however, days when VIIRS acquired
cloud-free observations, but AHI did not. On these days, not all the four VIIRS pixels within the
corresponding AHI 1◦ by 1◦ grid were cloud-free, indicating the advantage of higher spatial resolution
data. There were also days on which AHI NDVI and sunshine duration data indicated were sunny for

http://www.esri.com
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most of the 6 hour (9:00 a.m. to 3:00 p.m. JST) analysis period, but VIIRS did not obtain any cloud-free
observations. This can be attributed to the viewing geometry difference between the two sensors. It is
likely that clouds had only been visible from the VIIRS line of sight, but not from AHI’s view zenith
and azimuth angles.

4.2. AHI Landslide Detectability

Can AHI detect landslides in other areas under different conditions? To address this question, the
same methods were applied for detecting landslides in a mountainous region in Hiroshima, Japan
(Figure 13) due to another torrential rain event, the “Western Japan Heavy Rain of July 2018” [42]. This
heavy rain event was characterized by rainfall that was unusually widespread spatially and persistent
temporally [43]. During the event, the maximum one hour and 24 hour precipitation amounts of
51.5 and 309.5 mm were observed at the AMeDAS Kure weather station (N 34◦14.4′, E 132◦33.0′, 4 m
ASL) in Hiroshima [44]. In the prefecture, the death toll was 115 and 15,828 houses were completely
destroyed or partially damaged [45]. The primary rock types in this mountainous region are Late
Cretaceous rhyolites (Takada Rhyolites and Hikimi Group) and granites (Hiroshima Granitic Rocks) [26].
The region is covered by evergreen needleleaf forests, with the dominant overstory species of Japanese
red pine (Pinus densiflora), Japanese cedar (Cryptomeria japonica), Japanese cypress (Chamaecyparis
obtusa), and sawara cypress (Chamaecyparis pisifera), which are interspersed with deciduous broadleaf
Quercus serrata communities [27]. A vector dataset of landslides and debris-mud flows delineated
based on visual interpretations of aerial photos acquired by GSI after the rain event [46] was obtained
and used as a reference (see Figure 13a,c) [47]. Additional AHI data were processed using the methods
described in Section 2.4 and AHI NDVI data were extended to cover the year 2018.

The percent landslide area values in this event were not as large as those in the northern Kyushu
event (Figure 13a). Those greater than 10% were found in a 3 km (North–South) by 4 km (East–West)
region (inside the white line box in Figure 13a). AHI NDVI extracted from the region abruptly dropped
after the rain event (Figure 13b), the same as what was observed for the northern Kyushu rain event.
The spatial distribution of ∆NDVI was comparable to that of the landslide-impacted area (Figure 13c);
however, ∆NDVI was apparently a good indicator of landslides when the percent landslide area was
large (>7%) (Figure 13d). These results are comparable to those obtained for the northern Kyushu event.
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Figure 13. Summary of AHI NDVI landslide detection analysis for a torrential rain event in Hiroshima,
Japan in the summer of 2018. The location of the analysis area is indicated on the two frames at the
bottom center. (a) Percent landslide areas (including debris-mud flow areas) derived from the landslide-
and debris-mud flow polygon dataset (shown as “Landslides” on the map) [47]. The circled letters
(A, B, and C) correspond to the locations where AHI NDVI temporal signatures in (b) were extracted.
The white line box represents the region used for the correlative analysis in (d). (b) AHI NDVI temporal
profiles of landslide- and debris-mud flow-affected pixels. The filled squares are AHI NDVI values
whereas the red lines are the smoothed NDVI profiles (see Appendix A). (c) ∆NDVI (pre-event NDVI
minus post-event NDVI). Five day local means centered on 18 June 2018 and 5 August 2018 were
used as pre-event and post-event NDVI values, respectively. (d) Percent landslide and debris-mud
flow area vs. ∆NDVI crossplot. The C.I. and P.I. are, respectively, the confidence and prediction
intervals. The maps were created with ArcGIS® software (ArcGIS® Pro 2.4.1, Esri, Redlands, CA, USA,
http://www.esri.com).

