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Abstract: Droughts are one of the primary natural disasters that affect agricultural economies, as
well as the fire hazards of territories. Monitoring and researching droughts is of great importance for
agricultural disaster prevention and reduction. The research significance of investigating the hysteresis
of agricultural to meteorological droughts is to provide an important reference for agricultural drought
monitoring and early warnings. Remote sensing drought monitoring indices can be employed for
rapid and accurate drought monitoring at regional scales. In this paper, the Moderate Resolution
Imaging Spectroradiometer (MODIS) vegetation indices and the surface temperature product are used
as the data sources. Calculating the temperature vegetation drought index (TVDI) and constructing a
comprehensive drought disaster index (CDDI) based on the crop growth period allowed drought
conditions and spatiotemporal evolution patterns in the Volgograd region in 2010 and 2012 to be
effectively monitored. The causes of the drought were then analyzed based on the sensitivity of a
drought to meteorological factors in rain-fed and irrigated lands. Finally, the lag time of agricultural to
meteorological droughts and the hysteresis in different growth periods were analyzed using statistical
analyses. The research shows that (1) the main drought patterns in 2010 were spring droughts
from April to May and summer droughts from June to August, and the primary drought patterns
in 2012 were spring droughts from April to June, with an affected area that reached 3.33% during
the growth period; (2) local drought conditions are dominated by the average surface temperature
factor. Rain-fed lands are sensitive to the temperature and are therefore prone to summer droughts.
Irrigated lands are more sensitive to water shortages in the spring and less sensitive to extremely high
temperature conditions; (3) there is a certain lag between meteorological and agricultural droughts
during the different growth stages. The strongest lag relationship was found in the planting stage
and the weakest one was found in the dormancy stage. Therefore, the meteorological drought index
in the growth period has a better predictive ability for agricultural droughts during the appropriately
selected growth stages.

Keywords: temperature vegetation drought index (TVDI); comprehensive drought disaster index
(CDDI); crop drought; meteorological droughts; spatiotemporal evolution

1. Introduction

A drought is defined as a prolonged and abnormal moisture deficiency [1]. This recurring
phenomenon has a variety of geographical and temporal distributions, which have an impact on
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the natural environment, ecosystem and economic production, and life [2]. With the occurrence of
global warming over the past 100 years, climate change has exacerbated the occurrence of extreme
events, such as droughts. Droughts have developed a wider extension, longer durations, and
greater severities [3]. In the past few decades, the frequency and extension of regional droughts
have increased [4]. The current state of drought occurrences has caused drought-related research
to become an important issue in academia [5]. Droughts can be divided into four categories based
on their impacts and characteristics, which are denoted as meteorological droughts, agricultural
droughts, hydrological droughts, and socioeconomic droughts [6,7]. These four types of droughts are
complicated and interrelated phenomena, which propagate in different ways with varied definitions [5].
A meteorological drought is often defined from the perspective of the degree and duration of the
lack of precipitation [6]. It focuses on the reduction of surface water supply directly caused by
precipitation deficit, as well as the water deficit caused by an abnormal temperature, which intensify
surface evapotranspiration. Short-term (i.e., a few weeks duration) meteorological dryness is the
key trigger that depletes soil moisture storage and suppresses root water absorption, and is thus
closely linked to the onset of an agricultural drought [2]. However, an agricultural drought is far
more specialized and complicated owing to its dependence on prevailing meteorological conditions,
biophysical characteristics, growth stages, and other factors, such as soil properties [6]. Definitions
of a hydrological drought are concerned with the effects of dry spells on the surface or sub-surface
hydrology [6]. They focus on evaluating the period during which the groundwater level and surface
runoff are inadequate for maintaining supply for an established use under a given water management
system [8]. Meteorological dryness is usually the starting point of hydrothermal anomalies. In general,
a prolonged precipitation insufficiency generates less input for the hydrological system [7]. Distinct
from the other three types of drought, a socioeconomic drought focuses on the impacts of drought
events on the social, economic, and ecological environment, which are more complicated and difficult
to quantify due to the impact of social production and human activities. These four drought types are
interactive in the water cycle [9] and related to different durations of the lack/reduction of precipitation
and the impacts that are progressively caused. An agricultural drought with regards to crops is an
important natural disaster that threatens food security and sustainable agricultural development due
to the lack of precipitation or irrigation, insufficient soil moisture, and other factors in crop growth [10].
As a result, two drought types are often considered together to assess the spatiotemporal evolution
and development model of drought events in a given region.

