
remote sensing  

Article

The Performance Analysis of INS/GNSS/V-SLAM
Integration Scheme Using Smartphone Sensors for
Land Vehicle Navigation Applications in
GNSS-Challenging Environments

Kai-Wei Chiang 1, Dinh Thuan Le 1,*, Thanh Trung Duong 2 and Rui Sun 3

1 Department of Geomatics, National Cheng Kung University, Tainan 701, Taiwan;
kwchiang@mail.ncku.edu.tw

2 Department of Geomatics and Land-administration, Hanoi University of Mining and Geology,
Hanoi 10000, Vietnam; duongthanhtrung@humg.edu.vn

3 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
rui.sun@nuaa.edu.cn

* Correspondence: P68057014@mail.ncku.edu.tw; Tel.: +886-6237-0876

Received: 23 April 2020; Accepted: 26 May 2020; Published: 28 May 2020
����������
�������

Abstract: Modern smartphones contain embedded global navigation satellite systems (GNSSs),
inertial measurement units (IMUs), cameras, and other sensors which are capable of providing user
position, velocity, and attitude. However, it is difficult to utilize the actual navigation performance
capabilities of smartphones due to the low-cost and disparate sensors, software technologies adopted
by manufacturers, and the significant influence of environmental conditions. In this study, we proposed
a scheme that integrated sensor data from smartphone IMUs, GNSS chipsets, and cameras using
an extended Kalman filter (EKF) to enhance the navigation performance. The visual data from the
camera was preprocessed using oriented FAST (Features from accelerated segment test) and rotated
BRIEF (Binary robust independent elementary features)-simultaneous localization and mapping
(ORB-SLAM), rescaled by applying GNSS measurements, and converted to velocity data before
being utilized to update the integration filter. In order to verify the performance of the integrated
system, field test data was collected in a downtown area of Tainan City, Taiwan. Experimental results
indicated that visual data contributed significantly to improving the accuracy of the navigation
performance, demonstrating improvements of 43.0% and 51.3% in position and velocity, respectively.
It was verified that the proposed integrated system, which used data from smartphone sensors,
was efficient in terms of increasing navigation accuracy in GNSS-challenging environments.

Keywords: INS; integration; smartphone; EKF; IMU; SLAM; GNSS-challenging environments

1. Introduction

Navigation involves the determination of the time-varying position, velocity, and attitude of a
moving body. Currently, navigation technologies are expanding at a phenomenal rate, especially within
the civilian sector, due to the increased availability of devices such as vehicle/personal navigators,
smartphones, tablets, and other handheld devices [1]. Modern mobile phones are powerful processing
devices with a host of onboard technologies of interest to navigation system designers. Due to the
increased accuracy and decreased cost of microelectromechanical sensors (MEMS) [2], smartphones
have been outfitted with various embedded sensors, such as global navigation satellite systems
(GNSSs), cameras, gyroscopes, accelerometers, and magnetometers. These improve the smartphone’s
usefulness to navigation systems.
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In hostile environments, such as in narrow street canyons, tunnels, or underground parking
garages, GNSS signals are prone to multipath errors or to being blocked, causing the data to be
insufficient for the purposes of vehicular navigation. The accelerometers and gyroscopes within a
smartphone can be used to provide a relative navigation solution. In terms of integration, an extended
Kalman filter (EKF) is the most popular choice as the main estimation algorithm for data fusion. GNSS is
used to correct for the systematic errors associated with the inertial sensors, which are composed
of biases, scale factors, and drifts, whereas the inertial navigation system (INS) is used as a bridge
for seamless navigation when the GNSS experiences an outage [3,4]. Although the integration of
INS/GNSS can compensate for the main drawbacks associated with low-cost INS, the navigation errors
can diverge rapidly in the absence of effective GNSS data. In recent years, the use of vision-based
sensors such as cameras in navigation has strongly increased because of the numerous associated
advantages. Their energy consumption is low, they can be manufactured in very small sizes, and their
cost is being dramatically reduced. A key problem, which is also the relative characteristic of visual
methods that directly impacts the success of these applications, is the estimation of location and
distance through the use of the information gathered by these visual sensors [5]. However, the solution
presented by visual sensors suffers from accumulated drift over time. Hence, there is a need to fuse
visual sensors with other sensors for long-term navigation.