4.3. Potential Operational Scenarios

The results of this study suggest that new generation geostationary satellite data can be useful
for post-event, region-wide initial assessment of landslide-impacted areas after a heavy rain event
because of their hyper-temporal resolution. Given that geostationary satellite data have operationally
been used for the monitoring of evolving weather conditions and weather forecasting, it is a logical
and new application of geostationary satellite data to monitor the surface conditions simultaneously.
That is, while monitoring post-event weather conditions with geostationary satellite data, preliminary
assessment of the area of impact (AOI) can be made at the same time. The derived preliminary impact
assessment information can be used for more detail assessment planning with drone, helicopter, and
airborne digital photography. In another application field of wildfire science, several studies have
reported the great advantage of Himawari-8 AHI 10 min resolution data, which allowed for the near
real-time monitoring of both the spread rate and direction of wildfire in Australia [21,22].

http://www.esri.com
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This study focused on the utility of Himawari-8 AHI NDVI data for the initial situational
assessment of landslide-impacted areas. Geostationary satellite data have been shown to obtain
finer NDVI temporal signatures than conventional polar-orbiting satellites [48]. Several researchers
found remote sensing time series image data useful for studying the long-term impact of extreme
weather events as well as repeated events on the ecosystem structure and functions [49–52]. Fine NDVI
temporal signatures obtainable with geostationary satellite data present the potential to improve our
understanding of long-term ecological impacts of extreme weather events. The improved ability of
geostationary satellite data to characterize the ecosystem structure and functions is also expected to be
useful for predicting and delineating landslide-suspected areas as part of pre-event assessment because
the susceptibility of an area to landslide is often associated with the ecosystem structure of the area
(e.g., primary vs. regenerating forests, and the existence of understory cover) [53,54]. Including other
geophysical variables, such as those describing topographic characteristics, is expected to augment
and enhance the satellite-based landslide prediction [55].

Recently, several studies reported the potential of satellite synthetic aperture radar (SAR) data
for detecting landslides due to heavy rains [56,57]. Their detection methodologies were based on
the backscattering coefficient difference and the intensity correlation between pre- and post-disaster
SAR images. Radar remote sensing is an attractive tool to map landslides for their all weather and
day/night observation capabilities, but the current methodologies still suffer from low accuracies
(i.e., 30–40% producer’s and 30–40% user’s accuracies [56,57]). One effective approach can be to take
advantage of all the weather observation capabilities of SAR data to augment the AOI assessment with
hyper-temporal geostationary satellite data.

5. Conclusions

In this study, we investigated the utility of Himawari-8 AHI data for mapping the spatial extent
of landslide-affected areas due to the torrential rain event that hit the northern Kyushu, Japan on
5 July 2017. The study results have shown that AHI NDVI moderate/low spatial resolution data
successfully detected landslides where the percent landslide area was greater than 7%. The study has
also shown that AHI NDVI 10 min temporal resolution data obtained near cloud-free coverage of the
impacted region by the 8th day after the disaster event. This timeline was comparable to aerial survey,
slightly better than SNPP VIIRS and Landsat-8 OLI, and better than Sentinel-2A/B MSI. These results
suggest that new generation geostationary satellite data can be useful for post-event, region-wide
initial assessment of disaster-impacted areas. Hyper-temporal, high-spatial resolution remote sensing
is one significant gap in the current remote sensing technologies and the most desirable for disaster
response and management. Geostationary high-spatial resolution satellite sensors may be one way to
improve and enhance the satellite-based monitoring capabilities.
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Appendix A. AHI NDVI Data Filtering and Smoothing

AHI NDVI data contained a large number of suspicious observations due to cloud contaminations
and red-to-NIR inter-band misregistration [48] (see Figure 4). Thus, we extracted smoothed trends
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from AHI NDVI by adapting and applying a combination of popular filtering and smoothing methods
to AHI 10 min resolution data [58,59]. Our algorithm first removed all observations whose NDVI
values were below the 95th percentile on a daily basis. It then applied a 7 day moving window filter to
remove remaining suspicious observations whose NDVI values were lower than the local maximum
(found in the moving window) minus 0.06 NDVI units. The algorithm further applied a 31 day moving
window filter to remove additional observations whose NDVI values were larger or smaller than the
local mean ± two local standard deviations computed from all NDVI values found within the moving
window. Third, we applied the best index slope extraction (BISE) method [60] to select a final set of row
observations. Lastly, the algorithm linearly interpolated NDVI values for days without observations
(daily time-step) and applied a Savitzky–Golay lowpass filter (31 days).
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