Traditional drought monitoring is usually denoted as meteorological drought monitoring, i.e.,
constructing drought indexes, such as the precipitation anomaly percentage (Pa) [11], the Palmer
drought severity index (PDSI) [12], the standardized precipitation index (SPI) [13], and the standardized
precipitation evapotranspiration index (SPEI) [14], over several years, based on meteorological and
hydrological data from ground observation sites or other precipitation data. This method allows
accurate reflections of meteorological changes on a multi-year scale based on meteorological stations.
However, the occurrence of droughts has obvious spatiotemporal characteristics, and it is difficult
to accurately estimate drought events on a large spatial scale using limited site data and spatial
interpolation methods with bias. Remote sensing (RS) ground observations using relevant image
processing technology [15,16] can provide accurate estimates for natural disasters [17,18], such as
drought events on large spatiotemporal scales, based on multi-source data and multiple drought
indices. The principle of the remote sensing drought index is to detect and indicate ground targets
from satellite data, such as the land surface temperature, soil moisture, crop physiological parameters,
and cloud cover, in order to generate the corresponding index models and monitor the long-term
spatiotemporal evolution dynamics of droughts. Various types of indices are used to analyze the state
of soil and vegetation according to remote sensing data. This RS approach, which is based on the use of
brightness values in various spectral channels of satellite instruments, is capable of producing dryness
information and an auxiliary risk assessment for arid areas and the ensuing potential disasters, such as
forest fires [19–23].
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Different types of remote sensing drought indices exist. They can be grouped by the type of
drought parameters considered (precipitation, moisture, and evapotranspiration), the impacts of a
drought on vegetation (abiotic stresses), or the approach (energy balance, water balance, etc.). They
consist of the following: (1) Describe soil moisture changes: Apparent thermal inertia (ATI) [24] and
the(Modified) perpendicular drought index (PDI/MPDI) [25–27]; (2) describe canopy temperature
changes and energy balance: The temperature condition index (TCI) [28], crop water stress index
(CWSI) [29], water deficit index (WDI) [30], temperature vegetation dryness index (TVDI) [31], modified
temperature vegetation dryness index (MTVDI) [32,33], drought severity index (SDI) [34], vegetation
supply water index (VSWI) [35], etc.; (3) describe changes in the crop morphology and greenness: The
normalized difference vegetation index (NDVI) [36], vegetation condition index (VCI) [37], standard
vegetation index (SVI) [38], anomaly vegetation index (AVI) [39], Enhanced Vegetation Index (EVI) [40],
etc.; (4) describe vegetation moisture content changes based on the shortwave infrared band (SWIR):
The shortwave infrared perpendicular water stress index (SPSI) [41] and global vegetation moisture
index (GVMI) [42]; (5) describe the moisture content using microwave technology: The microwave
integrated drought index (MIDI) [43], microwave polarization index (MPI) [44], and Microwave
Temperature Vegetation Drought Index (MTVDI) [45].

Other scholars have combined vegetation, temperature, and precipitation variables in remote
sensing data to build comprehensive drought indices, such as the combined deficit index (CDI) [46–48],
scaled drought condition index (SDCI) [49], synthesized drought index (SDI) [50], and optimized
vegetation drought index (OMDI and OVDI) [51], which are relatively consistent with the meteorological
station data. A normalized difference water index (NDWI) [52] time series can be constructed to derive
the standardized water index (SWI) [53] or be combined with the NDVI for drought monitoring [54].
Among these indices, the TVDI is a remote sensing drought index based on a combination of the
vegetation index and temperature and has clear physical and biological significance, with parameters
that are easier to obtain. This is suitable for surface drought monitoring with large changes in the
vegetation coverage and is well-correlated with the soil moisture [55]; thus, it has been widely applied
in actual drought monitoring [56–59].

Russia is an important agricultural country located in the “Belt and Road” economic zone,
with high drought levels each year [60], and is affected by various natural and social factors, such
as climate, terrain, and irrigation. Extreme dry weather from 2010 to 2012 [61] had a significant
impact on the crop yields [62], the intensity of wildfires [63–67], and emissions of harmful gases and
aerosols into the atmosphere caused by these wildfires [68,69], as well as the agricultural economy
in important food-producing areas of Russia [70], especially in the Volga and Don River basins of
Volgograd [71,72], which is the primary grain-producing region in the southern part of the country.
Therefore, monitoring agricultural droughts in the Volgograd region can effectively help perform
scientific drought assessments, which is important for the stability of the agricultural economy and
ensuring the sustainable development of agricultural production.

The main research objectives of this work are as follows: (1) To evaluate the ability of the TVDI
and the comprehensive drought disaster index (CDDI) to identify drought conditions in the Volgograd
region from 2010 and 2012; (2) to analyze the drought evolution pattern of rain-fed and irrigated lands
combined with climatic factors and the meteorological drought index; and (3) to analyze the hysteresis
of agricultural to meteorological droughts and the lag time for each growth period.

2. Materials and Methods

2.1. Study Area

The Volgograd region is located in the southeastern part of the Eastern European Plain and has
an area of 113,900 square kilometers at the lower reaches of the Volga River Basin in Russia. The
primary rivers in the state are the Volga and Don Rivers, and the Volga-Don canal. The region has a
hot summer continental climate, with a warm to hot summer and cold winter. The precipitation shows
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seasonal changes of concentrated rain in summer, little rain in spring and autumn, and snow cover in
winter. The annual precipitation decreases from the northwest to the southeast, with an average yearly
precipitation of 348 mm. There is a large range of temperatures, from the highest record of 42.6 ◦C to
the lowest record of −33.0 ◦C, with an average of 8.2 ◦C [73]. The arable land in this area accounts for
approximately half of the land and is one of Russia’s main crop-producing and high-yield regions. The
important crops include wheat, barley, and corn, and are widely dispersed in the region. Based on the
United States Geological Survey’s 1-km global map of major crops [74], the northern area of the river
primarily exhibits rain-fed agriculture dominated by wheat, and the southern area of the river mainly
includes irrigated agriculture. Planted corn crops and other vegetation types, such as grasslands, are
distributed in a small area to the east. The geographical location of the area and the distribution of
farmland types are illustrated in Figure 1.

Figure 1. Location and farmland distribution of the Volgograd region.