In the literature, the integration of data from smartphone sensors for navigation purposes has
been investigated by many researchers. Walter et al. [6] proposed a system for car navigation involving
the fusion of data from internal smartphone sensors (e.g., gyroscope data) with car sensor data (e.g.,
speed information) to support navigation using the Global Positioning System (GPS). Although the
results showed that the system was able to maintain higher positioning accuracy during GPS dropouts,
this system utilized only the gyroscope among the many other available smartphone sensors for the
strapdown algorithm. Niu et al. [7] utilized data from the inertial sensor of an iPhone 4 to aid in GPS
positioning for car navigation. The results from road test showed that the MEMS inertial measurement
unit (IMU) could be used to enhance the GPS positioning. Additionally, the nonholonomic constraints
(NHC) [8] could be used to improve the navigation performance significantly. However, in this
research, data from another GPS receiver was used in the testing instead of the smartphone GPS data.
Gikas and Perakis [9] presented a rigorous performance evaluation of smartphone GNSS/IMU sensors
for intelligent transportation systems (ITS) applications. The research involved performing vehicle
cruising and maneuvering tests with two kinds of smartphones. However, this study addressed only
the individual performance of each sensor, and did not address an integrated solution. Al-Hamad
and El-Sheimy [10] focused on using smartphones as part of a mobile mapping system (MMS). In this
work, the solutions from the smartphone’s MEMS-based IMU and low-cost GPS receiver were used as
the initial values for the exterior orientation parameters (EOPs) of each image. However, this work
mainly focused on a mapping application instead of trajectory evaluation. Zeng et al. [11] performed
a study investigating seamless pedestrian navigation using smartphone sensors. Many smartphone
sensors were utilized in this work. However, some of them were used for the purpose of indoor
and outdoor environmental identification. Despite the importance of vehicular navigation, this work
focused only on pedestrian navigation based predominantly on the pedestrian dead reckoning (PDR)
algorithm. Yan et al. [12] proposed a novel three-dimensional (3D) passive vision-aided PDR to
continuously track user movements on different floors of a building by integrating the results of inertial
navigation and the faster R-CNN (Regions with convolutional neural network features)-based real-time
pedestrian detection. The test results demonstrated that the proposed method achieved the levels of
3D accuracy required by several emergency services. However, the visual detection used in this work
was applied to floor plan detection. Wu et al. [13] presented a square-root inverse sliding window filter
(SR-ISWF) for a vision-aided inertial navigation systems (VINS) and conducted experiments using
a commercial-grade Samsung S4 mobile phone. Although the experimental results demonstrated
the same level of estimation accuracy as state-of-the-art VINS algorithms, this study only involved
testing the system within an indoor environment over a short travel distance. Speroni et al. [14]
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proposed a low-cost visual simultaneous location and mapping (V-SLAM) prototype using webcams
and an Android smartphone for outdoor applications. The authors performed an experiment using
their system in a car and provided preliminary results. However, this study involved the use of
stereoscopic cameras instead of smartphone cameras. Hence, time synchronization was arguably
a problem. Moreover, this work lacked a reference system to enable the generation of a reference
trajectory (ground truth trajectory) for accuracy evaluation.

To the best of our knowledge, there are no studies that have rigorously investigated fusing
data from IMU, GNSS chipset, and camera from smartphone for long-term land vehicle navigation
applications in GNSS-challenging environments. The three main contributions of this work can be
summed up as follows. First, a self-developed smartphone app was used for experimental data
collection to avoid the problem of time synchronization between sensors. Second, the problem of scale
in monocular solutions was solved at the beginning using measurements from GNSS chipset before
this information was utilized to update the integrated filter. Finally, the proposed scheme was tested in
different GNSS-challenging environments together with a high-precision reference system to verify
its performance.

The remainder of the paper is organized as follows. Section 2 presents the proposed integration
scheme, EKF-based data fusion, and overview of V-SLAM. Section 3 describes the field test and
data processing strategy. The experimental results and discussion are then presented in Section 4.
Finally, some concluding remarks and a brief outline for future research are presented in Section 5.

2. Methods

2.1. Integration Scheme

The proposed integration scheme is illustrated in Figure 1. Taking the stability of the structure
and the computational cost of multi-sensor fusion into consideration, the system made use of a loosely
coupled scheme of INS/GNSS/V-SLAM integration.
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Figure 1. Inertial navigation system (INS)/global navigation satellite system (GNSS)/visual simultaneous
location and mapping (V-SLAM) integration scheme.

The IMU measurements were processed using an INS mechanization to provide a navigation
solution which accounted for position, velocity, and attitude with an unbounded error in the navigation
frame. The GNSS provided the absolute position as the predominant measurement update. For the
camera, oriented FAST (Features from accelerated segment test) and rotated BRIEF (Binary robust
independent elementary features)-simultaneous localization and mapping (ORB-SLAM) [15] were
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chosen as the V-SLAM method to process the data and provide measurement updates. Finally, these
data were fused together using an EKF estimation algorithm.

2.2. Model Design

The core system dynamics estimation model incorporated the inertial navigation equations in a
local level frame [16,17]. 
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.
rl is the time derivative of the position in the local level frame;

.
vl is the time derivative of

velocity;
.

Rl
b is the time derivative of attitude; f b is a specific force, sensed by the accelerometer; Ωb

ib is
the angular velocity of the body frame relative to the inertial frame, parameterized in the body frame;
Rl

b is the transformation matrix used to convert the body frame to the local level frame; and Ωl
ie and

Ωl
el are the rotation rate of the Earth with respect to the inertial frame and the rotation rate of the local

level frame with respect to the Earth, respectively. The matrix D−1 converts the linear velocity values
to angular changes in latitude and longitude:
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where M and N are radii of curvatures in the meridian and prime vertical of the reference ellipsoid,
respectively [18]. φ and h are latitude and altitude, respectively.

In practicality, to avoid a singularity, a quaternion is used to express the attitude.
During operation, the measured acceleration and rotation rate suffer from biases, scale factors,

and signal noise.
f̂ b = f b + S f f b + b f + wb (3)

Ω̂b
ib = Ωb

ib + SwΩb
ib + bw + ww (4)

To determine and compensate for those errors in IMU measurement, the bias, scale factor, and noise
of the accelerometer and gyroscope have to be included in the system dynamics estimation model.

The state model can be expressed in the following form [19]:

.
x = Fx + Gw (5)

Its discrete-time equation is as follows:

xk+1 = Φkxk + wk (6)

where x =
[
δr δv δψ bg ba sg sa

]T

21×1
is the state vector which includes the components

of position, velocity, attitude error, biases, and the scale factors of the gyroscope and accelerometer,
respectively. F is the state continuous time transition matrix, Φk is the state discrete-time transition
matrix from epoch k to k + 1, and wk is the system noise [20,21].

For GNSS measurements, the solution available from a smartphone includes only position.
The EKF measurement model can be expressed as follows:

zGNSS = (rINS − rGNSS) = HGNSSxk + vk (7)
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where rINS and rGNSS are positional vectors provided by INS and GNSS, respectively;vGPS HGNSS =[
I3×3 03×3 03×15

]
is the mapping matrix describing the relationship between the measurement and

the state vector; and vk ηris the noise in the GNSS positional measurements.