Figure 2 displays a phenology calendar of the main crops in the area [75]. The growing cycle
of crops can be roughly divided into three stages, except for dormancy, which is hardly related to
crop droughts: (1) Planting stage from April to May: The main crops in the region enter a period of
planting around April with an increased temperature. This is a vegetative growth stage dominated by
root development and leaf emergence, during which the crop water requirement mainly comes from
the shallow soil moisture absorbed by the root system; (2) flowering stage from June to early August:
Abundant solar radiation and plentiful rainfall greatly enhance the photosynthesis process, which
brings plants into a key period of the whole growth cycle, including heading, flowering, and filling
stages. The increase of the soil surface temperature enhances soil evaporation, while the transpiration
of vegetation increases the consumption of soil water content. Therefore, crops such as winter wheat
and corn are the most sensitive to temperature and moisture stress during this period [76]; (3) harvest
stage from late July through the end of October: After entering autumn in September, the main crops
gradually enter the harvest period, with fewer demands for moisture and temperature.
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Figure 2. Major crops and phenology calendar of the Volgograd region.

2.2. Satellite Imagery and Auxiliary Data

The remote sensing data utilized in this article come from the National Aeronautics and Space
Administration (NASA) and includes the MODIS13A2 product of the NDVI and the MODIS11A2
product of the land surface temperature for the Terra satellite from 2008–2012, with a spatial resolution
of 1 km × 1 km. The 0.25◦ × 0.25◦ PERSIANN-CDR [77,78] precipitation data from this area were
used for auxiliary analyses of the drought conditions. The Google Earth Engine (GEE) platform was
applied to generate the MODIS13A2 normalized vegetation index and the MODIS11A2 land surface
temperature using scaling factors. The image data were then downloaded from vector boundary
maps of the study area. To understand the impacts of droughts on different farming areas and the
different crop types, this paper also refers to the auxiliary land cover classification data to enable
stratification analyses, which include the Global Food Security-Support Analysis Data at 1 km × 1 km
(GFSAD30) [74] released by the United States Geological Survey and the Remote Sensing Mapping
Data Products for Global Coverage of 30 m × 30 m with a base year of 2010 [79–81], published by the
Basic Geographic Information Center. Details of the remote sensing data and auxiliary data are shown
in Tables 1 and 2, respectively.

Table 1. Details of the remote sensing data.

Data Set Coverage Period Frequency Resolution

MOD13A2 Global 2000–present 16-daily 1 km × 1 km
MOD11A2 Global 2000–present 8-daily 1 km × 1 km

PERSIANN-CDR 60◦S–60◦N 1983–present Daily 0.25◦ × 0.25◦

Table 2. Details of the auxiliary data.

Auxiliary Data Set Coverage Period Categories Resolution

GFSAD30 Cropland extent 1990–2017 Five dominant crop types 1 km × 1 km
GlobeLand30-2010 80◦S–80◦N 2010 10 types of surface cover 30 m × 30 m

2.3. Temperature Vegetation Drought Index (TVDI)

The TVDI [31] primarily applies to the NDVI-LST space (a two-dimensional spatial scatterplot of
the NDVI and LST values of all the pixels in a region) by combining the temperature and vegetation
index products for remote sensing data when the vegetation coverage and soil moisture conditions in
the study area change significantly. Monitoring the drought effects for the TVDI index in different
regions is often accomplished by fitting the wet- and dry-edge equations in the feature space, classifying
drought conditions, and verifying the authenticity with actual precipitation or soil moisture data. A
description and definition of the TVDI were first provided based on the rules presented from the NDVI
and LST on a two-dimensional spatial scatter plot, which can be expressed by [31]

TVDI =
LST− LSTmin

f(VI)max − LSTmin
, (1)
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f(VI)max = amax − bmax∗VI, (2)

where f(VI)max is the dry-edge linear fitting equation of the LST/VI scattered triangle space, amax

and bmax are the fitting parameters, VI is the vegetation index and the abscissa axis, and LST is the
surface temperature and the ordinate axis. The numerator in Equation (1) represents the temperature
difference between the actual temperature and the minimum temperature of a pixel under the vegetation
coverage, which is represented as A. The denominator represents the temperature difference between
the maximum possible temperature and the minimum temperature of a pixel under a certain vegetation
coverage, which is represented as B. The geometric meaning of TVDI in the LST/VI scattered point
triangle space is shown in Figure 3. Therefore, the TVDI can represent the relatively dry and wet
conditions for the pixels, in order to identify and monitor the soil moisture and drought conditions.

Figure 3. The temperature vegetation drought index (TVDI) definition and the geometric meaning at a
given pixel.

The TVDI value varies from 0 to 1. When TVDI = 0, the pixel falls on the wet edge of the soil line.
In this case, the surface humidity is greater, with the strongest evaporation and vegetation transpiration,
and the soil is less affected by drought. When TVDI = 1, the pixel is on the dry edge of the soil line
with the lowest surface humidity, the weakest effects of evaporation and vegetation transpiration, and
a higher degree of soil drought. The TVDI monitoring results are classified as shown in Table 3, based
on the MODIS data temperature vegetation drought index classification [82].

Table 3. Different levels of the TVDI drought index.