2.3. Estimation Using EKF

EKF equations are divided into two groups: Time predictions and measurement updates [22].
The time prediction equations are responsible for the forward time transition of the current epoch (k)
state to the following epoch (k + 1) state. The time prediction equations are as follows:

x̂−k+1 = Φkx̂+k (8)

P−k+1 = ΦkP+
k Φ

T
k + Qk (9)

where (ˆ) denotes estimation, Φk is the model transition matrix, Pk is the estimated covariance matrix
of the system state, Qk is the system noise matrix, (−) denotes the estimated values after prediction,
and (+) denotes the estimated values after update.

The measurement update equations incorporate new measurements into the state estimate
equations and are given as:

Kk = P−k HT
k

(
HkP−k HT

k + Rk
)−1

(10)

x̂+k = x̂−k + Kk
(
zk −Hkx̂−k

)
(11)

P+
k =

(
I −KkHT

k

)
P−k (12)

where Kk is the Kalman gain and Rk is the measurement covariance matrix. All noise terms were
considered to be white sequences with known covariance. The components and sequence of the
computational steps are shown in Figure 2.
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2.4. V-SLAM

SLAM is the process of using sensors to build a map of an unknown environment and
simultaneously estimating the sensors’ pose in this environment [23]. SLAM has been an attractive
research topic over the last few decades in the fields of robotics and computer vision [15,24], and has
recently expanded into other application areas, such as vehicle navigation. There are many kinds
of sensors that can be used in association with the SLAM technique, such as cameras, laser sensors,
or sonar sensors [25,26]. Cameras are inherently cheap, low in energy consumption, and provide rich
information about the surrounding environment. Therefore, many researchers focus on using cameras
in SLAM applications [27,28]. Because cameras are used as the main sensor, the technique is termed
V-SLAM. The flowchart describing the V-SLAM technique is shown in Figure 3.
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V-SLAM methods are mainly classified into two categories based on the number of cameras used:
Monocular and stereo methods [29]. Each of them has its own advantages and disadvantages in
terms of cost, computational complexity, and flexibility. Stereo V-SLAM, which involves two cameras,
is an expensive and complex system. Although stereo systems can retrieve image scale and depth
information to provide 3D vision, they can be degraded to a monocular system when the distance to the
scene is much larger than the distance between the two cameras [30]. In contrast, monocular V-SLAM
utilizes only one camera. It is thus a low-cost, lightweight system, and is suitable for applications
involving small robots and smartphone cameras. Despite the advantages of a monocular system,
it suffers greatly from scale problems. Therefore, it is necessary to integrate monocular V-SLAM along
with other systems to achieve absolute scale.

There are two different methodologies that are predominant in V-SLAM: Filtering methods and
keyframe methods [30]. Filtering methods involve the camera poses and all the map features being
utilized in processing at every frame. However, keyframe methods involve the camera pose being
estimated using a subset of the entire map without the need to update the map features at every
processed frame. Processing time is thus significantly reduced for keyframe methods, which makes
them potentially applicable to real-time applications. Moreover, the filtering methods make use of the
linearization process, so they suffer from accumulation errors. Overall, keyframe methods possess
certain advantages over filtering methods in terms of processing time and accuracy.

ORB-SLAM, a currently available keyframe-based V-SLAM system built on excellent algorithms
developed in recent years using ORB features [31] for all SLAM tasks, allows for more robust vision
based navigation. ORB-SLAM is based on three main tasks: Tracking, mapping, and loop closing.
Tracking is used to localize the camera with every frame and determine when to insert a new keyframe,
while the mapping processes new keyframes and performs local bundle adjustment (BA) to achieve
an optimal reconstruction of the surroundings of the camera pose. Finally, loop closing searches are
performed with every new keyframe [32]. The complete ORB-SLAM system includes three subsystems
for the purpose of processing data from monocular, stereo, and RGB-D cameras. In this present study,
a monocular ORB-SLAM system was selected as the main algorithm for processing the image sequence
from the smartphone cameras to provide up-to-scale translation expressed in the initial camera frame.