TVDI Levels Soil Moisture Status

0 < TVDI < 0.46 No drought Surface water is sufficient or normal
0.46 ≤ TVDI < 0.57 Mild drought Small amount of surface evaporation and dry air near the surface
0.57 ≤ TVDI < 0.76 Moderate drought Soil surface is dry and vegetation leaves are wilting
0.76 ≤ TVDI < 0.86 Severe drought Thicker dry soil layers appear, and vegetation is withered

0.86 ≤ TVDI < 1 Extreme drought Surface vegetation is dry or dead

2.4. Percentage of Precipitation Anomaly (Pa)

A decrease in rainfall or increased surface warming within a certain period will cause a
meteorological drought, and its accumulation and development will affect the soil moisture content
and the crop water demand process. Therefore, a meteorological drought is an important factor that
directly triggers an agricultural drought. These two types of droughts and their lag correlation [83–86]
are often comprehensively considered to evaluate the spatial and temporal evolution and development
of drought events in a region. This paper applies the Pa to indicate the development process of a
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meteorological drought. The lag of the agricultural drought is indicated by the TVDI index and the
occurrence of drought events is compared with the Pa. The formula employed to calculate the Pa in a
certain period is

Pa =
[(

P− P
)
/P

]
∗ 100%, (3)

where P is the precipitation over a certain period and P is the average precipitation in that same period.
Pa can represent a precipitation deviation from the average level in a specific location and can concisely
represent the meteorological drought caused by abnormal decreases in precipitation.

2.5. Comprehensive Drought Disaster Index (CDDI)

The occurrence of a regional drought is affected by the cumulative drought caused by hydrothermal
conditions during a particular period. It is also a comprehensive response to the sensitivity of vegetation
and crops in the region to water scarcity in different growing seasons. These two aspects of drought
sensitivity at key growth stages can provide a CDDI that depends on the crop growth stages. According
to the sensitivity of crops to rainfall at different growth stages, this index sets the weight of the drought
situation at each stage, and then calculates the final drought situation index by weighted summation.
Based on the research of related scholars on the sensitivity of crops to the lack of rain at key growth
stages [87] and the phenology calendar information for the primary crops in the study area, the main
stages of crop growth occur from April to August. This period is also when the crop responds most
strongly to hydrothermal climate conditions. The TVDI during the growth period of April to August is
used to set the weight value for each month to indicate the sensitivity of crops to the drought response
during different growth periods. The weighted calculations allow a CDDI to be constructed to evaluate
the regional drought situation. The construction calculation formula is

CDDI =
∑8

I=4
Pi∗TVDI, (4)

where Pi is the weight value of each month. Combined with the existing crop drought sensitivity
settings [87] and the main crop phenology calendar in the study area, the weights Pi from April to
August were set to 0.4, 0.5, 0.8, 0.9, and 0.4, respectively. The drought index classification basis was
used to obtain the drought classification via linear weighting, as displayed in Table 4.

Table 4. Different levels of the comprehensive drought disaster index (CDDI).

April to May May to June April to August Levels of Drought Disaster

0 < CDDI < 0.828 0 < CDDI < 1.932 0 < CDDI < 2.76 No drought
0.828 ≤ CDDI < 1.026 1.932 ≤ CDDI < 2.394 2.76 ≤ CDDI < 3.42 Mild drought
1.026 ≤ CDDI < 1.368 2.394 ≤ CDDI < 3.192 3.42 ≤ CDDI < 4.56 Moderate drought
1.368 ≤ CDDI < 1.548 3.192 ≤ CDDI < 3.612 4.56 ≤ CDDI < 5.16 Severe drought

1.548 ≤ CDDI < 1.8 3.612 ≤ CDDI < 4.2 5.16 ≤ CDDI < 6 Extreme drought

3. Results

3.1. Time Evolution of TVDI Drought Monitoring

A crop drought is a concentrated reflection of the local hydrothermal conditions over a particular
period. The comparison of hydrothermal conditions indicated in Figures 4 and 5 over the same period
in different years indicates that the precipitation in 2010 was lower than in the same period of the other
years, especially from June to August. At the same time, the surface temperature data from July to
September of 2010 also showed higher temperature levels. The precipitation was deficient from April
to June 2012, and the temperature for the entire crop growing season was relatively high. These higher
temperatures and lower rainfall environments increase the probability of crop drought events and the
fire hazard of territories [69]. The soil line fitting results in the LST/NDVI feature space provide the
TVDI drought monitoring results for each phase of the primary crop growing season from April to
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October. The classified TVDI standard was used to generate the time evolution for the retrospective
drought events in 2010 and 2012 shown in Figure 6, in order to reflect the actual drought conditions of
the surface.

Figure 4. Bar chart of monthly cumulative precipitation over the same period from 2008 to 2012.

Figure 5. Bar chart of the monthly average temperature (LST) over the same periods from 2008 to 2012.

The results of droughts visualized in Figure 6 are closely related to the local conditions. Drought
conditions first appeared in spring during April, and there were higher levels of drought from the
summer to late September in different croplands and lower levels of drought at the end of the year.
Detailed information on the climatic conditions and drought propagation in the primary growth stages
is as follows:

(1) Planting stage from April to May: An extreme lack of rain in early April 2010 led to a reduction
of the soil water content, which restrained root water absorption and the water supply for leaf
growth. This agrometeorological propagation exerted a considerable influence on the heading
process of winter wheat, which is widely distributed in the rain-fed drylands to the north of the
river. The same process took place in May 2012, during which a precipitation deficit and rapidly
rising temperature caused extensive stress to regional crops;

(2) Flowering stage from June to early August: The cumulative precipitation in June and July 2010
was only about 30% of the level in the same period, accompanied by extremely high temperatures
in July. Intense soil evaporation led to the soil moisture restraining the biophysical process
of crops during flowering. The relative water content of the leaves rapidly decreased under
high temperature stress, which led to an imbalance between the water supply and demand and
consequently, spreading drought. Crops also suffered from water deficit when rainfall was not
absent in 2012. On account of intense solar radiation and an extremely high temperature in June,
the potential atmospheric evaporation was quite strong, leading to vigorous crop transpiration.
The water absorbed by the root system from the upper soil was inadequate to compensate
for transpiration consumption, thus resulting in water deficit in the flowering stage of corn,
dominantly cultivated in southern irrigated land;

(3) Harvest stage from late July through to the end of October: The gradual rain rebound and the
arrival of a cool harvest autumn restored the soil moisture and alleviated the summer drought.
Crops require different levels of water during their various growth stages, and the water demand
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is greatest in the early and middle stages of growth. In general, the TVDI drought monitoring
results in Figure 6 show different phenomena for the various months. The drought in 2010
primarily occurred in early April and from June to August, and was affected by the simultaneous
impacts of high temperatures and low rainfall. The drought in 2012 mainly occurred from April
to June and was mostly affected by the lack of precipitation.

Figure 6. TVDI propagation of the major crop growth stages in Volgograd in 2010 and 2012.

3.2. Factor Analysis of Drought Conditions between Rain-Fed and Irrigated Lands

The response of the surface to a drought is affected by the local hydrothermal environment and
type of surface crops. Rain-fed and irrigated lands are two important types of farming in agricultural
production activities. Rain-fed land simply depends on natural rainfall to meet the crop water
requirements, and irrigated land considers the intervention of irrigation events due to factors that
include insufficient natural hydrothermal conditions. Therefore, the two have different sensitivities to
hydrothermal conditions and need to be considered separately when analyzing drought patterns [88].
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On the one hand, a TVDI of 0.46 is used as the threshold for drought occurrence in Figure 7. The
drought evolution pattern from 2008 to 2012 shows that TVDI changes positively with temperature
during the key growth period from April to October. In the middle and late stages of crop growth, the
TVDI index showed a significant downward trend with the increase of rain. On the other hand, there
are several differences in the drought patterns for 2010 and 2012, which can be described as follows:

(1) Duration: Irrigated land suffered earlier than rain-fed land in terms of their starting times and
durations. Additionally, the degree of drought for the irrigated land was higher than that for the
rain-fed land within the considered years, except for 2010. The rain-fed land drought always
ended earlier due to its sensitivity to water and heat conditions;

(2) Climatic factors: The distinction in the drought intensity between the rain-fed and irrigated lands
is influenced by disturbances in the average surface temperature and extreme weather events.
Figure 7 shows the monthly mean temperature changes for the two types of cultivated lands
over the same period. It can be seen that the irrigated land is located in the southeastern region
of Volgograd with lower latitudes and is closer to the steppe semi-desert zone in the northern
Caspian Sea. Therefore, its average monthly temperature is higher than that of the rain-fed arable
land in the northwest for most of the year. Considering this, the local climate sensitivity factors
include a higher average surface temperature (LSTirr > LSTrain), extremely low rainfall (2010 and
2012), and exceptionally high temperatures (2010) [71];

(3) Sensitivity: Irrigated land is more sensitive to disturbances in the precipitation factor as dominated
by the average surface temperature, while the rain-fed land is more sensitive to disturbances in
the temperature factor as dominated by the precipitation. This also explains the greater effects of
a drought on irrigated land, which appears earlier and lasts longer. Moreover, this also provides
a reason for the higher sensitivity of rain-fed land to droughts when extreme high-temperature
events occurred in 2010, but the stronger regulation capacity of irrigated land.

Figure 7. Differences in the drought responses of rain-fed and irrigated lands over the years 2008
to 2012.

It can be seen that (1) irrigated land is more prone to spring droughts when conditions are dry with
less rainfall. However, the rain-fed land is prone to summer droughts with high temperatures, which
is consistent with the previous spatial TVDI distributions. Additionally, (2) the drought conditions
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of crops are primarily affected by extreme hydrothermal events, especially temperature [89]. Under
the extreme high temperature conditions, the inclusion and regulation of artificial irrigation events in
irrigated areas have a greater advantage for suppressing drought conditions.

3.3. Lagging Relationship between Meteorological and Agricultural Droughts

On one hand, the key thresholds for meteorological drought and crops affected by drought were
analyzed. Figure 7 indicates that, from April to October, the TVDI index was concentrated at levels
greater than 0.57, which suggests a moderate drought. With the end of the growing period, the TVDI
index also dropped to a level of a mild or no drought. Therefore, a TVDI of 0.57 is the key threshold for
crops to experience drought. On the other hand, a Pa of −15% [11] was employed as the threshold to
indicate the occurrence of a meteorological drought each year, and a polynomial function was assigned
as an approximation based on the data accuracy and actual conditions. Figure 8 shows the drought
processes as identified from the Pa and TVDI index each year, as well as the primary phenology periods
for local crops [75]. The meteorological drought index Pa is sensitive to changes in the inter-annual
precipitation factors, and generally appears in the form of “drying-wetting-drying”; the two drier
periods occur at the turn from spring to summer and the turn from autumn to winter. The TVDI index
is highly synchronized with the key growth periods (planting and flowering periods) of the crops and
is more sensitive to years when crops are affected by droughts.