As mentioned above, the translation provided by the monocular V-SLAM is of an undefined scale.
In order to use this translation to update the integration system, the following transformation processes
were implemented. First, the translation was rescaled with the assistance of the GNSS measurement to
determine metric distances. We utilized a short distance, which was initially extracted using GNSS
measurements in an open sky to calculate the scale coefficient. This scale coefficient was then used to
scale the monocular V-SLAM by applying the following equations:

λ =
‖tGNSS

‖

‖tSLAM‖
(13)

wtSLAM
Fi, Fi+1

= λ ∗ctSLAM
Fi, Fi+1

(14)
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where ‖tGNSS
‖ is the distance derived from the GNSS position and ‖tSLAM

‖ is the corresponding
translation from the V-SLAM. ctSLAM

Fi, Fi+1
and wtSLAM

Fi, Fi+1
are translations between consecutive images

up-to-scale and absolute scale, respectively.
This translation vector in the camera frame was then converted into velocity in the body frame

using the following equation:

vb
SLAM = Cb

c
tc
SLAM
∆t

(15)

where tc
SLAM and ∆t are translation of the absolute scale and time period between consecutive images,

respectively. Cb
c is the rotation matrix from the camera frame to body frame, determined using a

calibration process.
The velocity in the body frame was formed in the measurement model together with the NHC [8].

zSLAM =


vb

x−INS − vb
x−SLAM

vb
y−INS − 0

vb
z−INS − 0

 = HSLAMxk + vk (16)

where vb
x−INS, vb

y−INS, and vb
z−INS are velocities provided by the INS mechanization in the x, y, and z

directions of the body frame, respectively. vb
x−SLAM is the velocity provided by the monocular V-SLAM

in the x direction of the body frame and HSLAM =
[

03×3 I3×3 03×15
]

is the design matrix describing
the relationship between the measurement and the state vector.

3. Field Test Description and Data Processing Strategy

3.1. Navigation Sensor and Field Work

3.1.1. Tested Smartphones and Reference Navigation System

Two ordinary smartphone devices were tested in this study, namely the Sony Xperia Z3 and Lenovo
Tango. Although these devices are not the latest models released by their respective manufacturers, they
are still very recent and used extensively worldwide. Both devices comprised a camera, GNSS chipset,
and MEMS IMU that featured three-axial accelerometer and gyroscope sensors. Additionally, their
processing power enabled seamless operation, minimizing the effect of errors induced by components
other than the sensors being accessed. A summary of the technical characteristics of both devices is
shown in Table 1.

Table 1. Technical characteristics of tested smartphones.

Sony Xperia Z3 Lenovo Tango

Processor Qualcomm MSM8974AC Qualcomm MSM8976
Snapdragon 801 (28 nm); Octa-core (4 × 1.8 GHz Cortex-A72 & 4 × 1.4 GHz Cortex-A53)
Quad-core 2.5 GHz Krait A-GPS, GLONASS

GNSS chipset A-GPS, GLONASS, BDS BMI160 (BOSCH)
Accelerometer BMA2 × 2 (BOSCH) BMI160 (BOSCH)

Gyroscope BMG160 (BOSCH) 16 MP, PDAF
Camera 20.7 MP, AF Octa-core (4 × 1.8 GHz Cortex-A72 & 4 × 1.4 GHz Cortex-A53)

The navigation system used to provide the reference trajectory ground truth during the two tests
was an integration of GNSS and IMU. The GNSS receiver that was used in the tests was the commercial
device PwrPak7D-E1 from NovAtel. The IMU that was used in the tests was the navigation-grade
iNAV-RQH (iMAR). The equipment layout and technical characteristics of these reference sensors are
shown in Figure 4 and Table 2, respectively.
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Table 2. Technical characteristics of iNAV-RQH.