There is a lag between the occurrence of meteorological droughts and agricultural droughts.
Apart from the overall wet year of 2008, meteorological droughts generally began during the decreased
rainfall and rising temperature period from March to April and became agricultural droughts for crops
after one to two months [48,90]. Figure 8b shows that the meteorological drought in 2009 dropped
to −15% on day 73, and the crop drought occurred at the rain-fed (irrigated) land at day 105 (90),
which lagged behind the meteorological drought by 32 (17) days. Figure 8c shows that when the Pa in
2010 dropped to the level of −15% on day 80, the entire region exhibited a majority of meteorological
drought occurrence. The agricultural drought occurred in the rain-fed and irrigated lands at days 112
and 113, respectively, which were 52 and 53 days behind the meteorological drought. Figure 8d shows
that the meteorological drought in 2011 dropped to −15% on day 28, and the agricultural drought
occurred at the rain-fed (irrigated) land on day 118 (112), which lagged behind the meteorological
drought by 90 (84) days. Figure 8e shows that the meteorological drought in 2012 dropped to −15%
at day 77, and the agricultural drought occurred for rain-fed (irrigated) land at day 106 (103), which
lagged behind the meteorological drought by 29 (26) days.

3.3.1. Hysteresis at Different Growth Stages between Pa and TVDI

Agricultural and meteorological droughts exhibit hysteresis with characteristics that vary for
the different growth periods and types of cultivated land. In this study, the correlation between the
meteorological drought index and the agricultural drought index was fit in the four stages of dormancy,
planting, flowering, and harvest, as shown in Figure 9. First, the correlation between Pa and TVDI was
the lowest during the winter crop dormancy. The time of the agricultural drought represented by the
TVDI was relatively stable in this stage, which is from March to April. The critical points appeared
in the middle stage of the planting period, which was less dependent on precipitation and more
dependent on temperature. Therefore, the lag time for the occurrence of droughts primarily comes
from the Pa index critical point. The lag relationship is not weak, with relatively large randomness.
In addition, during the planting stage, the correlation between the Pa and TVDI was the strongest.
Changes in the Pa quickly affected the TVDI, with a relatively short lag time. This process was
pronounced during the planting stage in 2012. With a deepening meteorological drought from the
Pa, the TVDI responded and increased rapidly. Finally, the sensitivity of the drought index to Pa in
rain-fed land was higher with a faster response speed, as illustrated in 2010. This is also because
rain-fed land has a limited dependence on man-made production, with the main source of water for
crop growth being precipitation.
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Figure 8. Occurrence process and lag relationship between TVDI and precipitation anomaly (Pa).
(a) Drought process in 2008, (b) drought process in 2009, (c) drought process in 2010, (d) drought
process in 2011, and (e) drought process in 2012.
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Figure 9. Regression fitting for the correlation between Pa and TVDI at different growth stages for 2010
and 2012 data.

3.3.2. Forecasting Ability of the Meteorological Drought Index Pa

Figure 10 shows the correlation between the Pa and TVDI over 5 years, with obvious relationships
in 2010 and 2012, which indicates that the meteorology and agriculture are closely related in drought
years. In wet years, such as 2008 and 2011, the relationship between the Pa and TVDI is relatively weak.
However, the time lag as affected by the growth stage and land type allows the meteorological drought
to be used as a predictor of agricultural droughts to some extent. The meteorological index uses
independent variables constructed from a single rainfall event, which fluctuates greatly throughout
the year, so its predictive ability is limited. For example, the meteorological drought in 2009 primarily
occurred after the crop harvesting period, while the meteorological drought in 2011 occurred before
the sowing period and did not significantly impact crop growth. The meteorological droughts in 2010
and 2012 covered the key growing season for the crops, which affected crop growth. Therefore, it is
concluded that the meteorological drought index that covers the crop growth period is more accurate
and effective for predicting agricultural droughts.

Figure 10. Correlation between Pa and TVDI over the 5-year study period.

3.4. Analysis of Drought Disasters

The disaster occurrence conditions for three periods of spring from April to May, summer from
June to August, and the entire growing season from April to August were compared over the 5-year
study period using disaster maps. In addition, the 30-m GlobeLand30-2010 product provided by the
National Basic Geographic Information Center was applied to mask the cultivated land and form the
2008–2012 drought disaster zoning map based on cultivated land distributions, as shown in Figure 11.
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Figure 11. The comprehensive drought disaster index (CDDI) for crop growth stages from 2008–2012
in the Volgograd region.

Comparing the CDDI at different periods shows that the drought in this region from 2010 was
concentrated in the spring from April to May and summer from June to August. The maximum fire
activity was observed during these periods [63,66,69]. The spring drought affects rain-fed dry lands
dominated by winter wheat plantations to the north of the river. The spring drought has a certain
impact on crop growth as it occurs during crop tilling and jointing. The summer drought affects
the entire region, and most crops at this stage enter the key vegetative growth period of heading,
booting, and flowering. At this stage, the crop water demand increases, while plant transpiration
and soil evaporation are strong. Therefore, a drought during this time has a greater impact on the
crop growth and yield. After September, the rainfall increased and the temperature decreased; thus,
there was no significant drought over the entire region as the crops were being harvested. The type
of drought in the region in 2012 was mainly a spring drought from April to June. The long period
of extremely low rainfall in the spring and the rising temperatures continuously reduced the soil
moisture. However, the main crops over the entire region were in the initial stage of growth and
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required significant amounts of water. Therefore, such hydrothermal conditions have led to drought
over large areas. As the precipitation and temperature gradually stabilize after June, the crops return
to normal growth conditions.