Accelerometer Gyroscope

Bias Instability <15 µGal <0.002◦/h
Random Walk Noise 8 µGal/
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3.1.2. Smartphone Setup and Field Experiment

Field tests were conducted using a sport utility vehicle (SUV) as the test platform. The smartphones
were seated in cradles that were firmly attached to front windshield of the SUV as shown in Figure 5.
Moreover, these smartphones were roughly aligned with the vehicle frame.
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The tests were conducted in an urban area of Tainan City, Taiwan. The area included many tall
trees, buildings, and an underground parking lot. We started with a static period in open sky and then
drove for distances of approximately 3 km and 2 km, corresponding to tests one and two, respectively.
The total time taken for the first test was approximately 14 min, and that taken for the second test was
approximately 12 min.
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3.2. Reference Trajectory Establishment and Smartphone Data Preprocessing

3.2.1. Reference Trajectory Establishment

In land vehicle navigation applications, several processing strategies are potentially useable
for estimating the reference trajectory. Depending on the integration level, the loosely or tightly
coupled INS/GNSS techniques can be used [9]. The loosely coupled technique, which uses
post-processed kinematic GNSS data, may provide a better solution than the tightly coupled technique.
However, it requires more than four satellites to be observed, a requirement that is difficult to satisfy
in GNSS-challenging environments. In this present study, the tightly coupled strategy was applied
together with a smoother using the commercial INS/GNSS processing software package Inertial Explore
(IE) 8.90. There were lever-arms between the reference system and the smartphones, so the “true”
position and velocity were transformed to the center of the smartphones when exporting the reference
solutions from the IE software.

Figure 6 shows the number of visible satellites (red circles) and the position dilution of precision
(PDOP) [17,33] values (blue asterisks) in the first test. It can be seen from the figure that the system
sometimes had access to only a few satellites or even suffered a complete loss of satellites visible to
the receiver (e.g., the time interval from 400 s to 500 s). This led to large PDOP values. As shown
in Figure 7a, due to these bad conditions, the standard deviation (std) of the GNSS-only solution
became larger. Figure 7b shows the std of the INS/GNSS integration solution incorporating smoothing.
As mentioned in Section 3.1.1, a navigation-grade IMU was used together with a tightly coupled
integration strategy to generate the reference trajectory. Therefore, the std in the north, east, and up
directions remained smaller than 0.2 m during the first test.
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smoothing solution.

The PDOP and number of satellites visible to the receiver in the second test are shown in Figure 8
and the std of the GNSS-only solution is shown in Figure 9a. It is clear from Figures 8 and 9a that the
test was run for 650 s. However, from time 550 s and on, SUV was driven into an underground parking
lot. This led to only a few satellites being visible to the receiver and no solution from the GNSS-only
approach. Figure 9b shows the std of the solution from the tightly coupled INS/GNSS with smoother.
It can be seen from the figure that until time 550 s, the std in the three directions was smaller than
0.2 m. During the time that the SUV was in the underground parking lot, the std of the solution in
three directions rose to 0.6 m.
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3.2.2. Smartphone Data Recording and Preprocessing

Many free smartphone apps have recently become available for sensor data collection.
However, it is difficult to find an app that can simultaneously record data from the IMU, GNSS
chipset, and camera. In order to overcome this problem, some of our laboratory staff members
developed an Android smartphone app which enabled the simultaneous collection of data from these
sensors. The raw data included a video file and a mixed file incorporating the GNSS position and
IMU (accelerometer and gyroscope) observations. This observable file was parsed by sensor types.
They were then resampled at the desired sampling rate. A sampling rate of 50 Hz was chosen for the
purposes of this study. Finally, accelerometer and gyroscope data were synchronized together as IMU
data. The flowchart of this process is shown in Figure 10.
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4. Results and Discussion