Due to limitations in the data conditions, only the 2012 open-source disaster data of the Volgograd
State drought disaster released by Oxfam [61] were used to statistically analyze the TVDI index drought
monitoring results during the key growth period from April to August in 2012 to better understand
the monitoring results. Based on the statistical results in Table 5, Volgograd’s 9184 km2 arable land
experienced a mild drought in 2012, as manifested by near-surface air drying. Then, 59,734 km2 of
arable land was in a moderate drought state, as characterized by dry soil surface layers and wilting
vegetation leaves. A total of 3571 km2 of arable land was in a state of severe drought, as defined by
the presence of thick dry soil layers, obvious wilting, vegetation dryness, and fruit shedding. Finally,
46 km2 of arable land was in a state of extreme drought, as the vegetation appeared significantly dry
and dead. Severe and extreme droughts have a greater impact on the crop growth and yield and
this is a key area of concern for crop disasters. Such a drought represented 3.33% of the total state
area, which is somewhat consistent with the Oxfam result. Oxfam’s survey of small-scale farmers in
Russia’s primary drought-stricken states indicates that the number of farms affected by drought in
Volgograd in 2012 was 1584, giving an area of 5,400.072 km2. The main affected items were cereals
and livestock, as well as a small number of vegetables, with official estimated losses amounting to
1565.13 million rubles.

Table 5. Statistics of areas affected by droughts in the Volgograd region during 2012.

Total State
Area (km2)

Affected Area from
April to August (km2)

Proportion
(%)

Levels of Drought
Disaster Judgment Basis

Statistics from
CDDI

108,448

35,913 33.12% Non-arable land or
no drought 0 < CDDI < 2.76

9184 8.47% Mild drought 2.76 ≤ CDDI < 3.42
59,734 55.08% Moderate drought 3.42 ≤ CDDI < 4.56
3571 3.29% Severe drought 4.56 ≤ CDDI < 5.16

46 0.04% Extreme drought 5.16 ≤ CDDI < 6

Statistics from
Oxfam Report 113,900 5407.042 4.75% none Farmer survey

4. Discussion

The droughts in Volgograd have been identified and classified from the perspectives of its
spatiotemporal evolution patterns, the evolution of rain-fed and irrigation lands, and the lag between
meteorological and agricultural droughts. This provides a reference for understanding the overall
drought events and guiding agricultural production. However, there are some limitations and
deficiencies in this study.

4.1. Single Index Selection and Data Limitation

First, only a single agricultural drought index and a single meteorological drought index were
used, and there is no relevant comparative discussion and analysis for other types of indices. There
are some similarities and differences in the drought monitoring results for different indices. The
monitoring effect and lag for different indices require further discussions in future research. Second,
the limitations of data indicate that the statistical analysis of disaster situations is only limited to the
survey data of farmers from 2012. Although the disaster results are consistent, to a certain extent, the
quantitative results are not sufficiently comprehensive. This requires data collection and collation to be
strengthened in future research and the real-time processing and accuracy of the data released to be
enhanced. In addition, drought events were only studied on a 1-km scale, and different crops were not
subdivided. These deficiencies also need to be supplemented and improved in future research.
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4.2. Gradually Strengthen Lag Analysis

It has been noted that an agricultural drought has a hysteresis to a meteorological drought, and
the lag time of each growth period is inconsistent. Specifically, the lag time from heading back to green
was the shortest and the lag time of overwintering was the longest. However, the limited amount of
data and other factors did not allow the specific delay for each crop growth stage to be calculated. At
the same time, the lag time of the drought response in rain-fed and irrigated lands lacks an in-depth
analysis. Rain-fed land is more sensitive to the response to a meteorological drought as its water
supply is from a single rainfall factor. However, the correlation between rain-fed and irrigated lands
was relatively high in Figure 12, and there was no significant lag interval found for the time scale in
Figure 13. This result is limited by the temporal resolution of the data and may also be related to the
coarse spatial resolution of the rain-fed and irrigated lands. These results should be improved for
future research by increasing the data volume or strengthening the time series analysis.

Figure 12. Correlation between the TVDIs for the rain-fed and irrigated lands over the five
years considered.

Figure 13. Cross correlations between the TVDIs of the rain-fed and irrigated lands over the five
years considered.

4.3. Supplement and Refinement of Spatial Factors

The characteristics of frequency, intensity, and hysteresis for drought events in real environments
may be affected by various spatial factors, such as the topography, landform, soil properties, and
crop types. This study only considered two different types of cultivated lands, rain-fed and irrigated,
and their local climate. In future research, it will be necessary to refine the scale of spatial factors
and analyze the comprehensive response of drought events to multiple factors. In addition, spatial
information, such as the DEM or geomorphic type distribution map, can be further combined to analyze
the factors that are related to drought characteristics, such as the hysteresis. For example, the time
delay for agricultural to meteorological droughts may fluctuate with changes in geographical factors.
The distribution of high correlation values between each geographical factor and the agricultural
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drought time delay may potentially be related to the factors of poor soil water retention, a high altitude,
a steep slope, lower precipitation, and reduced temperatures.