4.1. Test Results Using Sony Xperia Z3

In the first experiment, the Sony Xperia Z3 was used to test our proposed method. The testing was
carried out along the streets of Tainan City, Taiwan. The test trajectory is shown in Figure 11. In the
performance evaluation, the solutions provided by V-SLAM, the integration of the INS/GNSS integration
aided by the NHC, and the INS/GNSS/V-SLAM integration using an original EKF were analyzed.
Figure 11 shows the horizontal positions of these solutions on the map and the vertical positions on the
plot below the map. It is clear from the figure that the solution from V-SLAM accumulated drift over
time. In comparison to the reference trajectory (the actual trajectory), the positional root-mean-square
error (RMSE) of this solution in the north, east, and up directions was 39.6 m, 31.0 m, and 5.5 m,
respectively. The 3D RMSE was 50.6 m.
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Figure 11. Trajectories of the various solutions in the first test.

Figure 12 shows graphs obtained by comparing the test solutions and the reference, showing the
navigation errors for position, velocity, and attitude in the first, second, and third subplots, respectively.
All plots show the error in the north, east, and up directions. The numerical statistics in terms of
RMSE are shown in Table 3. As can be seen from the results, the 3D positional error of the INS/GNSS
integration solution using EKF was 11.7 m, which was 76.9% higher than that of the V-SLAM solution.
For the INS/GNSS/V-SLAM integration, the positional accuracy improved to 78.5% than that of the
V-SLAM solution. However, in comparison to the navigation solution from INS/GNSS integration,
the result from INS/GNSS/V-SLAM improved only slightly in terms of position, velocity, and heading
errors with improvements of only 6.6%, 2.5%, and 9.5%, respectively.
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Figure 12. Graphical comparison of the navigation errors associated with the various solutions in the
first test.

Table 3. Statistical summary of navigation errors in the first test.

RMSE INS/GNSS Integration INS/GNSS/V-SLAM Integration

Position

North (m) 4.719 3.791
East (m) 4.982 3.864
Up (m) 9.471 9.488
3D (m) 11.696 10.924

Improvement (%) - 6.6

Velocity

North (m/s) 0.935 1.016
East (m/s) 0.978 0.760
Up (m/s) 2.104 2.082
3D (m/s) 2.501 2.438

Improvement (%) - 2.5

Attitude

Roll (deg) 1.138 1.022
Pitch (deg) 11.194 10.919

Heading (deg) 3.633 3.289
Heading Improvement (%) - 9.5

In this experiment, the GNSS environment was not very challenging. The role of V-SLAM in
improving the INS/GNSS system was thus not very clear. In order to demonstrate the efficiency of
the proposed integration scheme, we planned two GNSS signal outages of 30 s in different scenarios.
Figure 13 shows the trajectories of the various solutions with the planned GNSS signal outages.
As highlighted in the magenta rectangle (scenario 1), during the planned 30 s GNSS signal outage on
the side of the rectangular route, the INS/GNSS integration with NHC (red points) did not provide a
good trajectory. V-SLAM helped to propagate the position as a bridge when no GNSS measurement
update was available in the INS/GNSS/V-SLAM integration (blue points). As highlighted in the yellow
rectangle (scenario 2), the planned 30 s GNSS signal outage occurred at the corner of the rectangular
route. Due to aid provided by NHC, the INS/GNSS integration solution did not suffer from off-track
error but suffered deeply from along-track error, while the accumulated drift remained small in the
INS/GNSS/V-SLAM integration solution.
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Figure 14 shows a comparison of the navigation errors of the various solutions and Table 4
summarizes the navigation RMSE errors in both scenarios. As the graphs show, the positional
accumulation errors in the north direction of the INS/GNSS solution were approximately 180 m and
70 m during the GNSS signal outages on the side and the corner of the rectangular route, respectively,
whereas these accumulated errors in the INS/GNSS/V-SLAM solution were approximately 35 m
and 15 m, respectively. This clearly demonstrates that the overall navigation solution from the
INS/GNSS/V-SLAM integration method was much better than the solution provided by the INS/GNSS
integration method. The improvement in accuracy was reflected in a reduction in position and velocity
error of 40.0% and 20.3%, respectively. In terms of heading, due to the NHC, the improvement was
only 4.5%.
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Table 4. Statistical summary of navigation errors with planned GNSS outages in the first test.

RMSE INS/GNSS Integration INS/GNSS/V-SLAM Integration

Position

North (m) 21.696 7.074
East (m) 5.904 5.791
Up (m) 10.681 11.801
3D (m) 24.893 14.928

Improvement (%) - 40.0

Velocity

North (m/s) 1.813 0.862
East (m/s) 0.976 0.740
Up (m/s) 2.108 2.056
3D (m/s) 2.946 2.349

Improvement (%) - 20.3

Attitude

Roll (deg) 1.134 1.137
Pitch (deg) 11.323 10.927

Heading (deg) 3.895 3.720
Heading Improvement (%) - 4.5

4.2. Test Results Using Lenovo Tango

In the second experiment, the Lenovo Tango was used to test our proposed method. The test field
incorporated a street environment and an underground parking lot environment. The test trajectory is
shown in Figure 15. In the performance evaluation, the solutions provided by V-SLAM, the INS/GNSS
integration aided by the NHC, and the INS/GNSS/V-SLAM integration using EKF were analyzed.
Figure 15a shows the horizontal positions of these solutions on the map and the vertical positions on a
plot below the map. The magenta rectangle highlights the underground parking lot area. Figure 15b
shows an enlarged detail of the trajectories in the parking lot area. It can be seen from the map that the
V-SLAM trajectory, shown in cyan, accumulated over time. The trajectory of the INS/GNSS solution
with NHC, shown in red, was uncontrollable when the SUV drove through the underground parking
lot where the GNSS signal was blocked. The trajectory of the INS/GNSS/V-SLAM solution, shown in
blue, was the best in terms of its comparison to the reference trajectory, shown in green.
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Figure 15. Trajectories of the various solutions in the second test (a); Carpark detail (b).

Figure 16 shows graphs of the navigation errors from the various solutions in the north, east, and up
directions. It is clear from the figure that during the time the GNSS signal was blocked, the INS/GNSS
integration solution drifts in the north and east directions grew quickly to approximately 80 m each,
whereas these drifts remained at approximately 20 m and 15 m, respectively, in the INS/GNSS/V-SLAM
integration solution. The navigation RMSE error statistics are summarized in Table 5. It can be seen
from the result that the accuracy of the INS/GNSS/V-SLAM solution improved significantly in terms of
position and velocity errors, with improvements of 43.0% and 51.3%, respectively, in comparison with
the INS/GNSS solution. The NHC suppressed the drift error associated with the INS/GNSS solution.
Hence, the heading improvement was only 3.7%.
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East (m) 14.234 5.022
Up (m) 16.934 11.304
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5. Conclusions

This study proposed an integrated scheme incorporating INS, GNSS, and V-SLAM using data
from smartphone sensors to overcome the weaknesses of each sensor working individually under
environmental effects and the problem of unbounded error. Two ordinary smartphones incorporating
a self-developed app for collecting data were used in the testing. Moreover, a system comprised of
a navigation-grade IMU and a differential GNSS receiver from PwrPak7D-E1 was used to generate
reference solutions.

The test results indicated that, in the GNSS-friendly environment, the solution from the
INS/GNSS/V-SLAM integration using an EKF was slightly improved compared to the conventional
INS/GNSS integration. However, in the GNSS-challenging environment, this improvement was
significant, with up to 43.0% and 51.3% improvements in position and velocity, respectively, which
verified the possibility of a robust smartphone navigation solution.

Since this work proposed the integration scheme and tested the algorithm as post-processing,
for future work, this framework should be integrated into smartphone environment and run directly
in this platform. In addition, nonlinear, non-Gaussian filtering will be applied to the integrated system
to overcome the limitations of EKF in terms of error modelling and highly dynamic movement.
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