5. Conclusions

The monitoring and analysis of agricultural drought events is an important and lasting topic,
whether from the perspective of risk analysis or agricultural life guidance. For specific research areas,
crop growth will develop with changes in water and heat conditions after droughts, which is reflected
in the corresponding variety of parameters for its reflection characteristics. This also provides a basis
to use remote sensing drought indices to monitor the spatial evolution of droughts. As the TVDI index
can be applied to areas with significant vegetation and temperature changes, it was selected as the
remote sensing index for monitoring droughts in this paper. The calculation and visualization of the
index allowed a better understanding of the evolution mode of droughts in an area to be developed.
Droughts result from changes in the seasons and the spatial development track, which can indicate the
drought patterns for an area. Remote sensing drought indices are considered to provide important
monitoring capacities for future long-term drought monitoring. The drought monitoring results vary,
depending on the different types of crops or the local microclimate. Therefore, the influence of the
local microclimate should be discussed.

Meteorological and agricultural droughts describe an event from different perspectives. The
meteorological drought index is based on precipitation data with a strong seasonal variability, which
illustrates the meteorological conditions of a region. The agricultural drought index describes
droughts from the perspective of crop and soil moisture. These differing principles generate distinct
time-dependent curves. The rainfall index Pa selected in this paper reflects the general situation of dry
conditions in the spring and autumn. When rain is absent, the dry conditions of spring extend into the
growing season of summer. In contrast, the TVDI index is more consistent with the growth cycle and
temperature level of vegetation, which always shows higher levels in the summer. In general, if there
is no precipitation supplement for a period after a meteorological drought, an agricultural drought
will follow.

The main growth periods for different crops are not completely synchronous, and the water
demand and drought resistance capacities for different growth stages are also variable. From this
perspective, studying drought events should not be limited to considering their distributions, but
should also focus on whether they constitute disaster events. Droughts can indicate a risk for a
given area, while disasters can be used to quantitatively assess the economic loss of the affected area.
Therefore, this paper has analyzed both of these aspects to more comprehensively understand the
entire drought event.

The above three aspects formed the foci of this study for remote sensing drought monitoring,
which utilized the MODIS vegetation index products and surface temperature products to monitor
and evaluate droughts in the Volgograd region in Russia by constructing the TVDI and CDDI based on
the growth period. Meanwhile, the spatiotemporal differentiation of regional droughts and factors that
occur in different types of farming areas with unique growth periods were analyzed and discussed. In
addition, a lag analysis was performed for meteorological and agricultural droughts based on the crop
growth stages. The main conclusions are as follows.

5.1. Identification of Drought Events in 2010 and 2012

The Volgograd region experienced a wide range of drought conditions in 2010 due to abnormal
rainfall and high temperatures. The pattern of drought conditions included a spring drought from
April to May and a summer drought from June to August. The spring drought first occurred in
local areas of the rain-fed drylands, and extreme summer droughts followed due to extreme high
temperatures and low precipitation. The degree of continuous droughts during the summer had a
stronger impact and wider range as it was during the key growth period of regional crops. The drought
in 2012 primarily occurred between April and June and was influenced by extremely dry weather. Such
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events significantly impact the growth of the main corn crop in irrigated drylands. As the precipitation
and temperature became stable after June, the drought did not experience further strengthening. In
addition, the CDDI based on the growth period can correctly indicate the disaster conditions in the
region, and the monitoring results are in good agreement with the region's hydro-thermal conditions
and related statistics.

5.2. Difference in Droughts between Rain-Fed and Irrigation Lands and the Influencing Factors

The drought patterns for surface crops are affected by multiple factors, such as the average surface
temperature, extreme climatic factors, and irrigation methods. The research in this paper shows that the
temperature is a more important indicator than precipitation for crops, and extreme high-temperature
events have a greater negative impact on the crop yield [91]. High temperatures and droughts affect the
differences between the crop canopy and the surrounding temperature, which impacts the final crop
yield. In normal years, the average temperature level of the irrigated area in the semi-desert region in
the southeast was higher than that of the rain-fed land, and the drought index level was higher. Under
the extremely high-temperature conditions in 2010, wheat was more sensitive to soil moisture during
the germination and filling stages. Therefore, the response of wheat-dominated rain-fed lands to
droughts is more obvious, while artificial irrigation regulation in irrigated lands shows lower drought
levels in high-temperature climates.

5.3. Lag Analysis of Meteorological and Agricultural Droughts

A meteorological drought has a time lag of 1–2 months in comparison to an agricultural drought.
Therefore, the meteorological drought index is indicative of drought risk prediction and prevention.
However, the correlation between the meteorological drought index Pa and the agricultural drought
index TVDI fluctuates greatly during the different crop growth stages, with the strongest correlation
during the planting stage and weakest correlation during the dormancy stage. As a result, the
meteorological drought in the selected growth period better informs crop drought predictions.

5.4. Regional Drought Risk and Irrigation Guidance

From the perspective of drought prevention and risk prediction for local farming, droughts in the
southeastern irrigated area are affected by the local climate. This part of the region is more sensitive to
precipitation factors, especially during dry conditions, and is less sensitive during the spring. Therefore,
the region is prone to drought conditions, which requires stronger irrigation regulations. In contrast,
the average surface temperature of the rain-fed land in the northwest is relatively low due to the
greater impact of hot summers. Hence, it is necessary to consider the prevention of summer droughts.

In summary, it is possible to effectively monitor the occurrence and spatiotemporal evolution of
regional droughts and disasters based on the research presented in this paper. Moreover, a systematic
analysis of drought factors and forecast prevention for different types of cultivated land has been
achieved, which provides an important theoretical basis and reference for local agricultural production
irrigation and scientific management.
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